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Abstract 
 

In this paper we present results of parallelization of 
Deblocking Filter (DF) of H.264 video codec on 
Decoupled Threaded Architecture (DTA). We 
parallelized the code trying to exploit all available 
thread level parallelism and to make it suitable for 
DTA architecture. Experimental results show that 
significant speedup can be achieved and that DTA 
architecture can efficiently exploit available 
parallelism. We also show comparison with 
parallelized version of DF for Cell architecture. 
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1. Introduction 
 

Today’s multimedia systems demand more and 
more computational power since the quality of content 
that they provide is improving. In particular, users 
show constant demand for videos with higher 
resolution even on mobile devices. H.264, also known 
as MPEG4 part 10 or MPEG-4 AVC (Advanced Video 
Coding) is a video coding standard aimed at providing 
high video quality even at lower bitrates. It was 
developed with many application fields in mind, such 
as high resolution video (for satellite, cable or DSL 
broadcast), video storage (HD-DVD, blu-ray disc), and 
internet and multimedia telephony systems [1]. 

Current single core architectures performance 
cannot keep up with growing requirements for 
computational power. Since the technology has 
enabled putting more resources on a single chip, it is 
now possible to use many-core processors even in 
embedded devices. The many-core architecture that we 
are developing, the Decoupled Threaded Architecture 
(DTA) [2], is based on a coarse-grained dataflow 
among threads, and on their non-blocking execution. It 
also exploits distribution of processing elements to 
overcome wire delay problem and to improve the 
overall performance.  

One more example of many-core architecture is a 
new research chip from Intel that contains 80 simple 
cores, where each core contains two programmable 

floating point engines. Each core contains a 5-point 
message passing router, and is connected to other cores 
in a 2D mesh network. Unlike DTA, this chip exploits 
standard programming model.  

TRIPS [3] is another example of many core 
architecture that uses “medium size” tiles that can be 
configured either as processing elements, memory, 
cache or registers. While DTA exploits dataflow 
execution at the thread level and control-flow inside 
one thread, TRIPS does the opposite. Indeed, TRIPS 
executes hyper-blocks in a control-flow order, and 
inside these blocks execution is dataflow.  

Cell Broadband Engine Architecture (CBEA) [4] 
combines one Power Architecture core with SIMD 
processing elements that are called SPEs (Synergetic 
Processing Elements). In the current implementation, 
one CBEA processor has 8 SPEs that are 
interconnected by a circular ring with four channels. 
The main difference between CBEA and DTA is the 
programming model that is used. 

Many-core architectures have become widely 
used. Therefore, parallelization of programs that are 
used for providing multimedia content, such as video 
codecs, and running them on many-core processors is a 
promising way to improve the performance. In our 
work we have focused on parallelizing Deblocking 
Filter (DF) of the H.264 codec, and on utilizing the 
advantages that DTA offers to exploit available Thread 
Level Parallelism (TLP). We chose DF because it is 
one of the most time consuming part of the code [5] 
[6]. 

The rest of the paper is organized as follows. 
Section 2 provides a high-level overview of H.264 
deblocking filter and its parallelization possibilities. 
Section 3 explains the basics of DTA architecture and 
DF implementation for it. Section 4 presents obtained 
results on the DTA architecture and comparison with 
Cell. Conclusions are shown in Section 5.  

 
2. Deblocking Filter of H.264 
 

Encoding and decoding process in H.264 
audio/video codec is composed of several different 
steps. Deblocking filter is one of the steps in the 
process. By profiling of H.264 it can be seen that 
deblocking filter consumes about 7% of total decoder 
processing time [5]. In the case when using Altivec [7] 



extensions for optimizing H.264 kernels for PowerPC 
and leaving deblocking filter non optimized, 
deblocking filter portion of execution time of H.264 
decoder can grow up to 49% [6]. Obviously, 
deblocking filter consumes significant portion of the 
decoder, both with and without optimizations, and 
therefore it is important to execute it as efficiently as 
possible.  

Steps in H.264 operate on macroblocks (MBs), 
which are blocks of 16x16 pixels. Because decoding 
process is block-based, sharp edges may appear 
between the blocks after discrete cosine transformation 
(DCT) is applied. This is known as “blocking”. The 
purpose of having a deblocking filter is to try to 
eliminate these artifacts by smoothing the edges of 
adjacent blocks. In H.263 version of the standard 
deblocking filter was optional step, but from H.264 it 
is a part of the standard. 

