
Analyzing Scalability of Deblocking Filter of H.264 via TLP exploitation in a
new many-core architecture

Abstract

In this paper we present results of parallelization of
Deblocking Filter (DF) of H.264 video codec on
Decoupled Threaded Architecture (DTA). We
parallelized the code trying to exploit all available
thread level parallelism and to make it suitable for
DTA architecture. Experimental results show that
significant speedup can be achieved and that DTA
architecture can efficiently exploit available
parallelism. We also show comparison with
parallelized version of DF for Cell architecture.

Track area: DSD Digital System Design
Conference topic area: T6
Keywords: H.264, deblocking filter, TLP, many-core,
scalability, DTA

1. Introduction

Today’s multimedia systems demand more and
more computational power since the quality of content
that they provide is improving. In particular, users
show constant demand for videos with higher
resolution even on mobile devices. H.264, also known
as MPEG4 part 10 or MPEG-4 AVC (Advanced Video
Coding) is a video coding standard aimed at providing
high video quality even at lower bitrates. It was
developed with many application fields in mind, such
as high resolution video (for satellite, cable or DSL
broadcast), video storage (HD-DVD, blu-ray disc), and
internet and multimedia telephony systems [1].

Current single core architectures performance
cannot keep up with growing requirements for
computational power. Since the technology has
enabled putting more resources on a single chip, it is
now possible to use many-core processors even in
embedded devices. The many-core architecture that we
are developing, the Decoupled Threaded Architecture
(DTA) [2], is based on a coarse-grained dataflow
among threads, and on their non-blocking execution. It
also exploits distribution of processing elements to
overcome wire delay problem and to improve the
overall performance.

One more example of many-core architecture is a
new research chip from Intel that contains 80 simple
cores, where each core contains two programmable

floating point engines. Each core contains a 5-point
message passing router, and is connected to other cores
in a 2D mesh network. Unlike DTA, this chip exploits
standard programming model.

TRIPS [3] is another example of many core
architecture that uses “medium size” tiles that can be
configured either as processing elements, memory,
cache or registers. While DTA exploits dataflow
execution at the thread level and control-flow inside
one thread, TRIPS does the opposite. Indeed, TRIPS
executes hyper-blocks in a control-flow order, and
inside these blocks execution is dataflow.

Cell Broadband Engine Architecture (CBEA) [4]
combines one Power Architecture core with SIMD
processing elements that are called SPEs (Synergetic
Processing Elements). In the current implementation,
one CBEA processor has 8 SPEs that are
interconnected by a circular ring with four channels.
The main difference between CBEA and DTA is the
programming model that is used.

Many-core architectures have become widely
used. Therefore, parallelization of programs that are
used for providing multimedia content, such as video
codecs, and running them on many-core processors is a
promising way to improve the performance. In our
work we have focused on parallelizing Deblocking
Filter (DF) of the H.264 codec, and on utilizing the
advantages that DTA offers to exploit available Thread
Level Parallelism (TLP). We chose DF because it is
one of the most time consuming part of the code [5]
[6].

The rest of the paper is organized as follows.
Section 2 provides a high-level overview of H.264
deblocking filter and its parallelization possibilities.
Section 3 explains the basics of DTA architecture and
DF implementation for it. Section 4 presents obtained
results on the DTA architecture and comparison with
Cell. Conclusions are shown in Section 5.

2. Deblocking Filter of H.264

Encoding and decoding process in H.264
audio/video codec is composed of several different
steps. Deblocking filter is one of the steps in the
process. By profiling of H.264 it can be seen that
deblocking filter consumes about 7% of total decoder
processing time [5]. In the case when using Altivec [7]

extensions for optimizing H.264 kernels for PowerPC
and leaving deblocking filter non optimized,
deblocking filter portion of execution time of H.264
decoder can grow up to 49% [6]. Obviously,
deblocking filter consumes significant portion of the
decoder, both with and without optimizations, and
therefore it is important to execute it as efficiently as
possible.

