
Aeleration of Smith-Waterman Using Reursive Variable ExpansionZubair Nawaz, Zaid Al-Ars, Koen BertelsComputer Engineering LabDelft University of TehnologyThe Netherlands{z.nawaz, z.al-ars, k.l.m.bertels}�tudelft.nl Mudassir ShabbirMentor Graphis, Pakistanmudassir_shabbir�mentor.om
AbstratThe Smith-Waterman (SW) algorithm is a loal se-quene alignment algorithm that attempts to align twobiologial sequenes of varying length suh that thealignment sore is maximum. In this paper, we pro-pose a new approah to redue the time needed to per-form the SW algorithm. This is done by applying theonept of reursive variable expansion, whih exposesmore parallelism in the algorithm than any other pub-lished method. The paper estimates the speed and hard-ware overhead for the newly proposed approah relativeto other known aeleration methods. Using the newapproah, it is possible to ahieve a minimum speedupof 400 times better than the serial ase for a typialsequene length of 500, whih is 1.6 times higher thanany other published method. The paper also shows thatfurther speedup an be ahieved using extra hardwareto expose even more parallelism in the algorithm.1 IntrodutionLoal sequene alignment is an important problemin omputational biology, as it is helps in disover-ing funtional, strutural and evolutionary informationin biologial sequenes of DNA, RNA and proteins. Itis used to optimally align two apparently dissimilar se-quenes whih inlude some pattern whih is highlyonserved. The loal alignment algorithm will �nd thispattern and ignore the patterns that show little simi-larity. Smith-Waterman (SW) algorithm [16℄ is a suhwell known loal alignment algorithm. This algorithmis based on dynami programming, whih has time andspae omplexity O(mn), where m and n are lengths ofthe sequenes being aligned. Although this omplex-ity seems to be aeptable, the exponential growth inbio-sequene databases of known sequenes makes thisomplexity intolerable [8, 2℄. Therefore as the database

size grows larger, faster algorithms beome importantto quikly ompare and align the sequenes.One way to avoid suh expensive solutions is touse heuristi tehniques like FASTA [12℄ and BLAST[1℄. Both ompute the loal alignment and are fastbut less sensitive than SW, as the time omplexity isredued at the ost of auray. Therefore, an opti-mal alignment may not always be found through thesetehniques. Another way to redue the time om-plexity is to aelerate SW algorithm through paral-lel proessing. Researhers have been able to paral-lelize the SW algorithm on parallel mahines [15, 18℄.However, on the one hand, the amount of aelerationahieved by this method is theoretially bound. Onthe other hand, keeping in mind the growing size ofthe database, prevalent methods require further ael-eration to math this growth.In this paper, we show the way to apply ReursiveVariable Expansion (RVE) to the SW algorithm, whihreveals new previously unexplored type of data paral-lelism in the algorithm. Using RVE, the amount ofspeedup ahievable for a typial sequene length of 500is at least 400 times better than the serial ase (oneelement is omputed in hardware at a time), whih ishigher than the maximum speedup gained by tradi-tional hardware aeleration methods by a fator of atleast 1.6 using low hardware overhead.The rest of the paper is organized as follows. Insetion 2, we disuss the bakground and related workfor the parallelization of biologial sequene alignment.Our approah and implementation is disussed in Se-tion 3. Setion 4 estimates the needed time and hard-ware for our approah along with a omparison of timeand hardware needed for other prevalent parallel teh-niques, �nally, we onlude the paper in Setion 5.

