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Abstra
tThe Smith-Waterman (SW) algorithm is a lo
al se-quen
e alignment algorithm that attempts to align twobiologi
al sequen
es of varying length su
h that thealignment s
ore is maximum. In this paper, we pro-pose a new approa
h to redu
e the time needed to per-form the SW algorithm. This is done by applying the
on
ept of re
ursive variable expansion, whi
h exposesmore parallelism in the algorithm than any other pub-lished method. The paper estimates the speed and hard-ware overhead for the newly proposed approa
h relativeto other known a

eleration methods. Using the newapproa
h, it is possible to a
hieve a minimum speedupof 400 times better than the serial 
ase for a typi
alsequen
e length of 500, whi
h is 1.6 times higher thanany other published method. The paper also shows thatfurther speedup 
an be a
hieved using extra hardwareto expose even more parallelism in the algorithm.1 Introdu
tionLo
al sequen
e alignment is an important problemin 
omputational biology, as it is helps in dis
over-ing fun
tional, stru
tural and evolutionary informationin biologi
al sequen
es of DNA, RNA and proteins. Itis used to optimally align two apparently dissimilar se-quen
es whi
h in
lude some pattern whi
h is highly
onserved. The lo
al alignment algorithm will �nd thispattern and ignore the patterns that show little simi-larity. Smith-Waterman (SW) algorithm [16℄ is a su
hwell known lo
al alignment algorithm. This algorithmis based on dynami
 programming, whi
h has time andspa
e 
omplexity O(mn), where m and n are lengths ofthe sequen
es being aligned. Although this 
omplex-ity seems to be a

eptable, the exponential growth inbio-sequen
e databases of known sequen
es makes this
omplexity intolerable [8, 2℄. Therefore as the database

size grows larger, faster algorithms be
ome importantto qui
kly 
ompare and align the sequen
es.One way to avoid su
h expensive solutions is touse heuristi
 te
hniques like FASTA [12℄ and BLAST[1℄. Both 
ompute the lo
al alignment and are fastbut less sensitive than SW, as the time 
omplexity isredu
ed at the 
ost of a

ura
y. Therefore, an opti-mal alignment may not always be found through thesete
hniques. Another way to redu
e the time 
om-plexity is to a

elerate SW algorithm through paral-lel pro
essing. Resear
hers have been able to paral-lelize the SW algorithm on parallel ma
hines [15, 18℄.However, on the one hand, the amount of a

elerationa
hieved by this method is theoreti
ally bound. Onthe other hand, keeping in mind the growing size ofthe database, prevalent methods require further a

el-eration to mat
h this growth.In this paper, we show the way to apply Re
ursiveVariable Expansion (RVE) to the SW algorithm, whi
hreveals new previously unexplored type of data paral-lelism in the algorithm. Using RVE, the amount ofspeedup a
hievable for a typi
al sequen
e length of 500is at least 400 times better than the serial 
ase (oneelement is 
omputed in hardware at a time), whi
h ishigher than the maximum speedup gained by tradi-tional hardware a

eleration methods by a fa
tor of atleast 1.6 using low hardware overhead.The rest of the paper is organized as follows. Inse
tion 2, we dis
uss the ba
kground and related workfor the parallelization of biologi
al sequen
e alignment.Our approa
h and implementation is dis
ussed in Se
-tion 3. Se
tion 4 estimates the needed time and hard-ware for our approa
h along with a 
omparison of timeand hardware needed for other prevalent parallel te
h-niques, �nally, we 
on
lude the paper in Se
tion 5.



