Acceleration of Smith-Waterman Using Recursive Variable Expansion

Zubair Nawaz, Zaid Al-Ars, Koen Bertels

Computer Engineering Lab
Delft University of Technology
The Netherlands

Mudassir Shabbir
Mentor Graphics, Pakistan
mudassir _shabbir@mentor.com

{z.nawaz, z.al-ars, k.l.m.bertels}@tudelft.nl

Abstract

The Smith-Waterman (SW) algorithm is a local se-
quence alignment algorithm that attempts to align two
biological sequences of wvarying length such that the
alignment score is mazximum. In this paper, we pro-
pose a new approach to reduce the time needed to per-
form the SW algorithm. This is done by applying the
concept of recursive variable expansion, which exposes
more parallelism in the algorithm than any other pub-
lished method. The paper estimates the speed and hard-
ware overhead for the newly proposed approach relative
to other known acceleration methods. Using the new
approach, it is possible to achieve a minimum speedup
of 400 times better than the serial case for a typical
sequence length of 500, which is 1.6 times higher than
any other published method. The paper also shows that
further speedup can be achieved using extra hardware
to expose even more parallelism in the algorithm.

1 Introduction

OCAL sequence alignment is an important problem
L in computational biology, as it is helps in discover-
ing functional, structural and evolutionary information
in biological sequences of DNA, RNA and proteins. It
is used to optimally align two apparently dissimilar se-
quences which include some pattern which is highly
conserved. The local alignment algorithm will find this
pattern and ignore the patterns that show little simi-
larity. Smith-Waterman (SW) algorithm [16] is a such
well known local alignment algorithm. This algorithm
is based on dynamic programming, which has time and
space complexity O(mn), where m and n are lengths of
the sequences being aligned. Although this complex-
ity seems to be acceptable, the exponential growth in
bio-sequence databases of known sequences makes this
complexity intolerable [8, 2|. Therefore as the database

size grows larger, faster algorithms become important
to quickly compare and align the sequences.

One way to avoid such expensive solutions is to
use heuristic techniques like FASTA [12] and BLAST
[1]. Both compute the local alignment and are fast
but less sensitive than SW, as the time complexity is
reduced at the cost of accuracy. Therefore, an opti-
mal alignment may not always be found through these
techniques. Another way to reduce the time com-
plexity is to accelerate SW algorithm through paral-
lel processing. Researchers have been able to paral-
lelize the SW algorithm on parallel machines [15, 18].
However, on the one hand, the amount of acceleration
achieved by this method is theoretically bound. On
the other hand, keeping in mind the growing size of
the database, prevalent methods require further accel-
eration to match this growth.

In this paper, we show the way to apply Recursive
Variable Ezpansion (RVE) to the SW algorithm, which
reveals new previously unexplored type of data paral-
lelism in the algorithm. Using RVE, the amount of
speedup achievable for a typical sequence length of 500
is at least 400 times better than the serial case (one
element is computed in hardware at a time), which is
higher than the maximum speedup gained by tradi-
tional hardware acceleration methods by a factor of at
least 1.6 using low hardware overhead.

The rest of the paper is organized as follows. In
section 2, we discuss the background and related work
for the parallelization of biological sequence alignment.
Our approach and implementation is discussed in Sec-
tion 3. Section 4 estimates the needed time and hard-
ware for our approach along with a comparison of time
and hardware needed for other prevalent parallel tech-
niques, finally, we conclude the paper in Section 5.

G TCGCAAC
000O0OOOOO
T/l0/02 00 0O0O0O0
C/l0j0 0422002
C/l00 0234202
A/l0O 000126 42
T/|0/0 2/ 000 453
G/0 2/ 01 202 34

Figure 1. Scoring Matrix for an example of SW
algorithm, when g = —2 and z(i, j) = +1 when
S[i/=T[j| otherwise —1. Elements in the trace
back are shown in bold.

2 Background and Related Work

2.1 The Smith-Waterman algorithm

Let S[1..m] and T[1..n] be two sequences of length
m and n for sequence alignment. The optimal align-
ment score F(i, j) for two sub-sequences S[1..i] and
T/1..j] is given by the following recurrence equation.