Steps in H.264 operate on macroblocks (MBs),
which are blocks of 16x16 pixels. Because decoding
process is block-based, sharp edges may appear
between the blocks after discrete cosine transformation
(DCT) is applied. This is known as “blocking”. The
purpose of having a deblocking filter is to try to
eliminate these artifacts by smoothing the edges of
adjacent blocks. In H.263 version of the standard
deblocking filter was optional step, but from H.264 it
is a part of the standard.

Here we will give just a rough idea of a
deblocking filter process, for more information refer to
[8]. Deblocking filter basically modifies pixels at the
edges of macroblocks in cases when they meet certain
conditions. The type of modification that is performed
depends on the parameter called boundary strength and
it varies on the macroblock type and coding conditions.
In deblocking filter, macroblock (MB) processing is
done on the level of even smaller blocks of 4x4 pixels
[9]. Filtering process is done on both vertical and
horizontal edges of blocks. It starts at the left vertical
edge and proceeds at all internal edges. After filtering
is done for vertical edges, it is repeated for horizontal
edges starting from the top. Filtering is done for all
three color components independently.

There are several possibilities to exploit thread
level parallelism in the deblocking filter [10]. At the
MB level, all MBs that don’t have dependencies
between them can be processed at the same time. One
MB can’t be processed before MBs on its left and
above it have already been processed (other steps in
H.264 introduce additional dependencies, but here we
analyze just DF). For example, frame in CIF resolution
of 320x240 pixels, which has 300 MBs, can be
processed in total of 34 time slots. Maximal number of
MBs that can be processed in parallel is 15 and it lasts
for 6 time slots. However, average number of available
independent MBs is 8.82, and it is available for more
than 50% of execution time. In higher resolution the
number of MBs increases. For example, in FHD
resolution (1920x1088), maximal number of
independent MBs is 68 (average 43,64) and it is
available for 57 out of 187 time slots.

Next, all three color components can be processed
in parallel (Y, Cb and Cr). One more opportunity for
parallelism is to process 4x4 blocks in parallel. At each
step in both vertical and horizontal pass, 4 of these

blocks are processed. It is practically data level
parallelism, but it can be transformed in thread level by
processing each of 4 blocks in a separate thread. This is
done by unrolling appropriate loops in the code.

3. A new many-core architecture: DTA

DTA [2] is based on SDF execution paradigm
[11]. DTA utilizes threads that are non-blocking and
memory accesses are decoupled from execution.
Threads communicate among them in a producer-
consumer fashion, and a thread will start its execution
only when all its data is ready in local (frame) memory.
Processing elements (PE) in DTA are grouped into
nodes (Figure 1), where dimension of each node is
determined with a constraint that each PE must be
reachable in one cycle. On the other hand,
communication among nodes is slower, and
interconnection network is more complex, but this is
necessary to achieve scalability as the available
number of transistors increases.

Node Node

Node Node

Inter‐node network

…

…

PE PE

Distributed Scheduler (DS)

Intra‐node network

…

High‐level view of the DTA
architecture.

Internal organization of one
node in DTA

Figure 1 – DTA architecture organization.

The logic for handling threads in DTA is
distributed across PEs and nodes. Each PE contains
one LSE (Local Scheduler Element) that manages local
frames and forwards request for resources to the DSE
(Distributed Scheduler Element). Each node contains
one DSE that is responsible for distributing workload
among processors in the node, and for forwarding it to
other nodes when internal resources are depleted. For
more details on both LSE and DSE see [2].