  G T C G C A A C 
 0 0 0 0 0 0 0 0 0 

T 0 0 2 0 0 0 0 0 0 
C 0 0 0 4 2 2 0 0 2 
C 0 0 0 2 3 4 2 0 2 
A 0 0 0 0 1 2 6 4 2 
T 0 0 2 0 0 0 4 5 3 
G 0 2 0 1 2 0 2 3 4 

 

Figure 1. Scoring Matrix for an example of SW
algorithm, when g = −2 and x(i, j) = +1 whenS[i℄=T[j℄ otherwise −1. Elements in the trace
back are shown in bold.2 Ba
kground and Related Work

2.1 The Smith-Waterman algorithmLet S[1..m℄ and T[1..n℄ be two sequen
es of lengthm and n for sequen
e alignment. The optimal align-ment s
ore F(i, j) for two sub-sequen
es S[1..i℄ andT[1..j℄ is given by the following re
urren
e equation.
F (i, j) = max



















F (i, j − 1) + g

F (i − 1, j − 1) + x(i, j)

F (i − 1, j) + g

0

(1)where F (0, 0) = F (0, j) = F (i, 0) = 0 , for 1 ≤
i ≤ m and 1 ≤ j ≤ n. The x(i, j) is the s
ore format
h/mismat
h, depending upon whether S[i] = T [j]or S[i] 6= T [j]. The g is some 
onstant penalty forinserting a gap in any sequen
e. For lo
al alignment,the lowest s
ore for mat
h/mismat
h is greater thanthe re
ommended gap penalty, otherwise the alignmentwill have more gaps and will eventually 
hange fromlo
al to global type of alignment, even though a lo
alalignment algorithm is used [6, 10, 17℄. We will usethis observation later in our proposed approa
h.To 
ompute optimal alignment s
ore F (i, j) as givenby Equation 1 for 1 ≤ i ≤ m and 1 ≤ j ≤ n, dy-nami
 programming is applied. In dynami
 program-ming, a bottom-up approa
h is used, in whi
h initiallythe boundary 
onditions are 
omputed and then F is
omputed from smaller sub-sequen
es to larger ones tillit rea
hes the entire length of the sequen
es. An exam-ple of the SW algorithm is shown in Figure 1, wherea matrix is made and the two sequen
es are put alongthe row and 
olumn. The matrix is �lled using Equa-tion 1 from the top-left 
orner and elements are �lled

(i, j)

(i, j-1)

(i-1, j-1) (i-1, j)

Figure 2. Data dependence graph for Equa-

tion 1 (different shades of gray in circles

show the elements which can be executed in
parallel).from left to right and from top to bottom. On
e thewhole matrix is �lled, we �nd the maximum s
ore inthe whole matrix and then start a tra
e ba
k from thatelement to one of the three elements from whi
h align-ment s
ore is 
al
ulated. This pro
ess is repeated tillthe s
ore drops below a 
ertain threshold or to zero. Inthe tra
e ba
k, if the 
orresponding row and 
olumn el-ement mat
h then the alignment is de�nitely 
omputedfrom the top-left element otherwise it is 
omputed fromany of the three elements depending on whi
h of themprodu
es a maximum. When an element is 
omputedfrom the top element then there is a gap in the se-quen
e along the row and similarly when an elementis 
omputed from the left element then there is a gapin the sequen
e along the 
olumn. The lo
al optimalalignment for the example in Figure 1 is as follows.The 
omputation of the optimal alignment s
ore F(i,j) as given by Equation 1 takes 
onstant time, andsin
e there are m × n elements to be 
omputed, thetime 
omplexity for SW algorithm is O(mn). The tra
eba
k takes O(m + n) steps, as the longest path in m×

n matrix is from top left to bottom right, whi
h is
O(m + n), and the time to determine the sour
e of
omputation for an element is 
onstant. We need tokeep the table of size m×n to 
ompute the F(i, j) andfor tra
e ba
k, therefore the spa
e 
omplexity for thealgorithms is also O(mn).To parallelize the SW algorithm we need to look at
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Figure 3. Circuit for the computation of an el-

ement F (i, j) in Equation 1, where ≻ is the

Max operator, and LUT stands for the Look-
up table that generates the match/mismatch