Here we will give just a rough idea of a 
deblocking filter process, for more information refer to 
[8]. Deblocking filter basically modifies pixels at the 
edges of macroblocks in cases when they meet certain 
conditions. The type of modification that is performed 
depends on the parameter called boundary strength and 
it varies on the macroblock type and coding conditions. 
In deblocking filter, macroblock (MB) processing is 
done on the level of even smaller blocks of 4x4 pixels 
[9]. Filtering process is done on both vertical and 
horizontal edges of blocks. It starts at the left vertical 
edge and proceeds at all internal edges. After filtering 
is done for vertical edges, it is repeated for horizontal 
edges starting from the top. Filtering is done for all 
three color components independently.  

There are several possibilities to exploit thread 
level parallelism in the deblocking filter [10]. At the 
MB level, all MBs that don’t have dependencies 
between them can be processed at the same time. One 
MB can’t be processed before MBs on its left and 
above it have already been processed (other steps in 
H.264 introduce additional dependencies, but here we 
analyze just DF). For example, frame in CIF resolution 
of 320x240 pixels, which has 300 MBs, can be 
processed in total of 34 time slots. Maximal number of 
MBs that can be processed in parallel is 15 and it lasts 
for 6 time slots. However, average number of available 
independent MBs is 8.82, and it is available for more 
than 50% of execution time. In higher resolution the 
number of MBs increases. For example, in FHD 
resolution (1920x1088), maximal number of 
independent MBs is 68 (average 43,64) and it is 
available for 57 out of 187 time slots.  

Next, all three color components can be processed 
in parallel (Y, Cb and Cr). One more opportunity for 
parallelism is to process 4x4 blocks in parallel. At each 
step in both vertical and horizontal pass, 4 of these 

blocks are processed. It is practically data level 
parallelism, but it can be transformed in thread level by 
processing each of 4 blocks in a separate thread. This is 
done by unrolling appropriate loops in the code.  

 
3. A new many-core architecture: DTA 
 

DTA [2] is based on SDF execution paradigm 
[11]. DTA utilizes threads that are non-blocking and 
memory accesses are decoupled from execution. 
Threads communicate among them in a producer-
consumer fashion, and a thread will start its execution 
only when all its data is ready in local (frame) memory. 
Processing elements (PE) in DTA are grouped into 
nodes (Figure 1), where dimension of each node is 
determined with a constraint that each PE must be 
reachable in one cycle. On the other hand, 
communication among nodes is slower, and 
interconnection network is more complex, but this is 
necessary to achieve scalability as the available 
number of transistors increases. 
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Figure 1 – DTA architecture organization. 
 

The logic for handling threads in DTA is 
distributed across PEs and nodes. Each PE contains 
one LSE (Local Scheduler Element) that manages local 
frames and forwards request for resources to the DSE 
(Distributed Scheduler Element). Each node contains 
one DSE that is responsible for distributing workload 
among processors in the node, and for forwarding it to 
other nodes when internal resources are depleted. For 
more details on both LSE and DSE see [2]. 

Figure 2 shows thread synchronization in DTA on 
code fragment from deblocking filter. The function for 
filtering MB has to filter all three color components for 
each edge in both directions. Therefore, in every pass it 
forks three threads for each color component (actually, 
it can be just for Y because Cb and Cr are compressed 
by sampling them at a lower rate to meet the storage 
and bandwidth limitations) and one thread that 



implements a barrier. In order to ensure that any thread 
won’t start executing before all of its data is ready (so 
it can then run without blocking) a synchronization 
count (SC) has been associated to each of them. This 
synchronization count contains the number of input 
data that the thread needs in order to run. In our 
example, threads filter_mb_edgev and two instances of 
filter_mb_edgecv have to wait for just one input from 
filter_mb and since they are independent they can run 
in parallel. In reality, all of these threads consume 
more data but we presented only the most significant 
data to illustrate the concept. When data is stored for a 
thread, synchronization count is decremented and once 
it reaches zero that thread is ready to execute. Barrier 
thread has to wait signals from all three of these 
threads (SC=3) and then it can fork filter_mb thread 
for next pass.  
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Figure 2 – Example of thread synchronization in 
DTA on a DF code fragment. 
 