Fli,j—1)+g
o Fi—1,j—1)+z(i,j)
F(i,j) = max Fli—1.9)+ g (1)
0

where F(0,0) = F(0,j5) = F(i,0) = 0, for 1 <
i <mand 1 < j < n. The x(4,j) is the score for
match /mismatch, depending upon whether S[i] = T'[§]
or S[i] # T[j]. The g is some constant penalty for
inserting a gap in any sequence. For local alignment,
the lowest score for match/mismatch is greater than
the recommended gap penalty, otherwise the alignment
will have more gaps and will eventually change from
local to global type of alignment, even though a local
alignment algorithm is used [6, 10, 17]. We will use
this observation later in our proposed approach.

To compute optimal alignment score F(i, j) as given
by Equation 1 for 1 < ¢ < mand 1 < j < n, dy-
namic programming is applied. In dynamic program-
ming, a bottom-up approach is used, in which initially
the boundary conditions are computed and then F' is
computed from smaller sub-sequences to larger ones till
it reaches the entire length of the sequences. An exam-
ple of the SW algorithm is shown in Figure 1, where
a matrix is made and the two sequences are put along
the row and column. The matrix is filled using Equa-
tion 1 from the top-left corner and elements are filled

Figure 2. Data dependence graph for Equa-
tion 1 (different shades of gray in circles
show the elements which can be executed in
parallel).

from left to right and from top to bottom. Once the
whole matrix is filled, we find the maximum score in
the whole matrix and then start a trace back from that
element to one of the three elements from which align-
ment score is calculated. This process is repeated till
the score drops below a certain threshold or to zero. In
the trace back, if the corresponding row and column el-
ement match then the alignment is definitely computed
from the top-left element otherwise it is computed from
any of the three elements depending on which of them
produces a maximum. When an element is computed
from the top element then there is a gap in the se-
quence along the row and similarly when an element
is computed from the left element then there is a gap
in the sequence along the column. The local optimal
alignment for the example in Figure 1 is as follows.
TCGCA

TC-CA

The computation of the optimal alignment score F\(,
j) as given by Equation 1 takes constant time, and
since there are m x n elements to be computed, the
time complexity for SW algorithm is O(mn). The trace
back takes O(m + n) steps, as the longest path in m x
n matrix is from top left to bottom right, which is
O(m + n), and the time to determine the source of
computation for an element is constant. We need to
keep the table of size m x n to compute the F(i, j) and
for trace back, therefore the space complexity for the
algorithms is also O(mn).

To parallelize the SW algorithm we need to look at

Cycle4— — — — — — — —

Cycle3— ——|——————=————

Cycle2— — =l ——— — — —

Cycle 1 —

FG.-1) g F(-1,0) F(-1,j-1) S[i]
Figure 3. Circuit for the computation of an el-
ement F(i,j) in Equation 1, where - is the
Max operator, and LUT stands for the Look-
up table that generates the match/mismatch
scores.

its data dependence graph as shown in Figure 2. Blank
circles are the elements after the initialization with the
boundary conditions. Any iteration (7, j) cannot be
executed until iterations (i-1, j), (i-1, j-1) and (i, j-1)
are executed first, due to data dependencies. Therefore
we need to change the way the elements are traversed
like starting from the top, elements with one shade of
gray in anti-diagonal can be executed in parallel fol-
lowed by the next anti-diagonal with different shade of
gray due to dependency constraint. The degree of par-
allelism is constrained to the number of elements in the
anti-diagonal and the maximum number of processing
elements required will be equal to the number of ele-
ments in the longest anti-diagonal (I4) is as follows.

lqg = min(m, n) (2)

Here, we have assumed that the processing elements
are equal in number to the length of the shorter se-
quence. Theoretically, the lower bound to the num-
ber of steps required in this parallel implementation is
equal to the number of anti-diagonals required to reach
the bottom-right element is as follows.

m+n—1 (3)

So far this is the best technique for parallelization
and has been used by many researchers [14, 11, 18].
Yamaguchi [18] implemented the SW on FPGA and
achieved a speedup of 327 times faster than a desk-
top computer with Pentium III, 1 GHz for a sequence
length of 2048. Oliver [14] achieved a speedup of 170 as
compared to software implementation on Pentium IV,
1.6 GHz, for a sequence length of 756. Similarly re-
cently Jiang [11] has improved the speedup to at least
330 times faster than software implementation on 2.8
GHz, Xeon processor for sequence length of 4000.