scores.its data dependen
e graph as shown in Figure 2. Blank
ir
les are the elements after the initialization with theboundary 
onditions. Any iteration (i, j) 
annot beexe
uted until iterations (i-1, j), (i-1, j-1) and (i, j-1)are exe
uted �rst, due to data dependen
ies. Thereforewe need to 
hange the way the elements are traversedlike starting from the top, elements with one shade ofgray in anti-diagonal 
an be exe
uted in parallel fol-lowed by the next anti-diagonal with di�erent shade ofgray due to dependen
y 
onstraint. The degree of par-allelism is 
onstrained to the number of elements in theanti-diagonal and the maximum number of pro
essingelements required will be equal to the number of ele-ments in the longest anti-diagonal (ld) is as follows.
ld = min(m, n) (2)Here, we have assumed that the pro
essing elementsare equal in number to the length of the shorter se-quen
e. Theoreti
ally, the lower bound to the num-ber of steps required in this parallel implementation isequal to the number of anti-diagonals required to rea
hthe bottom-right element is as follows.

m + n − 1 (3)So far this is the best te
hnique for parallelizationand has been used by many resear
hers [14, 11, 18℄.Yamagu
hi [18℄ implemented the SW on FPGA anda
hieved a speedup of 327 times faster than a desk-top 
omputer with Pentium III, 1 GHz for a sequen
elength of 2048. Oliver [14℄ a
hieved a speedup of 170 as
ompared to software implementation on Pentium IV,1.6 GHz, for a sequen
e length of 756. Similarly re-
ently Jiang [11℄ has improved the speedup to at least330 times faster than software implementation on 2.8GHz, Xeon pro
essor for sequen
e length of 4000.

Example 1 A simple example whi
h adds the loop
ounter.A[1℄=1for i = 2 to 5A[i℄= A[i-1℄ + i (Gi)end forExample 2 RVE is applied on Example 1.A[5℄= A[4℄ + 5= A[3℄ + 4 + 5= A[2℄ + 3 + 4 + 5= A[1℄ + 2 + 3 + 4 + 5= 1 + 2 + 3 + 4 + 5Figure 3 shows the implementation to 
ompute oneelement. This unit 
ontains three adders, one look uptable (LUT) and three 
omparators. The time to 
om-pute one element is 4 
y
les. We have assumed that thetime for ea
h 
y
le is equal to the laten
y of one adder,
omparator or LUT operations. The same assumptionholds to 
ompute the laten
y in the rest of the paper.
2.2 Recursive Variable ExpansionRe
ursive Variable Expansion (RVE) [13℄ is a kindof loop transformation whi
h removes all the data de-penden
ies from the program, thereby making it proneto more parallelism. The basi
 idea is that if any state-ment Gi is dependent on statement Hj for some itera-tion i and j, then instead of waiting for Hj to 
ompleteand then exe
ute Gi, we will repla
e all the o

urren
esof the variable in Gi that 
reate dependen
y with Hjwith the 
omputation of that variable in Hj . This waythere is no need to wait for the statement Hj to 
om-plete and statement Gi 
an be exe
uted independentlyof Hj . Similarly if Hj is dependent on some other state-ment, we will repla
e the 
omputation of that state-ment with the variable to make it independent of thatstatement. This step is re
ursively repeated until thestatement Gi is not dependent on any other statementrather only inputs or known values, whi
h essentiallymeans that Gi 
an be 
omputed without waiting for the
omputation of any other statement. The te
hnique isvery bene�
ial when most of the operations are asso-
iative. This transformation 
an be explained 
learlyby Example 1, whi
h adds the loop 
ounter. Thereforeafter applying the RVE, we get an expression with �veterms to be added as shown in Example 2.In this way, the whole expanded statement in Ex-ample 2 
an be 
omputed in any order by 
omputinga large number of operations in parallel and e�
iently