Figure 2 shows thread synchronization in DTA on
code fragment from deblocking filter. The function for
filtering MB has to filter all three color components for
each edge in both directions. Therefore, in every pass it
forks three threads for each color component (actually,
it can be just for Y because Cb and Cr are compressed
by sampling them at a lower rate to meet the storage
and bandwidth limitations) and one thread that

implements a barrier. In order to ensure that any thread
won’t start executing before all of its data is ready (so
it can then run without blocking) a synchronization
count (SC) has been associated to each of them. This
synchronization count contains the number of input
data that the thread needs in order to run. In our
example, threads filter_mb_edgev and two instances of
filter_mb_edgecv have to wait for just one input from
filter_mb and since they are independent they can run
in parallel. In reality, all of these threads consume
more data but we presented only the most significant
data to illustrate the concept. When data is stored for a
thread, synchronization count is decremented and once
it reaches zero that thread is ready to execute. Barrier
thread has to wait signals from all three of these
threads (SC=3) and then it can fork filter_mb thread
for next pass.

For both directions
For each edge

Calculate offsets

Filter
Y
component

Filter
Cb
component

Next pass in MB

filter_mb_edgev

filter_mb

filter_mb_edgecv
Filter
Cr
component

filter_mb_edgecv

Inputs: y_offset,
cb_offset, cr_offset

y_offset cb_offset cr_offset

signal
signal

signal

Inputs:
y_offset
SC = 1

Inputs:
cb_offset
SC = 1

Inputs:
cr_offset
SC = 1

barrier

Inputs: 3
signals
SC = 3

Figure 2 – Example of thread synchronization in
DTA on a DF code fragment.

We have implemented two versions of deblocking
filter for DTA architecture. One is sequential, where
MBs are executed one by one and no other parallelism
available is exploited. This code is for running on a
single core only. The other code is parallel and it
exploits all three levels of parallelism which are
mentioned in section 2: independent MBs are
processed in parallel, color components are processed
in parallel and independent blocks of 4x4 pixels in
vertical and horizontal passes are processed in parallel.
We have to mention that, depending on input
parameters, it is not always possible to exploit all these
three levels of parallelism at the same time. Both
versions of the code are handwritten. As a reference
code, we have used a scalar implementation extracted
from [12].

In DTA implementation, we didn’t include
deblocking filter parameter calculations, but just

filtering itself. We suppose these parameters to be
calculated by the previous steps and available as inputs
of the program together with pixel color components.

4. Results

For our tests, we used first eight frames of Lake
Wave video sequence. Frame resolution was 320x240
pixels – CIF resolution. For the DTA tests, we were
using cycle accurate simulator with perfect memory
model, written in C++. We extracted the data for the
Cell processor from the work of Azevedo et al. [9].

Our first test was to measure the execution time
reduction of each of the first eight frames of Lake
Wave example by simply adding more processors in
the system (all in a single node). Results are presented
in Figure 3. We measured speedup using execution
time on one processor as a baseline, for both sequential
and parallel code. Execution time overhead of parallel
code with respect to sequential is very low (about 3%
on average). For this reason, speedup is very similar in
both cases. As it is mentioned in section 2, the number
of independent MBs in CIF resolution is at maximum
15 and little less than 9 on average, but it is increasing
for higher resolutions. Therefore, from these results,
we expect that even better speedups can be achieved
for higher resolutions because more MBs are available
in parallel. This means more threads with no
dependencies among them. As stated earlier, not all
three levels of parallelism are always available at the
same time. That is why scalability is less than it could
be expected theoretically.

1

2

4

8

16

1 2 4 8 16

speedup
[# of cycles]

of processors

Scalability of parallel DTA code vs. ideal
scalability for H.264 DF

ideal speedup

speedup of parallel code (baseline parallel code)

speedup of parallel code wrt. sequential (baseline sequential code)

Figure 3 – Speedup of H.264 deblocking filter; DTA
parallel code with a different number of processors
in a single node vs. ideal case.

In Figure 4 we presented execution time for each
frame for different number of processors in a single

0

1000000

2000000

3000000

4000000

5000000

6000000

7000000

8000000

0 1 2 3 4 5 6 7 AVG

of cycles

frame

Scalability of single DTA node with
H.264 DF

1 processor 2 processors 4 processors 8 processors 16 processors

Figure 4 - Scalability of H.264 deblocking filter;
speedup in execution time of first eight frames of
Lake Wave video sequence by increasing the
number of processors in a single node.