Example 1 A simple example which adds the loop
counter.

Al1]=1
for i =2 to b

A[il= A[i-1] + i (Gy)
end for

Example 2 RVE is applied on Example 1.
A[5]= A[4] + 5

A[3] + 4 + 5

A[2] + 3 +4 + 5

Af1] +2 +3 +4 +5

1+2+3+4+5

Figure 3 shows the implementation to compute one
element. This unit contains three adders, one look up
table (LUT) and three comparators. The time to com-
pute one element is 4 cycles. We have assumed that the
time for each cycle is equal to the latency of one adder,
comparator or LUT operations. The same assumption
holds to compute the latency in the rest of the paper.

2.2 Recursive Variable Expansion

Recursive Variable Ezpansion (RVE) [13] is a kind
of loop transformation which removes all the data de-
pendencies from the program, thereby making it prone
to more parallelism. The basic idea is that if any state-
ment G; is dependent on statement H; for some itera-
tion ¢ and j, then instead of waiting for H; to complete
and then execute (G;, we will replace all the occurrences
of the variable in G; that create dependency with H;
with the computation of that variable in H;. This way
there is no need to wait for the statement H; to com-
plete and statement G; can be executed independently
of H;. Similarly if H; is dependent on some other state-
ment, we will replace the computation of that state-
ment with the variable to make it independent of that
statement. This step is recursively repeated until the
statement G; is not dependent on any other statement
rather only inputs or known values, which essentially
means that G; can be computed without waiting for the
computation of any other statement. The technique is
very beneficial when most of the operations are asso-
ciative. This transformation can be explained clearly
by Example 1, which adds the loop counter. Therefore
after applying the RVE, we get an expression with five
terms to be added as shown in Example 2.

In this way, the whole expanded statement in Ex-
ample 2 can be computed in any order by computing
a large number of operations in parallel and efficiently

F(i, J)

F(, -1) +g F(i-1, j-1) + x(i, j) F(i-T,j) +g 0
F(,j-2)+2g F(-1,j-2) F(i-1,j-1) +2g FU'LJ'A]'Z)XJ'” F(i-1,j-1) +2g F(i-2,j-1) F(i-2, j)
+g+ x(i, j-1) +g+x(i, j) +x(i-1, j-1) +g +x(i, j) +g+x(i-1,j) +2g
+x(i, J)
F(i-1, j-2) F@i-2, j-2) +2g F(i-2,j-1) F(i-1,j-2) F(i-2,j-2) +2g F(i-2,}-1)
+3g +x(i-1, j-1) +3g +3g +x(i-1, j-1) +3g

Figure 5. Three level recursion tree for the SW algorithm.

Cycled — — — — — — —

Cycle2 —

Oyl — —|— — — — —|— — — —

Figure 4. Circuit for Example 2.

using binary tree structure as shown in Figure 4.
2.3 Traditional acceleration of SW

As mentioned in Section 2.1, the best known hard-
ware acceleration of the SW algorithm takes m+n —1
steps to complete (Equation 3). Since each step takes
4 cycles (Figure 3), the best known time to compute
the SW equation is 4(m +n —1) cycles as described by
Equation 1.

A lot of work has been done to accelerate the bi-
ological sequence alignment using different hardwares.
In addition to specific architectures designed for se-
quence alignment, many solutions for special purpose
hardware, SIMD and FPGAs have been devised [9].

Several implementations for SIMDs have been pro-
posed as MGAP, Kestrel and Fuzion [5, 3, 15]. A recent
implementation was done on Intel Xeon 2.0 GHz us-
ing a technique called Striped Smith-Waterman, which
claims to achieve a speedup of six times over other
SIMDs implementations [7]. SIMDs contains general
purpose processors therefore it is programmable and is
used for a wider range of applications like image pro-
cessing and scientific computing. The drawback is that
they are expensive.

Reconfigurable systems are good candidates for ac-
celerating biological sequence alignment algorithms.

2 J 2 J 2 | 2 J
i-2 | iii iv i i-2 | i iv i-2 ii iii iv | i-2 ii iii
i-1 ii 04 | 03 | i1 ii 04 | O i-1 i 04 | 03 | i1 i 04 | O
i i 02 | O1 i i 02 | O1 02 o1 02 | O1

Figure 6. Matrices to show the elements from
which F(i —i,j — j) are computed. Shaded
square represent already known values.