Figure 5. Three level recursion tree for the SW algorithm.
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Figure 4. Circuit for Example 2.using binary tree stru
ture as shown in Figure 4.
2.3 Traditional acceleration of SWAs mentioned in Se
tion 2.1, the best known hard-ware a

eleration of the SW algorithm takes m+n− 1steps to 
omplete (Equation 3). Sin
e ea
h step takes4 
y
les (Figure 3), the best known time to 
omputethe SW equation is 4(m+n−1) 
y
les as des
ribed byEquation 1.A lot of work has been done to a

elerate the bi-ologi
al sequen
e alignment using di�erent hardwares.In addition to spe
i�
 ar
hite
tures designed for se-quen
e alignment, many solutions for spe
ial purposehardware, SIMD and FPGAs have been devised [9℄.Several implementations for SIMDs have been pro-posed as MGAP, Kestrel and Fuzion [5, 3, 15℄. A re
entimplementation was done on Intel Xeon 2.0 GHz us-ing a te
hnique 
alled Striped Smith-Waterman, whi
h
laims to a
hieve a speedup of six times over otherSIMDs implementations [7℄. SIMDs 
ontains generalpurpose pro
essors therefore it is programmable and isused for a wider range of appli
ations like image pro-
essing and s
ienti�
 
omputing. The drawba
k is thatthey are expensive.Re
on�gurable systems are good 
andidates for a
-
elerating biologi
al sequen
e alignment algorithms.
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Figure 6. Matrices to show the elements from
which F (i − i

′

, j − j
′

) are computed. Shaded

square represent already known values.Re
on�gurable systems are 
omposed of GPP 
oupledwith Field Programmable Gate Arrays (FPGA). FP-GAs are programmable using some hardware des
rip-tion languages like VHDL or Verilog and virtually anyalgorithm 
an be mapped on it. FPGAs 
an also be re-
on�gured during system operation, 
alled Run-TimeRe
on�guration, whi
h makes them suitable if the al-gorithm or gap penalty is 
hanged at runtime. Someof the solutions based on FPGAs are given in [18, 14℄.Re
ently Jiang [11℄ modi�ed the SW formula by intro-du
ing a new variable and thereby redu
ing the 
riti
alpath to 
ompute a single 
ell.In this paper, we des
ribed how to improve the timeneeded to 
ompute sequen
e alignment using any of theabove methods by a 
onstant fa
tor by exposing moreparallelism.3 SW a

eleration using RVE
3.1 Applying RVE to the SW algorithmWe applied RVE partially on Equation 1 to exposethree levels of data parallelism. The re
ursion tree afterthe appli
ation of RVE is shown in Figure 5. F(i, j)
an be written in equation as shown by the leaf nodesin Figure 5.



F (i,j)=max






























































































































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
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


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


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



i F (i,j−2)+2g

ii F (i−1,j−2)+g+x(i,j−1)

iii F (i−1,j−2)+3g

iv F (i−2,j−2)+2g+x(i−1,j−1)

v F (i−2,j−1)+3g

vi F (i−1,j−2)+g+x(i,j)

vii F (i−2,j−2)+x(i−1,j−1)+x(i,j)

viii F (i−2,j−1)+g+x(i,j)

ix F (i−1,j−2)+3g

x F (i−2,j−2)+2g+x(i−1,j−1)

xi F (i−2,j−1)+3g

xii F (i−2,j−1)+g+x(i−1,j)

xiii F (i−2,j)+2g

xiv 0

(4)
Equation 1, whi
h transformed to Equation 4 is nowwritten as the maximum of fourteen sub-equations. Allthe terms are independent to ea
h other, therefore sub-equations 
an be 
omputed in parallel. Sin
e �ndingmaximum is asso
iative, then the e�
ient way to �ndmaximum is by making a 
omplete binary tree from theresult of fourteen sub-equation, whi
h requires four 
y-
les as ⌈log2 14⌉ = 4. Can we �nd F (i, j) better thanthis? Yes, if we look 
losely at Equation 4, unique

F (i−i
′

, j−j
′

), for 0 ≤ i
′

≤ 2 and 0 ≤ j
′

≤ 2, terms areonly �ve. If a unique F (i− i
′

, j− j
′

) is present in morethan one sub-equations and as mentioned before in Se
-tion 2.1 that the lowest s
ore in substitution matri
esis greater than the re
ommended gap penalty g, we 
aneliminate some sub-equations with out the loss of gen-erality based on the smallest value of x(i − i
′