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

0 1 2 3 4 5 6 7 AVG

utilization
[%]

frame

Average processor utilization in DTA for
H.264 DF

1 processor 2 processors 4 processors 8 processors 16 processors

Figure 5 - Average processor utilization for first
eight frames of Lake Wave video sequence by
increasing the number of processors in a single
node.

1

2

3

4

5

6

2 p
ro
ce
ss
or
s

4 p
ro
ce
ss
or
s

8 p
ro
ce
ss
or
s

2 p
ro
ce
ss
or
s

4 p
ro
ce
ss
or
s

8 p
ro
ce
ss
or
s

2 p
ro
ce
ss
or
s

4 p
ro
ce
ss
or
s

8 p
ro
ce
ss
or
s

2 p
ro
ce
ss
or
s

4 p
ro
ce
ss
or
s

8 p
ro
ce
ss
or
s

2 p
ro
ce
ss
or
s

4 p
ro
ce
ss
or
s

8 p
ro
ce
ss
or
s

2 p
ro
ce
ss
or
s

4 p
ro
ce
ss
or
s

8 p
ro
ce
ss
or
s

2 p
ro
ce
ss
or
s

4 p
ro
ce
ss
or
s

8 p
ro
ce
ss
or
s

2 p
ro
ce
ss
or
s

4 p
ro
ce
ss
or
s

8 p
ro
ce
ss
or
s

2 p
ro
ce
ss
or
s

4 p
ro
ce
ss
or
s

8 p
ro
ce
ss
or
s

0 1 2 3 4 5 6 7 AVG

speedup

frame

Incremental contribution of each parallelization level in overall
speedup

MB level

4x4 blocks level

color component level

Figure 6 - Contribution of each parallelization in overall speedup; first is just with color component
parallelization, then with 4x4 blocks parallelization included and at the end with all three types of
parallelization together.

node. Execution time reduction is almost linear up to
sixteen processors, but then it slows down because
there is no more thread level parallelism available.
Number of threads available remains the same even if
we add more processors. However, threads are equally
distributed among processors. That’s why we see lower
average processor utilization in Figure 5 in the case of
sixteen processor in a single node.

In Figure 6 we have presented contribution of each
level of parallelization used in overall speedup. We

measured these contributions incrementally. First we
analyzed speedup just when processing color
components in parallel. Then we added parallelism at
4x4 block level (MBs processed sequentially), and
finally MB level parallelization was included. Baseline
is the execution time on one processor (speedup equal
to 1). It can be seen that for two processors
contribution of each level is similar. However, for
more processors in the system, overall speedup is
dominated by MB level of parallelism and contribution
of other levels doesn’t increase significantly. Available

parallelism of color component level is limited by the
fact that all three components are not processed in each
pass (sub-sampling of Cb and Cr components). On the
other hand, contribution of 4x4 block level parallelism
is not at its theoretical maximum because this
parallelism is dependent on input parameters (not in
every case all blocks are processed) and also it
introduces some overhead in order to be exploited.
Overall conclusion is that MB level of parallelism is
most significant, and with higher resolution it can
increase even more, while other two are expected to
remain at the same level.

Comparison with the real Cell is given just for the
reference, as there are several differences in both cases.
In DTA we assume for now a perfect memory model
but we assume we could efficiently exploit double-
buffering scheme as in the Cell [9]. On the other hand,
we do not use software pipelining like in the Cell code.
In the parallel version of the code for the Cell
processor [9], sequential code is vectorized by hand
utilizing SIMD capabilities of SPEs. As in DTA
version, implementation doesn’t include deblocking
filter parameter calculations. Parallelization in Cell is
based on SIMD ISA of SPEs and in DTA on adding
more processors to exploit thread-level parallelism.

Our intention was not to compare performances of
these architectures, but to show scaling possibilities of
both of them. Figure 7 shows the results for two
architectures. We presented the execution time of
sequential and parallel versions of the code for both
architectures (average for first eight frames of Lake
Wave video sequence) and achieved speedup.