Reconfigurable systems are composed of GPP coupled
with Field Programmable Gate Arrays (FPGA). FP-
GAs are programmable using some hardware descrip-
tion languages like VHDL or Verilog and virtually any
algorithm can be mapped on it. FPGAs can also be re-
configured during system operation, called Run-Time
Reconfiguration, which makes them suitable if the al-
gorithm or gap penalty is changed at runtime. Some
of the solutions based on FPGAs are given in [18, 14].
Recently Jiang [11] modified the SW formula by intro-
ducing a new variable and thereby reducing the critical
path to compute a single cell.

In this paper, we described how to improve the time
needed to compute sequence alignment using any of the
above methods by a constant factor by exposing more
parallelism.

3 SW acceleration using RVE
3.1 Applying RVE to the SW algorithm

We applied RVE partially on Equation 1 to expose
three levels of data parallelism. The recursion tree after
the application of RVE is shown in Figure 5. F(i, j)
can be written in equation as shown by the leaf nodes
in Figure 5.

i F(i,j—2)+2g

it F(i—1,j—2)+g+x(i,j—1)

iti F(i—1,j—2)+3g

iv F(i—2,j—2)+2g4x(i—1,j—1)
v F(i—2,j—1)43g

vi F(i—1,j—2)4g4x(i,5)
— vii F(i—2,j—2)+z(i—1,j—1)+(i,5) (4)
viii F(i—2,j—1)+g+x(i,j)

iz F(i—1,j—2)43g

z F(i—2,j—2)+2g4x(i—1,j—1)

i F(i—2,j—1)+3g

zii F(i—2,j—1)+g+z(i—1,5)

ziii F(i—2,5)+2g

xiv 0

Equation 1, which transformed to Equation 4 is now
written as the maximum of fourteen sub-equations. All
the terms are independent to each other, therefore sub-
equations can be computed in parallel. Since finding
maximum is associative, then the efficient way to find
maximum is by making a complete binary tree from the
result of fourteen sub-equation, which requires four cy-
cles as [log, 14] = 4. Can we find F (4, j) better than
this? Yes, if we look closely at Equation 4, unique
F(i—i',j—j),for0<i <2and0<j <2, terms are
only five. If a unique F'(i — i, j —j/) is present in more
than one sub-equations and as mentioned before in Sec-
tion 2.1 that the lowest score in substitution matrices
is greater than the recommended gap penalty g, we can
eliminate some sub-equations with out the loss of gen-
erality based on the smallest value of x(i — i j— j,),
which we call ;. For example, F'(i —1,j—2) is present
in equation i, 4, vi and iz. So these sub-equations
can be written as follows.

i Fi—-1,j—-2)+g+m (5)
iti F(i—1,j—2)+3g

vi Fi—1,j-2)+g+x

iz F(i—1,j—2)+3g

So sub-equations #¢ and iz can be simply discarded,
they can never be maximum as g + x; > 3¢ for ; > g¢.
There is a tie between i and vi, as we are not certain
about the values does z(i,j — 1) and x(4, j). Using this
reduction method for all the sub-equations, Equation 4
can be reduced to the following equation of eight sub-
equations.

o/lofolo]ololo]o]o
04/02|04102]04/02|04]02] g
03[01|03]01|03701|03|01|07]
04/02/04/02|04/02|04/02|04
03]01|03701|03|01|03701 |03
04.02|04/02|04/02|04/02

03101 /03|01 02501 03|01 22
04/02| 04,02/04/02|04/02|04
03|01|0301|03}01|03(01]03
0402/ 04122|04/02| 04} 22| 4

Ol oo ojlolo|o|lo| oo

Figure 7. Sequence of fill of the F'(i, j) scoring
matrix of Equation 1, starting from the top left
light shaded square numbered 1 (represent
the time instance to compute) and moving di-
agonally down as shown by trailing numbers.
All the squares with the same number can be
executed in parallel.

i F(i,j—2)+2g

ii F(i—1,j—2)+g+=z(i,j—1)

iti F(i—1,j—2)+g4z(i,5)

— v F(i—2,j—2)+z(i—1,j—1)+(i,5) (6)
v F(i—2,j—1)+g+x(i—1,5)

vi F(i—2,j—1)+g+x(i,5)

vii F(i—2,5)+2g

vt 0

To find the maximum of eight sub-equations, we
need [log, 8] = 3 cycles, which is better than 4 cycles
as needed for Equation 4.