, j − j
′

),whi
h we 
all xl. For example, F (i−1, j−2) is presentin equation ii, iii, vi and ix. So these sub-equations
an be written as follows.
ii F (i − 1, j − 2) + g + xl (5)

iii F (i − 1, j − 2) + 3g

vi F (i − 1, j − 2) + g + xl

ix F (i − 1, j − 2) + 3gSo sub-equations iii and ix 
an be simply dis
arded,they 
an never be maximum as g + xl > 3g for xl > g.There is a tie between ii and vi, as we are not 
ertainabout the values does x(i, j−1) and x(i, j). Using thisredu
tion method for all the sub-equations, Equation 4
an be redu
ed to the following equation of eight sub-equations.

0 0 0 0 0 0 0 0 0 0
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Figure 7. Sequence of fill of the F (i, j) scoring

matrix of Equation 1, starting from the top left
light shaded square numbered 1 (represent

the time instance to compute) and moving di-

agonally down as shown by trailing numbers.
All the squares with the same number can be

executed in parallel.
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i F (i,j−2)+2g

ii F (i−1,j−2)+g+x(i,j−1)

iii F (i−1,j−2)+g+x(i,j)

iv F (i−2,j−2)+x(i−1,j−1)+x(i,j)

v F (i−2,j−1)+g+x(i−1,j)

vi F (i−2,j−1)+g+x(i,j)

vii F (i−2,j)+2g

viii 0

(6)
To �nd the maximum of eight sub-equations, weneed ⌈log2 8⌉ = 3 
y
les, whi
h is better than 4 
y
lesas needed for Equation 4.Even if the gap penalty is equal to the smallest valuein the substitution matrix, the above equations willprevail as equations with only gap penalties will beeliminated, as with x(i−i

′

, j−j
′

), there is a 
han
e thata better s
ore 
an 
ome up. However if the gap penalty
g is greater than the smallest value xl of substitutionmatrix , then there may or may not be any eliminationand in worst 
ase we may have to keep all the sub-equations, whi
h means that 4 
y
les will be requiredto �nd the maximum.In implementation, we would like to redu
e the hard-ware as mu
h as possible for the same a

eleration.Sin
e the �rst two terms in the sub-equations ii and iiiof Equation 6 are the same, we 
an write both of them
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Figure 8. Circuit for computing the 2× 2 block as shown in Figure 6, where A = x(i-1, j-1)+F(i-2, j-2),B = F(i-2, j-1)+g and C = F(i-1, j-2)+g.in one sub-equation as

max

{

ii F (i−1,j−2)+g+x(i,j−1)

iii F (i−1,j−2)+g+x(i,j)

=F (i−1,j−2)+g+{x(i,j−1)≻x(i,j)}where ≻ is the binary max operation, whi
h returnsthe max of two value. Similarly without losing gener-ality, we 
an redu
e the whole of Equation 6 into thefollowing equation.
F (i,j)=max































i {F (i,j−2)≻F (i−2,j)}+2g

ii F (i−1,j−2)+g+{x(i,j−1)≻x(i,j)}

iii F (i−2,j−2)+x(i−1,j−1)+x(i,j)

iv F (i−2,j−1)+g+{x(i−1,j)≻x(i,j)}

v 0

(7)
Equation 7 when mapped on to matrix form givesus a 3×3 matrix, where the terms to be 
omputed (O1to O4 ) are represented by a 2 × 2 blo
k as shown inFigure 6. We de�ne the size of the unknown blo
k asthe blo
king fa
tor (b), here b=2. Figure 6(a) showshow F (i, j) (i.e. O1 ) is 
al
ulated from Equation 7.Similarly we 
an 
ompute F (i, j−1) (i.e. O2 in Figure6(b)), F (i−1, j) (i.e. O3 in Figure 6(
)) and F (i−1, j−