We have implemented two versions of deblocking 
filter for DTA architecture. One is sequential, where 
MBs are executed one by one and no other parallelism 
available is exploited. This code is for running on a 
single core only. The other code is parallel and it 
exploits all three levels of parallelism which are 
mentioned in section 2: independent MBs are 
processed in parallel, color components are processed 
in parallel and independent blocks of 4x4 pixels in 
vertical and horizontal passes are processed in parallel. 
We have to mention that, depending on input 
parameters, it is not always possible to exploit all these 
three levels of parallelism at the same time. Both 
versions of the code are handwritten. As a reference 
code, we have used a scalar implementation extracted 
from [12].  

In DTA implementation, we didn’t include 
deblocking filter parameter calculations, but just 

filtering itself. We suppose these parameters to be 
calculated by the previous steps and available as inputs 
of the program together with pixel color components.  

 
4. Results 
 

For our tests, we used first eight frames of Lake 
Wave video sequence. Frame resolution was 320x240 
pixels – CIF resolution. For the DTA tests, we were 
using cycle accurate simulator with perfect memory 
model, written in C++. We extracted the data for the 
Cell processor from the work of Azevedo et al. [9].  

Our first test was to measure the execution time 
reduction of each of the first eight frames of Lake 
Wave example by simply adding more processors in 
the system (all in a single node). Results are presented 
in Figure 3. We measured speedup using execution 
time on one processor as a baseline, for both sequential 
and parallel code. Execution time overhead of parallel 
code with respect to sequential is very low (about 3% 
on average). For this reason, speedup is very similar in 
both cases. As it is mentioned in section 2, the number 
of independent MBs in CIF resolution is at maximum 
15 and little less than 9 on average, but it is increasing 
for higher resolutions. Therefore, from these results, 
we expect that even better speedups can be achieved 
for higher resolutions because more MBs are available 
in parallel. This means more threads with no 
dependencies among them. As stated earlier, not all 
three levels of parallelism are always available at the 
same time. That is why scalability is less than it could 
be expected theoretically.  
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Figure 3 – Speedup of H.264 deblocking filter; DTA 
parallel code with a different number of processors 
in a single node vs. ideal case. 
 

In Figure 4 we presented execution time for each 
frame for different number of processors in a single 
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Figure 4 - Scalability of H.264 deblocking filter; 
speedup in execution time of first eight frames of 
Lake Wave video sequence by increasing the 
number of processors in a single node.  
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Figure 5 - Average processor utilization for first 
eight frames of Lake Wave video sequence by 
increasing the number of processors in a single 
node. 
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Figure 6 - Contribution of each parallelization in overall speedup; first is just with color component 
parallelization, then with 4x4 blocks parallelization included and at the end with all three types of 
parallelization together. 
 
node. Execution time reduction is almost linear up to 
sixteen processors, but then it slows down because 
there is no more thread level parallelism available. 
Number of threads available remains the same even if 
we add more processors. However, threads are equally 
distributed among processors. That’s why we see lower 
average processor utilization in Figure 5 in the case of 
sixteen processor in a single node.  

In Figure 6 we have presented contribution of each 
level of parallelization used in overall speedup. We 

measured these contributions incrementally. First we 
analyzed speedup just when processing color 
components in parallel. Then we added parallelism at 
4x4 block level (MBs processed sequentially), and 
finally MB level parallelization was included. Baseline 
is the execution time on one processor (speedup equal 
to 1). It can be seen that for two processors 
contribution of each level is similar.  However, for 
more processors in the system, overall speedup is 
dominated by MB level of parallelism and contribution 
of other levels doesn’t increase significantly. Available 



parallelism of color component level is limited by the 
fact that all three components are not processed in each 
pass (sub-sampling of Cb and Cr components). On the 
other hand, contribution of 4x4 block level parallelism 
is not at its theoretical maximum because this 
parallelism is dependent on input parameters (not in 
every case all blocks are processed) and also it 
introduces some overhead in order to be exploited. 
Overall conclusion is that MB level of parallelism is 
most significant, and with higher resolution it can 
increase even more, while other two are expected to 
remain at the same level.  

Comparison with the real Cell is given just for the 
reference, as there are several differences in both cases. 
In DTA we assume for now a perfect memory model 
but we assume we could efficiently exploit double-
buffering scheme as in the Cell [9]. On the other hand, 
we do not use software pipelining like in the Cell code. 
In the parallel version of the code for the Cell 
processor [9], sequential code is vectorized by hand 
utilizing SIMD capabilities of SPEs. As in DTA 
version, implementation doesn’t include deblocking 
filter parameter calculations. Parallelization in Cell is 
based on SIMD ISA of SPEs and in DTA on adding 
more processors to exploit thread-level parallelism.  