7000000
6202866

2200000 1774780

0
1000000
2000000
3000000
4000000
5000000
6000000
7000000
8000000

Cell DTA

CELL vs. DTA

sequential parallel

Speedup 3.18 Speedup 3.49

Average frame
execution time
[# of cycles]

Figure 7 - Sequential and parallel execution of
H.264 DF on IBM Cell and DTA; average of first
eight frames of Lake Wave video sequence; in Cell
parallel code is SIMD code able to execute 4
operations in parallel while in DTA there are 4
processors in a single node.

In the Cell, speedup is achieved by using SIMD
capabilities of SPEs to execute four operations in

parallel. In this way data level parallelism is exploited.
Only one SPE is used for processing single frame. For
the DTA architecture we showed execution time of
sequential code running on a single processor and
parallel code running on four processors in a single
node. Reason for having sequential version result for
DTA better than Cell is also because of a perfect
memory model. Speedup achieved in DTA is 3.49
against 3.18 for Cell. In Cell, speedup is achieved by
only exploiting ISA capabilities and in DTA by adding
more processors. However, DTA uses very simple
processors and it is fair to assume that it would be
possible to put lot of them on a single chip. One
additional thing to mention is that these two solutions
exploit different parallelism that could eventually be
combined to achieve even better results.

In the other tests, we were processing all eight
frames together by distributing them among different
nodes – system configurations from 1 to 8 nodes and
from 1 to 16 processors in total. For distributing frames
equally among nodes we used “ISA helped scheduling”
[2]. Figure 8 shows speedup achieved for different
system configurations. System configurations with the
same number of processors in total, but distributed in
more nodes (e.g. 2, 2 and 4, 1) has slightly worse
performance due to the fact that the inter-node network
has higher latency than intra-node network.

0
2
4
6
8
10
12
14
16

1, 1 1, 2 2, 1 1, 4 2, 2 4, 1 1, 8 2, 4 4, 2 8, 1 1, 16 2, 8 4, 4 8, 2

1 2 4 8 16

speedup
[# of cycles]

system configuration (# of nodes, # of processors)

Scalability of different DTA configurations
with H.264 DF (with ISA helped scheduling)

Figure 8 - Scalability of DTA with H.264 DF;
speedup obtained by distribution of first eight
frames of Lake Wave video sequence across nodes
(1, 2, 4 and 8 nodes with different number of
processors per node).

From Figure 9, we can see that average processor
utilization in all of these cases is very high (more than
95% on average), which means that DTA architecture
can efficiently exploit thread level parallelism in terms
of non-blocking threads. In other words, if there is
enough TLP in the program it can be efficiently
exploited.

0.00%
10.00%
20.00%
30.00%
40.00%
50.00%
60.00%
70.00%
80.00%
90.00%
100.00%

1, 1 1, 2 2, 1 1, 4 2, 2 4, 1 1, 8 2, 4 4, 2 8, 1 1, 16 2, 8 4, 4 8, 2

1 2 4 8 16

utilization [%]

system configuration (# of nodes, # of processors per node)

Average processor utilization in DTA for
H.264 DF (with ISA helped scheduling)

Figure 9 - Average processor utilization with H.264
DF in the case of distributing first eight frames of
Lake Wave video sequence across nodes (1, 2, 4 and
8 nodes with different number of processors per
node).

5. Conclusions

In this work we have presented parallelization

possibilities of H.264 deblocking filter and its
performance on DTA architecture. We have exploited
three levels of thread level parallelism: macroblock
level, color component level and parallel processing of
portions of macroblocks.