 G T C G C A A C
 0 0 0 0 0 0 0 0 0

T 0 0 2 0 0 0 0 0 0
C 0 0 0 4 2 2 0 0 2
C 0 0 0 2 3 4 2 0 2
A 0 0 0 0 1 2 6 4 2
T 0 0 2 0 0 0 4 5 3
G 0 2 0 1 2 0 2 3 4

Figure 1. Scoring Matrix for an example of SW
algorithm, when g = −2 and x(i, j) = +1 whenS[i℄=T[j℄ otherwise −1. Elements in the trace
back are shown in bold.2 Bakground and Related Work

2.1 The Smith-Waterman algorithmLet S[1..m℄ and T[1..n℄ be two sequenes of lengthm and n for sequene alignment. The optimal align-ment sore F(i, j) for two sub-sequenes S[1..i℄ andT[1..j℄ is given by the following reurrene equation.
F (i, j) = max

F (i, j − 1) + g

F (i − 1, j − 1) + x(i, j)

F (i − 1, j) + g

0

(1)where F (0, 0) = F (0, j) = F (i, 0) = 0 , for 1 ≤
i ≤ m and 1 ≤ j ≤ n. The x(i, j) is the sore formath/mismath, depending upon whether S[i] = T [j]or S[i] 6= T [j]. The g is some onstant penalty forinserting a gap in any sequene. For loal alignment,the lowest sore for math/mismath is greater thanthe reommended gap penalty, otherwise the alignmentwill have more gaps and will eventually hange fromloal to global type of alignment, even though a loalalignment algorithm is used [6, 10, 17℄. We will usethis observation later in our proposed approah.To ompute optimal alignment sore F (i, j) as givenby Equation 1 for 1 ≤ i ≤ m and 1 ≤ j ≤ n, dy-nami programming is applied. In dynami program-ming, a bottom-up approah is used, in whih initiallythe boundary onditions are omputed and then F isomputed from smaller sub-sequenes to larger ones tillit reahes the entire length of the sequenes. An exam-ple of the SW algorithm is shown in Figure 1, wherea matrix is made and the two sequenes are put alongthe row and olumn. The matrix is �lled using Equa-tion 1 from the top-left orner and elements are �lled

(i, j)

(i, j-1)

(i-1, j-1) (i-1, j)

Figure 2. Data dependence graph for Equa-

tion 1 (different shades of gray in circles

show the elements which can be executed in
parallel).from left to right and from top to bottom. One thewhole matrix is �lled, we �nd the maximum sore inthe whole matrix and then start a trae bak from thatelement to one of the three elements from whih align-ment sore is alulated. This proess is repeated tillthe sore drops below a ertain threshold or to zero. Inthe trae bak, if the orresponding row and olumn el-ement math then the alignment is de�nitely omputedfrom the top-left element otherwise it is omputed fromany of the three elements depending on whih of themprodues a maximum. When an element is omputedfrom the top element then there is a gap in the se-quene along the row and similarly when an elementis omputed from the left element then there is a gapin the sequene along the olumn. The loal optimalalignment for the example in Figure 1 is as follows.The omputation of the optimal alignment sore F(i,j) as given by Equation 1 takes onstant time, andsine there are m × n elements to be omputed, thetime omplexity for SW algorithm is O(mn). The traebak takes O(m + n) steps, as the longest path in m×

n matrix is from top left to bottom right, whih is
O(m + n), and the time to determine the soure ofomputation for an element is onstant. We need tokeep the table of size m×n to ompute the F(i, j) andfor trae bak, therefore the spae omplexity for thealgorithms is also O(mn).To parallelize the SW algorithm we need to look at

F(i, j-1) g

+ +

F(i-1, j)

� +

F(i-1, j-1)

�
F(i,j)

LUT

S[i] T[j] 0

�
Cycle 1

Cycle 2

Cycle 3

Cycle 4

x(i, j)