Even if the gap penalty is equal to the smallest value
in the substitution matrix, the above equations will
prevail as equations with only gap penalties will be
eliminated, as with :zr(i—i/ ,j—jl), there is a chance that
a better score can come up. However if the gap penalty
g is greater than the smallest value x; of substitution
matrix , then there may or may not be any elimination
and in worst case we may have to keep all the sub-
equations, which means that 4 cycles will be required
to find the maximum.

In implementation, we would like to reduce the hard-
ware as much as possible for the same acceleration.
Since the first two terms in the sub-equations i and i
of Equation 6 are the same, we can write both of them

Cyles ——————————— — — — —— — —

Cyled m—mm—m e e e e e

Cyled ————f——————— ——— — L —— ————— e —— —— T —— —— ———

Cycle2 — -

Cycle1 —

0 F(i-2,j) g F(i-2,j-1) F(i-2,j-2)

(a) Circuit for O1

x(i, 1) x

F(i-2,j-1) F(i-1,}-2) Fi,j-2) Fii-2,j) F(i-2,j-1)
29 9 29 0

(b) Circuit for O2 and O3 (c) Cir. for O4

Figure 8. Circuit for computing the 2 x 2 block as shown in Figure 6, where A = z(i-1, j-1)+F(i-2, j-2),

B = F(i-2, j-1)+g and C = F(i-1, j-2)+qg.

in one sub-equation as

i1
max
1%

=F(i-1,j=2)+g+{z(i,j—1)>x(i,5)}

F(i—1,j=2)+g+z(i,j—1)

F(i—1,j=2)+g+z(i,5)

where > is the binary maz operation, which returns
the max of two value. Similarly without losing gener-
ality, we can reduce the whole of Equation 6 into the
following equation.

4 {F(i,j—2)=F(i—2,5)}+2g

i F(i=1,j-2)+g+{z(i,j-1)>=(i5)}

F(i,j)=max iii F(i—2,j—2)+z(i—1,j—1)+z(i,5) (7
v F(i—2,5-1)+g+{@(i—1,5)>=(i,j)}
v 0

Equation 7 when mapped on to matrix form gives
us a 3 x 3 matrix, where the terms to be computed (01
to O4) are represented by a 2 x 2 block as shown in
Figure 6. We define the size of the unknown block as
the blocking factor (b), here b=2. Figure 6(a) shows
how F(i,7) (i-e. O1) is calculated from Equation 7.
Similarly we can compute F'(i,j—1) (i.e. 02 in Figure
6(b)), F(i—1,7) (i.e. O3 in Figure 6(c)) and F'(i—1,j—
1) (i.e. O4 in Figure 6(d)) using the similar method for
O1. The formulas for F'(i,j — 1), F(i—1,7) and F(i —
1,7 — 1) after applying Recursive Variable Expansion
partially and elimination is given by Equation 8, 9 and
10, respectively.

7 F(i,j72)+g

i F(i—1,j—2)4z(i,j—1)
F(i—2,j—2)+g+x(i—1,j—1) (8)
v F(i—2,j—1)+2g

F(i,j—1)=max { iii

v 0

i F(i—1,j—2)+2g

i F(i—2,j—2)+gta(i—1,j—1)
F(i—2,j—1)+a(i—1,5) 9)
i F(i—2,5)+g

F(i—1,j)=max § iii

v 0

i F(i-1,j-2)+g

i F(i—2,j—2)+w(i—1,j—1)
F(i—1,j—1)=max (10)

i F(i-24-1)+g

w 0

Once the boundary conditions are applied, the rest
of the matrix can be filled as shown by Figure 7. The
figure also shows how the matrix will be filled if the
length of the sequences is not a multiple factor of the
blocking factor.