We wrote parallel code for DTA by hand and
executed it on a cycle accurate simulator. The results
show that scalability of the architecture is very good.
For up to sixteen processors it is almost linear, but
after that the limits of available parallelism are
reached. We have also shown a comparison with Cell
processor with the goal to present scaling possibilities
in both architectures. In Cell running SIMD version of
the code on a single SPE speedup of 3.18 is achieved.
In DTA architecture, by having four processors in the
system we have achieved speedup of 3.49. In our case,
the goal was to achieve scalability by simply adding
more simple processing units. In this way, we have
demonstrated that DTA architecture is suitable for
accelerating portions of H.264 codec by parallel
execution of deblocking filter.

As our future work, we plan to perform these tests
on DTA architecture with more realistic memory
system and with higher resolution inputs as well. Also,
we want to investigate further possibilities for
parallelizing other portions of H.264 codec.

Acknowledgement

This work was supported by the European Commission
in the context of the SARC integrated project #27648
(FP6).

References

[1] T. Wiegand, G. J. Sullivan, G. Bjntegaard, and A.
Luthra, "Overview of the H.264/AVC video coding
standard," Circuits and Systems for Video Technology, IEEE
Transactions on, vol. 13, pp. 560-576, July 2003.
[2] R. Giorgi, Z. Popovic, and N. Puzovic, "DTA-C: A
Decoupled multi-Threaded Architecture for CMP Systems,"
in Proceedings of IEEE SBAC-PAD, Gramado, Brasil, 2007,
pp. 263-270.
[3] K. Sankaralingam, R. Nagarajan, H. Liu, C. Kim, J.
Huh, D. Burger, S. W. Keckler, and C. R. Moore, "Exploiting
ILP, TLP, and DLP with the polymorphous TRIPS
architecture," in Proceedings of the 30th annual international
symposium on Computer architecture San Diego, California:
ACM Press, pp. 422-433, 2003.
[4] J. A. Kahle, M. N. Day, H. P. Hofstee, C. R. Johns,
T. R. Maeurer, and D. Shippy, "Introduction to the cell
multiprocessor," IBM J. Res. Dev., vol. 49, pp. 589-604,
2005.
[5] X. Zhou, E. Q. Li, and Y.-K. Chen,
"Implementation of H.264 decoder on general-purpose
processors with media instructions," in Image and Video
Communications and Processing 2003. Edited by Vasudev,
Bhaskaran; Hsing, T. Russell; Tescher, Andrew G.;
Ebrahimi, Touradj. Proceedings of the SPIE, Volume 5022,
pp. 224-235 (2003). 2003, pp. 224-235.
[6] M. Alvarez, E. Salami, A. Ramirez, and M. Valero,
"A performance characterization of high definition digital
video decoding using H.264/AVC," Workload
Characterization Symposium, 2005. Proceedings of the IEEE
International, pp. 24-33, 6-8 Oct. 2005.
[7] K. Diefendorff, P. K. Dubey, R. Hochsprung, and
H. A. S. H. Scale, "AltiVec extension to PowerPC
accelerates media processing," Micro, IEEE, vol. 20, pp. 85-
95, 2000.
[8] P. List, A. Joch, J. Lainema, G. Bjntegaard, and M.
Karczewicz, "Adaptive deblocking filter," Circuits and
Systems for Video Technology, IEEE Transactions on, vol.
13, pp. 614-619, July 2003.
[9] A. Azevedo, C. H. Meenderinck, B. H. H. Juurlink,
M. Alvarez, and A. Ramirez, "Analysis of Video Filtering on
the Cell Processor," in Proceeding in Prorisc Conference,
2007.
[10] C. H. Meenderinck, A. Azevedo, M. Alvarez, B. H.
H. Juurlink, and A. Ramirez, "Parallel Scalability of H.264,"
in Proceedings of the first Workshop on Programmability
Issues for Multi-Core Computers, 2008.
[11] K. M. Kavi, R. Giorgi, and J. Arul, "Scheduled
Dataflow: Execution Paradigm, Architecture, and
Performance Evaluation," IEEE Transaction on Computers,
vol. 50, pp. 834-846, August 2001.
[12] "The FFmpeg Libavcoded," Available:
http://ffmpeg.mplayerhq.hu/.