Figure 3. Circuit for the computation of an el-

ement F (i, j) in Equation 1, where ≻ is the

Max operator, and LUT stands for the Look-
up table that generates the match/mismatch

scores.its data dependene graph as shown in Figure 2. Blankirles are the elements after the initialization with theboundary onditions. Any iteration (i, j) annot beexeuted until iterations (i-1, j), (i-1, j-1) and (i, j-1)are exeuted �rst, due to data dependenies. Thereforewe need to hange the way the elements are traversedlike starting from the top, elements with one shade ofgray in anti-diagonal an be exeuted in parallel fol-lowed by the next anti-diagonal with di�erent shade ofgray due to dependeny onstraint. The degree of par-allelism is onstrained to the number of elements in theanti-diagonal and the maximum number of proessingelements required will be equal to the number of ele-ments in the longest anti-diagonal (ld) is as follows.
ld = min(m, n) (2)Here, we have assumed that the proessing elementsare equal in number to the length of the shorter se-quene. Theoretially, the lower bound to the num-ber of steps required in this parallel implementation isequal to the number of anti-diagonals required to reahthe bottom-right element is as follows.

m + n − 1 (3)So far this is the best tehnique for parallelizationand has been used by many researhers [14, 11, 18℄.Yamaguhi [18℄ implemented the SW on FPGA andahieved a speedup of 327 times faster than a desk-top omputer with Pentium III, 1 GHz for a sequenelength of 2048. Oliver [14℄ ahieved a speedup of 170 asompared to software implementation on Pentium IV,1.6 GHz, for a sequene length of 756. Similarly re-ently Jiang [11℄ has improved the speedup to at least330 times faster than software implementation on 2.8GHz, Xeon proessor for sequene length of 4000.

Example 1 A simple example whih adds the loopounter.A[1℄=1for i = 2 to 5A[i℄= A[i-1℄ + i (Gi)end forExample 2 RVE is applied on Example 1.A[5℄= A[4℄ + 5= A[3℄ + 4 + 5= A[2℄ + 3 + 4 + 5= A[1℄ + 2 + 3 + 4 + 5= 1 + 2 + 3 + 4 + 5Figure 3 shows the implementation to ompute oneelement. This unit ontains three adders, one look uptable (LUT) and three omparators. The time to om-pute one element is 4 yles. We have assumed that thetime for eah yle is equal to the lateny of one adder,omparator or LUT operations. The same assumptionholds to ompute the lateny in the rest of the paper.
2.2 Recursive Variable ExpansionReursive Variable Expansion (RVE) [13℄ is a kindof loop transformation whih removes all the data de-pendenies from the program, thereby making it proneto more parallelism. The basi idea is that if any state-ment Gi is dependent on statement Hj for some itera-tion i and j, then instead of waiting for Hj to ompleteand then exeute Gi, we will replae all the ourrenesof the variable in Gi that reate dependeny with Hjwith the omputation of that variable in Hj . This waythere is no need to wait for the statement Hj to om-plete and statement Gi an be exeuted independentlyof Hj . Similarly if Hj is dependent on some other state-ment, we will replae the omputation of that state-ment with the variable to make it independent of thatstatement. This step is reursively repeated until thestatement Gi is not dependent on any other statementrather only inputs or known values, whih essentiallymeans that Gi an be omputed without waiting for theomputation of any other statement. The tehnique isvery bene�ial when most of the operations are asso-iative. This transformation an be explained learlyby Example 1, whih adds the loop ounter. Thereforeafter applying the RVE, we get an expression with �veterms to be added as shown in Example 2.In this way, the whole expanded statement in Ex-ample 2 an be omputed in any order by omputinga large number of operations in parallel and e�iently

Figure 5. Three level recursion tree for the SW algorithm.