1) (i.e. O4 in Figure 6(d)) using the similar method forO1. The formulas for F (i, j − 1), F (i− 1, j) and F (i−
1, j − 1) after applying Re
ursive Variable Expansionpartially and elimination is given by Equation 8, 9 and10, respe
tively.
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
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iv F (i−2,j−1)+2g

v 0
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ii F (i−2,j−2)+g+x(i−1,j−1)

iii F (i−2,j−1)+x(i−1,j)

iv F (i−2,j)+g

v 0

(9)
F (i−1,j−1)=max



















i F (i−1,j−2)+g

ii F (i−2,j−2)+x(i−1,j−1)

iii F (i−2,j−1)+g

iv 0

(10)On
e the boundary 
onditions are applied, the restof the matrix 
an be �lled as shown by Figure 7. The�gure also shows how the matrix will be �lled if thelength of the sequen
es is not a multiple fa
tor of theblo
king fa
tor.4 Time and Hardware estimationIn this se
tion, we will show that our approa
h inwhi
h we have expanded the SW (Equation 1) usingRe
ursive Variable Expansion is some 
onstant timesfaster than any known parallel implementation to date,



Table 1. Time and Hardware estimationTime (
y
les) Hardware
+ ≻ LUTvariable value1 speedup2 variable value1 overheadratio2 variable value1 overheadratio2 variable value1 overheadratio2Serial
ase 4mn 1000000 1 3 3 1 3 3 1 1 1 1Best HWa

el. 4(m+n−1) 3996 250 3×ld 1500 500 3×ld 1500 500 1×ld 500 500RVEwith b=2 5(

⌈

m
2

⌉

+
⌈

n
2

⌉

−1) 2495 401 14×n2 3500 1167 17×n2 4250 1417 4×n2 1000 1000RVEwith b=3 7(
⌈

m
3

⌉

+
⌈

n
3

⌉

−1) 2331 429 54×n3 27000 9000 54×n3 27000 9000 9×n3 1500 1500
1values 
al
ulated for m=500 & n=500, 2with respe
t to the serial 
ase
ld=min(m,n)=500, n2=min(⌊m

2 ⌋,⌊n
2 ⌋)+

min(m,n) mod 2
2 =2501, n3=min(⌊m

3 ⌋,⌊n
3 ⌋)+

min(m,n) mod 3
3 =1671depending upon the size of the blo
king fa
tor 
hosen.Next in this se
tion, we will dis
uss the di�erent knownSW implementations. Then we will show the time andhardware estimation along with its 
omparison withthe best known parallel approa
h.

4.1 Serial CaseFirst we will look at the serial 
ase, in whi
h ev-ery element is 
al
ulated serially in hardware startingfrom top left 
orner and moving left to right and top todown. As shown in Figure 3, it takes 4 
y
les to 
om-pute an element by using 3 adders and 4 
omparators.There are mn elements in total in the s
oring matrix,therefore to align two sequen
es of length m and n, itrequires 4mn 
y
les. As all the elements are 
omputedserially, the hardware is required for just one element,whi
h is 3 adders and 4 
omparators.
4.2 Best known hardware accelerationNow we will look at the best known hardware a
-
eleration te
hnique, in whi
h the elements F (i, j) are
omputed as parallel as possible restrained by thedata dependen
y. As given by Equation 3, the num-ber of subsequent steps required is m + n − 1, whi
htakes a total 
omputation time of 4(m + n − 1) 
y-
les. At any time, the number of elements in thelongest anti-diagonal is the maximum number of ele-ments to be 
omputed in parallel, given by Equation 2is ld = min(m, n). If he quanti�es the amount of hard-ware used to 
ompute a single F (i, j) element, then themaximum amount of hardware needed is he × ld.