4 Time and Hardware estimation

In this section, we will show that our approach in
which we have expanded the SW (Equation 1) using
Recursive Variable Expansion is some constant times
faster than any known parallel implementation to date,

Table 1. Time and Hardware estimation

Time (cycles) Hardware
T - LUT
overhead overhead overhead
variable valuel speedup?| variable | valuel variable | valuel variable | valuel
ratio? ratio? ratio?
Serial
4mn 1000000 1 3 3 1 3 3 1 1 1 1
case
Best HW
4(m4n—1) 3996 250 3xlg 1500 500 3xly 1500 500 1xly 500 500
accel.
RVE
5([%}4%%]71) 2495 401 14xng 3500 1167 17xng 4250 1417 4xng 1000 1000
with b=2
RVE
(B]+[%]-» 2331 429 54xng | 27000 9000 54xng 27000 9000 9xng 1500 1500
with b=3

Ivalues calculated for m=500 & n=500, 2with respect to the serial case

lg=min(m,n)=500, no=min(| 2 |,| 2])4 minlmn) mod 29501 s —min(|z, 2])4 min(mn) mod 3y g71

depending upon the size of the blocking factor chosen.
Next in this section, we will discuss the different known
SW implementations. Then we will show the time and
hardware estimation along with its comparison with
the best known parallel approach.

4.1 Serial Case

First we will look at the serial case, in which ev-
ery element is calculated serially in hardware starting
from top left corner and moving left to right and top to
down. As shown in Figure 3, it takes 4 cycles to com-
pute an element by using 3 adders and 4 comparators.
There are mn elements in total in the scoring matrix,
therefore to align two sequences of length m and n, it
requires 4mn cycles. As all the elements are computed
serially, the hardware is required for just one element,
which is 3 adders and 4 comparators.

4.2 Best known hardware acceleration

Now we will look at the best known hardware ac-
celeration technique, in which the elements F(i,j) are
computed as parallel as possible restrained by the
data dependency. As given by Equation 3, the num-
ber of subsequent steps required is m + n — 1, which
takes a total computation time of 4(m + n — 1) cy-
cles. At any time, the number of elements in the
longest anti-diagonal is the maximum number of ele-
ments to be computed in parallel, given by Equation 2
is lq¢ = min(m, n). If h. quantifies the amount of hard-
ware used to compute a single F' (7, j) element, then the
maximum amount of hardware needed is he X lg.

4.3 Recursive variable expansion

In order to estimate the hardware and time for our
implementation, we have drawn the circuits in Figure
8 for Equations 7, 8, 9 and 10. The circuits for the
given equations are optimized to use minimum hard-
ware. These circuits can be easily implemented on
FPGA. According to the circuits in Figure 8, a block
of 2 x 2 requires 5 cycles to compute. The maximum
number of sequential blocks that should be calculated
in subsequent anti-diagonals for sequences of lengths m
and n is given by [%] + [%] — 1. The last block can be
partially filled, if b4 m or bt n (bt m means that b does
not evenly divide m). Therefore for 2 x 2 block, upper
bound for the time to compute an alignment between
two sequences of length m and n is 5([2] + [2] — 1)
cycles. Even if the gap penalty is greater than the low-
est score in substitution matrix, the time for sequence
alignment in that case will be 6([2] + [2] — 1) cy-
cles, which is approximately equal to 3(m +mn — 1), is
still better than 4(m +n — 1) of the best hardware ac-
celeration case. The number of blocks required to be
computed in parallel is n, = min(| 2|, [% |) 4+ p, which
is the length of longest diagonal in blocks, where p = 0,
if b | min(m, n), otherwise 0 < p < 1, which means the
block is partially filled and p = w. If hy is
some number of hardware used to compute a block and
it is also assumed that the hardware used for a partial
block is equal to the ratio of the partial block size to
the actual block size, then the total hardware used is
ny X hb.

Following is the estimate of hardware ho used by one
block of 2 x 2 as verified by the Figure 8.

No. of '+’ used =14
No. of =" used =17
No. of LUT used =4

Similarly, we have expanded the SW Equation 1 fur-
ther to blocking factor b = 3. We got 3 x 3 = 9 equa-
tions for unknowns and then we drew the optimized
circuits for all those equations to get an estimate about
the time and hardware they would take. If all the nine
equations are computed in parallel, then it takes only
seven cycles to compute a block of 3 x 3 elements. The
hardware estimates h3 are as under.