1 2

+ +

3

+

+

4

Cycle 1

Cycle 2

Cycle 3

5

Figure 4. Circuit for Example 2.using binary tree struture as shown in Figure 4.
2.3 Traditional acceleration of SWAs mentioned in Setion 2.1, the best known hard-ware aeleration of the SW algorithm takes m+n− 1steps to omplete (Equation 3). Sine eah step takes4 yles (Figure 3), the best known time to omputethe SW equation is 4(m+n−1) yles as desribed byEquation 1.A lot of work has been done to aelerate the bi-ologial sequene alignment using di�erent hardwares.In addition to spei� arhitetures designed for se-quene alignment, many solutions for speial purposehardware, SIMD and FPGAs have been devised [9℄.Several implementations for SIMDs have been pro-posed as MGAP, Kestrel and Fuzion [5, 3, 15℄. A reentimplementation was done on Intel Xeon 2.0 GHz us-ing a tehnique alled Striped Smith-Waterman, whihlaims to ahieve a speedup of six times over otherSIMDs implementations [7℄. SIMDs ontains generalpurpose proessors therefore it is programmable and isused for a wider range of appliations like image pro-essing and sienti� omputing. The drawbak is thatthey are expensive.Reon�gurable systems are good andidates for a-elerating biologial sequene alignment algorithms.

j-1j-2

i-2

i-1

i

j

������

��

� O1O2

O3O4(a) iii

ii

i

j-1j-2

i-2

i-1

i

j

O1

O3

iv

O2

O4(b) i-2 �� ��� ��

jj-1j-2

i-1 � O3O4

O2 O1i ()
j-1j-2

i-2

i-1

i

j

i��

O1O2

O3O4

���

� (d)
Figure 6. Matrices to show the elements from
which F (i − i

′

, j − j
′

) are computed. Shaded

square represent already known values.Reon�gurable systems are omposed of GPP oupledwith Field Programmable Gate Arrays (FPGA). FP-GAs are programmable using some hardware desrip-tion languages like VHDL or Verilog and virtually anyalgorithm an be mapped on it. FPGAs an also be re-on�gured during system operation, alled Run-TimeReon�guration, whih makes them suitable if the al-gorithm or gap penalty is hanged at runtime. Someof the solutions based on FPGAs are given in [18, 14℄.Reently Jiang [11℄ modi�ed the SW formula by intro-duing a new variable and thereby reduing the ritialpath to ompute a single ell.In this paper, we desribed how to improve the timeneeded to ompute sequene alignment using any of theabove methods by a onstant fator by exposing moreparallelism.3 SW aeleration using RVE
3.1 Applying RVE to the SW algorithmWe applied RVE partially on Equation 1 to exposethree levels of data parallelism. The reursion tree afterthe appliation of RVE is shown in Figure 5. F(i, j)an be written in equation as shown by the leaf nodesin Figure 5.

F (i,j)=max

i F (i,j−2)+2g

ii F (i−1,j−2)+g+x(i,j−1)

iii F (i−1,j−2)+3g

iv F (i−2,j−2)+2g+x(i−1,j−1)

v F (i−2,j−1)+3g

vi F (i−1,j−2)+g+x(i,j)

vii F (i−2,j−2)+x(i−1,j−1)+x(i,j)

viii F (i−2,j−1)+g+x(i,j)

ix F (i−1,j−2)+3g

x F (i−2,j−2)+2g+x(i−1,j−1)

xi F (i−2,j−1)+3g

xii F (i−2,j−1)+g+x(i−1,j)

xiii F (i−2,j)+2g

xiv 0

(4)
Equation 1, whih transformed to Equation 4 is nowwritten as the maximum of fourteen sub-equations. Allthe terms are independent to eah other, therefore sub-equations an be omputed in parallel. Sine �ndingmaximum is assoiative, then the e�ient way to �ndmaximum is by making a omplete binary tree from theresult of fourteen sub-equation, whih requires four y-les as ⌈log2 14⌉ = 4. Can we �nd F (i, j) better thanthis? Yes, if we look losely at Equation 4, unique

F (i−i
′

, j−j
′

), for 0 ≤ i
′

≤ 2 and 0 ≤ j
′

≤ 2, terms areonly �ve. If a unique F (i− i
′

, j− j
′

) is present in morethan one sub-equations and as mentioned before in Se-tion 2.1 that the lowest sore in substitution matriesis greater than the reommended gap penalty g, we aneliminate some sub-equations with out the loss of gen-erality based on the smallest value of x(i − i
′