4.3 Recursive variable expansionIn order to estimate the hardware and time for ourimplementation, we have drawn the 
ir
uits in Figure8 for Equations 7, 8, 9 and 10. The 
ir
uits for thegiven equations are optimized to use minimum hard-ware. These 
ir
uits 
an be easily implemented onFPGA. A

ording to the 
ir
uits in Figure 8, a blo
kof 2 × 2 requires 5 
y
les to 
ompute. The maximumnumber of sequential blo
ks that should be 
al
ulatedin subsequent anti-diagonals for sequen
es of lengths mand n is given by ⌈

m
b

⌉

+
⌈

n
b

⌉

−1. The last blo
k 
an bepartially �lled, if b ∤ m or b ∤ n (b ∤ m means that b doesnot evenly divide m). Therefore for 2× 2 blo
k, upperbound for the time to 
ompute an alignment betweentwo sequen
es of length m and n is 5(
⌈

m
2

⌉

+
⌈

n
2

⌉

− 1)
y
les. Even if the gap penalty is greater than the low-est s
ore in substitution matrix, the time for sequen
ealignment in that 
ase will be 6(
⌈

m
2

⌉

+
⌈

n
2

⌉

− 1) 
y-
les, whi
h is approximately equal to 3(m + n − 1), isstill better than 4(m + n− 1) of the best hardware a
-
eleration 
ase. The number of blo
ks required to be
omputed in parallel is nb = min(
⌊

m
b

⌋

,
⌊

n
b

⌋

)+p, whi
his the length of longest diagonal in blo
ks, where p = 0,if b | min(m, n), otherwise 0 < p < 1, whi
h means theblo
k is partially �lled and p = min(m,n) mod b

b
. If hb issome number of hardware used to 
ompute a blo
k andit is also assumed that the hardware used for a partialblo
k is equal to the ratio of the partial blo
k size tothe a
tual blo
k size, then the total hardware used is

nb × hb.Following is the estimate of hardware h2 used by oneblo
k of 2 × 2 as veri�ed by the Figure 8.No. of '+' used = 14No. of '≻' used = 17No. of LUT used = 4



Similarly, we have expanded the SW Equation 1 fur-ther to blo
king fa
tor b = 3. We got 3 × 3 = 9 equa-tions for unknowns and then we drew the optimized
ir
uits for all those equations to get an estimate aboutthe time and hardware they would take. If all the nineequations are 
omputed in parallel, then it takes onlyseven 
y
les to 
ompute a blo
k of 3×3 elements. Thehardware estimates h3 are as under.No. of '+' used = 54No. of '≻' used = 54No. of LUT used = 9
4.4 Summary of resultThe time and hardware estimation for all the te
h-niques is summarized in Table 1. The estimate for timeand hardware is given in generi
 terms of m and n aswell as with some spe
i�
 values, m=n=500, whi
h istypi
al length in [4℄ to simplify the 
omparison. Thebest known parallel te
hnique is linear in m and n as
ompared to quadrati
 in m and n in the serial 
ase.In 
ase of m=n=500, it is 250 times faster than theserial 
ase. This a

eleration 
omes at the expenseof 500 times the hardware required by the serial 
ase.When the SW is a

elerated with RVE with blo
kingfa
tor b=2, the speedup is 401 times the serial 
aseand the hardware used is around 1250 times the se-rial 
ase. Similarly, for RVE with blo
king fa
tor b=3,the speedup is in
reased to 429 times the serial 
aseand the hardware used is around 9000 times the serial
ase. It is 
lear from this trend that hardware utiliza-tion is more than linear as 
ompared to speedup beyondthe best known hardware a

eleration. The reason isthat in RVE, we have given priority to parallelizationas 
ompared to the hardware utilization and do manyrepeated 
omputation to a
hieve the speedup, whi
hin
reases the hardware utilization. The speedup 
anbe in
reased further by in
reasing the blo
king fa
torprovided we 
an dedi
ate more hardware for that.5 Con
lusionIn this paper, we have presented a new te
hniqueto parallelize the SW algorithm with linear gap penal-ties, whi
h has the 
apability to expose more paral-lelism than the prevalent parallel te
hniques. We haveshown that this te
hniques in
reases the speedup bya fa
tor of 1.6 and 1.71 for blo
king fa
tor b=2 andb=3 respe
tively, as 
ompared to the best known par-allel te
hnique. This does not represent the maximuma
hievable speedup using this method, rather we 
animprove this further by in
reasing the blo
king fa
tor,given we have enough hardware.
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