No. of '+’ used = 54
No. of ">’ used — 54
No. of LUT used =9

4.4 Summary of result

The time and hardware estimation for all the tech-
niques is summarized in Table 1. The estimate for time
and hardware is given in generic terms of m and n as
well as with some specific values, m=n=500, which is
typical length in [4] to simplify the comparison. The
best known parallel technique is linear in m and n as
compared to quadratic in m and n in the serial case.
In case of m=n=500, it is 250 times faster than the
serial case. This acceleration comes at the expense
of 500 times the hardware required by the serial case.
When the SW is accelerated with RVE with blocking
factor b=2, the speedup is 401 times the serial case
and the hardware used is around 1250 times the se-
rial case. Similarly, for RVE with blocking factor 6=3,
the speedup is increased to 429 times the serial case
and the hardware used is around 9000 times the serial
case. 1t is clear from this trend that hardware utiliza-
tion is more than linear as compared to speedup beyond
the best known hardware acceleration. The reason is
that in RVE, we have given priority to parallelization
as compared to the hardware utilization and do many
repeated computation to achieve the speedup, which
increases the hardware utilization. The speedup can
be increased further by increasing the blocking factor
provided we can dedicate more hardware for that.

5 Conclusion

In this paper, we have presented a new technique
to parallelize the SW algorithm with linear gap penal-
ties, which has the capability to expose more paral-
lelism than the prevalent parallel techniques. We have
shown that this techniques increases the speedup by
a factor of 1.6 and 1.71 for blocking factor b=2 and
b=3 respectively, as compared to the best known par-
allel technique. This does not represent the maximum
achievable speedup using this method, rather we can
improve this further by increasing the blocking factor,
given we have enough hardware.

References

(1]
2]
13l

[4]

(5]
[6]

[7]

18]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

18]

S. F. Altschul et al. Basic local alignment search tool.
J. Mol. Biol., pages 403—410, 1990.

D. A. Benson et al. Genbank. Nucl. Acids Res.,
28(1):15-18, 2000.

A. D. Blas et al. The kestrel parallel processor.
IEEE Transactions on Parallel and Distributed Sys-
tems, 16(1):80-92, 2005.

B. Boeckmann et al. The swiss-prot protein knowl-
edgebase and its supplement trembl in 2003. Nucleic
Acids Research, 31:365—370, 2003.

M. Borah et al. A simd solution to the sequence com-
parison problem on the mgap. In ASAP, 1994.

M. O. Dayhoff. Survey of new data and computer
methods of analysis. In Atlas of Protein Sequence and
Structure, volume 5, page 29, 1978.

M. Farrar. Striped smith-waterman speeds database
searches six times over other simd implementations.
Bioinformatics, 23(2):156-161, 2007.

M. Y. Galperin. The molecular biology database col-
lection: 2007 update. Nucleic Acids Research, 35:D3—
D4(1), January 2007.

L. Hasan, Z. Al-Ars, and S. Vassiliadis. Hardware
acceleration of sequence alignment algorithms - an
overview. In DTIS’07, pages 96-101, September 2007.
S. Henikoff and J. Henikoff. Amino acid substitution
matrices from protein blocks. In Proceedings of the Na-
tional Academy of Sciences, volume 89, pages 10915—
10919, 1992.

X. Jiang et al. A reconfigurable accelerator for smith-
waterman algorithm. IEEE Transactions on Circuits
and Systems II, 54(12):1077-1081, Dec. 2007.

D. J. Lipman and W. R. Pearson. Rapid and sensitive
sequence comparison with fastp and fasta. Methods
Enzymol., 183:63-98, 1990.

Z. Nawaz et al. Recursive variable expansion: A
loop transformation for reconfigurable systems. In
ICFPT’07, 2007.

T. Oliver, B. Schmidt, and D. Maskell. Reconfigurable
architectures for bio-sequence database scanning on
fpgas. IEEE Transactions onCircuits and Systems II,
52(12):851-855, Dec. 2005.

B. Schmidt, H. Schréder, and M. Schimmler. Mas-
sively parallel solutions for molecular sequence analy-
sis. In IPDPS 02, page 201, 2002.

T. Smith and M. Waterman. Identification of common
molecular subsequences. J. Mol. Biol., 147:195-197,
1981.

D. States, W. Gish, and S. Altschul. Improved
sensitivity of nucleic acid database search using
application-specific scoring matrices. In Methods: A
companion to Methods in Enzymology, volume 3, pages
66 — 77, 1991.

Y. Yamaguchi, Y. Miyajima, T. Maruyama, and
A. Konagaya. High speed homology search using run-
time reconfiguration. In FPL ’02, pages 281-291, 2002.