, j − j
′

),whih we all xl. For example, F (i−1, j−2) is presentin equation ii, iii, vi and ix. So these sub-equationsan be written as follows.
ii F (i − 1, j − 2) + g + xl (5)

iii F (i − 1, j − 2) + 3g

vi F (i − 1, j − 2) + g + xl

ix F (i − 1, j − 2) + 3gSo sub-equations iii and ix an be simply disarded,they an never be maximum as g + xl > 3g for xl > g.There is a tie between ii and vi, as we are not ertainabout the values does x(i, j−1) and x(i, j). Using thisredution method for all the sub-equations, Equation 4an be redued to the following equation of eight sub-equations.

0 0 0 0 0 0 0 0 0 0

0 O4 O2 O4 O2 O4 O2 O4 O2 O4

0 O3 O1 O3 O1 O3 O1 O3 O1 O3

0

0

0

0

0

0

0

1 2 3 4 5

O4 O2 O4 O2 O4 O2 O4

O3 O1 O3 O1 O3 O1 O3
2 3 4

O2 O4

O1 O3

O4 O2 O4 O2 O4 O2 O4 O2 O4

O3 O1 O3 O1 O3 O1 O3 O1 O3
3 4 5 6 7

O4 O2 O4 O2 O4 O2 O4

O3 O1 O3 O1 O3 O1 O3
4 5 6

O2 O4

O1 O3

5 6

8

O4 O2 O4 O2 O4 O2 O4 O2 O45 6 7

7

8 9

Figure 7. Sequence of fill of the F (i, j) scoring

matrix of Equation 1, starting from the top left
light shaded square numbered 1 (represent

the time instance to compute) and moving di-

agonally down as shown by trailing numbers.
All the squares with the same number can be

executed in parallel.

F (i,j)=max

i F (i,j−2)+2g

ii F (i−1,j−2)+g+x(i,j−1)

iii F (i−1,j−2)+g+x(i,j)

iv F (i−2,j−2)+x(i−1,j−1)+x(i,j)

v F (i−2,j−1)+g+x(i−1,j)

vi F (i−2,j−1)+g+x(i,j)

vii F (i−2,j)+2g

viii 0

(6)
To �nd the maximum of eight sub-equations, weneed ⌈log2 8⌉ = 3 yles, whih is better than 4 ylesas needed for Equation 4.Even if the gap penalty is equal to the smallest valuein the substitution matrix, the above equations willprevail as equations with only gap penalties will beeliminated, as with x(i−i

′

, j−j
′

), there is a hane thata better sore an ome up. However if the gap penalty
g is greater than the smallest value xl of substitutionmatrix , then there may or may not be any eliminationand in worst ase we may have to keep all the sub-equations, whih means that 4 yles will be requiredto �nd the maximum.In implementation, we would like to redue the hard-ware as muh as possible for the same aeleration.Sine the �rst two terms in the sub-equations ii and iiiof Equation 6 are the same, we an write both of them

F(i, j-2)

F(i-2, j)

2g

g

F(i-1, j-2)

x(i, j-1)

x(i, j)

x(i-1, j)

g

F(i-2, j-1)

x(i-1, j-1)

F(i-2, j-2)

� + +

++

� �
�

+ + +

O1

A

Cycle 1

Cycle 2

Cycle 3

Cycle 4

Cycle 5

0

�
C B

� �

(a) Ciruit for O1 F(i, j-2)

g

+

+

�
A

F(i-2, j)

+

2g

x(i-1, j)

�
� �

� �O2 O3

F(i-2, j-1)

+

F(i-1, j-2)

+

F(i-1, j-2)

x(i, j-1)

+

F(i-2, j-1)

2g

+

0

�

(b) Ciruit for O2 and O3
�

�
O4

0

�
A

B C

.