Our intention was not to compare performances of 
these architectures, but to show scaling possibilities of 
both of them. Figure 7 shows the results for two 
architectures. We presented the execution time of 
sequential and parallel versions of the code for both 
architectures (average for first eight frames of Lake 
Wave video sequence) and achieved speedup.  

 

7000000
6202866

2200000 1774780

0
1000000
2000000
3000000
4000000
5000000
6000000
7000000
8000000

Cell DTA

CELL vs. DTA

sequential parallel

Speedup 3.18 Speedup 3.49

Average frame
execution time
[# of cycles]

 
Figure 7 - Sequential and parallel execution of 
H.264 DF on IBM Cell and DTA; average of first 
eight frames of Lake Wave video sequence; in Cell 
parallel code is SIMD code able to execute 4 
operations in parallel while in DTA there are 4 
processors in a single node. 
 

In the Cell, speedup is achieved by using SIMD 
capabilities of SPEs to execute four operations in 

parallel. In this way data level parallelism is exploited. 
Only one SPE is used for processing single frame. For 
the DTA architecture we showed execution time of 
sequential code running on a single processor and 
parallel code running on four processors in a single 
node. Reason for having sequential version result for 
DTA better than Cell is also because of a perfect 
memory model. Speedup achieved in DTA is 3.49 
against 3.18 for Cell. In Cell, speedup is achieved by 
only exploiting ISA capabilities and in DTA by adding 
more processors. However, DTA uses very simple 
processors and it is fair to assume that it would be 
possible to put lot of them on a single chip. One 
additional thing to mention is that these two solutions 
exploit different parallelism that could eventually be 
combined to achieve even better results. 

In the other tests, we were processing all eight 
frames together by distributing them among different 
nodes – system configurations from 1 to 8 nodes and 
from 1 to 16 processors in total. For distributing frames 
equally among nodes we used “ISA helped scheduling” 
[2]. Figure 8 shows speedup achieved for different 
system configurations. System configurations with the 
same number of processors in total, but distributed in 
more nodes (e.g. 2, 2 and 4, 1) has slightly worse 
performance due to the fact that the inter-node network 
has higher latency than intra-node network. 
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Figure 8 - Scalability of DTA with H.264 DF; 
speedup obtained by distribution of first eight 
frames of Lake Wave video sequence across nodes 
(1, 2, 4 and 8 nodes with different number of 
processors per node). 
 

From Figure 9, we can see that average processor 
utilization in all of these cases is very high (more than 
95% on average), which means that DTA architecture 
can efficiently exploit thread level parallelism in terms 
of non-blocking threads. In other words, if there is 
enough TLP in the program it can be efficiently 
exploited. 
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Figure 9 - Average processor utilization with H.264 
DF in the case of distributing first eight frames of 
Lake Wave video sequence across nodes (1, 2, 4 and 
8 nodes with different number of processors per 
node). 
 
5. Conclusions 

 
In this work we have presented parallelization 

possibilities of H.264 deblocking filter and its 
performance on DTA architecture. We have exploited 
three levels of thread level parallelism: macroblock 
level, color component level and parallel processing of 
portions of macroblocks.  

We wrote parallel code for DTA by hand and 
executed it on a cycle accurate simulator. The results 
show that scalability of the architecture is very good. 
For up to sixteen processors it is almost linear, but 
after that the limits of available parallelism are 
reached. We have also shown a comparison with Cell 
processor with the goal to present scaling possibilities 
in both architectures. In Cell running SIMD version of 
the code on a single SPE speedup of 3.18 is achieved. 
In DTA architecture, by having four processors in the 
system we have achieved speedup of 3.49. In our case, 
the goal was to achieve scalability by simply adding 
more simple processing units. In this way, we have 
demonstrated that DTA architecture is suitable for 
accelerating portions of H.264 codec by parallel 
execution of deblocking filter.  

As our future work, we plan to perform these tests 
on DTA architecture with more realistic memory 
system and with higher resolution inputs as well. Also, 
we want to investigate further possibilities for 
parallelizing other portions of H.264 codec. 
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