() Cir. for O4
Figure 8. Circuit for computing the 2× 2 block as shown in Figure 6, where A = x(i-1, j-1)+F(i-2, j-2),B = F(i-2, j-1)+g and C = F(i-1, j-2)+g.in one sub-equation as

max

{

ii F (i−1,j−2)+g+x(i,j−1)

iii F (i−1,j−2)+g+x(i,j)

=F (i−1,j−2)+g+{x(i,j−1)≻x(i,j)}where ≻ is the binary max operation, whih returnsthe max of two value. Similarly without losing gener-ality, we an redue the whole of Equation 6 into thefollowing equation.
F (i,j)=max

i {F (i,j−2)≻F (i−2,j)}+2g

ii F (i−1,j−2)+g+{x(i,j−1)≻x(i,j)}

iii F (i−2,j−2)+x(i−1,j−1)+x(i,j)

iv F (i−2,j−1)+g+{x(i−1,j)≻x(i,j)}

v 0

(7)
Equation 7 when mapped on to matrix form givesus a 3×3 matrix, where the terms to be omputed (O1to O4) are represented by a 2 × 2 blok as shown inFigure 6. We de�ne the size of the unknown blok asthe bloking fator (b), here b=2. Figure 6(a) showshow F (i, j) (i.e. O1) is alulated from Equation 7.Similarly we an ompute F (i, j−1) (i.e. O2 in Figure6(b)), F (i−1, j) (i.e. O3 in Figure 6()) and F (i−1, j−

1) (i.e. O4 in Figure 6(d)) using the similar method forO1. The formulas for F (i, j − 1), F (i− 1, j) and F (i−
1, j − 1) after applying Reursive Variable Expansionpartially and elimination is given by Equation 8, 9 and10, respetively.

F (i,j−1)=max

i F (i,j−2)+g

ii F (i−1,j−2)+x(i,j−1)

iii F (i−2,j−2)+g+x(i−1,j−1)

iv F (i−2,j−1)+2g

v 0

(8)
F (i−1,j)=max

i F (i−1,j−2)+2g

ii F (i−2,j−2)+g+x(i−1,j−1)

iii F (i−2,j−1)+x(i−1,j)

iv F (i−2,j)+g

v 0

(9)
F (i−1,j−1)=max

i F (i−1,j−2)+g

ii F (i−2,j−2)+x(i−1,j−1)

iii F (i−2,j−1)+g

iv 0

(10)One the boundary onditions are applied, the restof the matrix an be �lled as shown by Figure 7. The�gure also shows how the matrix will be �lled if thelength of the sequenes is not a multiple fator of thebloking fator.4 Time and Hardware estimationIn this setion, we will show that our approah inwhih we have expanded the SW (Equation 1) usingReursive Variable Expansion is some onstant timesfaster than any known parallel implementation to date,

Table 1. Time and Hardware estimationTime (yles) Hardware
+ ≻ LUTvariable value1 speedup2 variable value1 overheadratio2 variable value1 overheadratio2 variable value1 overheadratio2Serialase 4mn 1000000 1 3 3 1 3 3 1 1 1 1Best HWael. 4(m+n−1) 3996 250 3×ld 1500 500 3×ld 1500 500 1×ld 500 500RVEwith b=2 5(

⌈

m
2

⌉

+
⌈

n
2

⌉

−1) 2495 401 14×n2 3500 1167 17×n2 4250 1417 4×n2 1000 1000RVEwith b=3 7(
⌈

m
3

⌉

+
⌈

n
3

⌉

−1) 2331 429 54×n3 27000 9000 54×n3 27000 9000 9×n3 1500 1500
1values alulated for m=500 & n=500, 2with respet to the serial ase
ld=min(m,n)=500, n2=min(⌊m

2 ⌋,⌊n
2 ⌋)+

min(m,n) mod 2
2 =2501, n3=min(⌊m

3 ⌋,⌊n
3 ⌋)+

min(m,n) mod 3
3 =1671depending upon the size of the bloking fator hosen.Next in this setion, we will disuss the di�erent knownSW implementations. Then we will show the time andhardware estimation along with its omparison withthe best known parallel approah.

4.1 Serial CaseFirst we will look at the serial ase, in whih ev-ery element is alulated serially in hardware startingfrom top left orner and moving left to right and top todown. As shown in Figure 3, it takes 4 yles to om-pute an element by using 3 adders and 4 omparators.There are mn elements in total in the soring matrix,therefore to align two sequenes of length m and n, itrequires 4mn yles. As all the elements are omputedserially, the hardware is required for just one element,whih is 3 adders and 4 omparators.
4.2 Best known hardware accelerationNow we will look at the best known hardware a-eleration tehnique, in whih the elements F (i, j) areomputed as parallel as possible restrained by thedata dependeny. As given by Equation 3, the num-ber of subsequent steps required is m + n − 1, whihtakes a total omputation time of 4(m + n − 1) y-les. At any time, the number of elements in thelongest anti-diagonal is the maximum number of ele-ments to be omputed in parallel, given by Equation 2is ld = min(m, n). If he quanti�es the amount of hard-ware used to ompute a single F (i, j) element, then themaximum amount of hardware needed is he × ld.

4.3 Recursive variable expansionIn order to estimate the hardware and time for ourimplementation, we have drawn the iruits in Figure8 for Equations 7, 8, 9 and 10. The iruits for thegiven equations are optimized to use minimum hard-ware. These iruits an be easily implemented onFPGA. Aording to the iruits in Figure 8, a blokof 2 × 2 requires 5 yles to ompute. The maximumnumber of sequential bloks that should be alulatedin subsequent anti-diagonals for sequenes of lengths mand n is given by ⌈

m
b

⌉

+
⌈

n
b

⌉

−1. The last blok an bepartially �lled, if b ∤ m or b ∤ n (b ∤ m means that b doesnot evenly divide m). Therefore for 2× 2 blok, upperbound for the time to ompute an alignment betweentwo sequenes of length m and n is 5(
⌈

m
2

⌉

+
⌈

n
2

⌉

− 1)yles. Even if the gap penalty is greater than the low-est sore in substitution matrix, the time for sequenealignment in that ase will be 6(
⌈

m
2

⌉

+
⌈

n
2

⌉

− 1) y-les, whih is approximately equal to 3(m + n − 1), isstill better than 4(m + n− 1) of the best hardware a-eleration ase. The number of bloks required to beomputed in parallel is nb = min(
⌊

m
b

⌋

,
⌊

n
b

⌋

)+p, whihis the length of longest diagonal in bloks, where p = 0,if b | min(m, n), otherwise 0 < p < 1, whih means theblok is partially �lled and p = min(m,n) mod b

b
. If hb issome number of hardware used to ompute a blok andit is also assumed that the hardware used for a partialblok is equal to the ratio of the partial blok size tothe atual blok size, then the total hardware used is

nb × hb.Following is the estimate of hardware h2 used by oneblok of 2 × 2 as veri�ed by the Figure 8.No. of '+' used = 14No. of '≻' used = 17No. of LUT used = 4

Similarly, we have expanded the SW Equation 1 fur-ther to bloking fator b = 3. We got 3 × 3 = 9 equa-tions for unknowns and then we drew the optimizediruits for all those equations to get an estimate aboutthe time and hardware they would take. If all the nineequations are omputed in parallel, then it takes onlyseven yles to ompute a blok of 3×3 elements. Thehardware estimates h3 are as under.No. of '+' used = 54No. of '≻' used = 54No. of LUT used = 9
4.4 Summary of resultThe time and hardware estimation for all the teh-niques is summarized in Table 1. The estimate for timeand hardware is given in generi terms of m and n aswell as with some spei� values, m=n=500, whih istypial length in [4℄ to simplify the omparison. Thebest known parallel tehnique is linear in m and n asompared to quadrati in m and n in the serial ase.In ase of m=n=500, it is 250 times faster than theserial ase. This aeleration omes at the expenseof 500 times the hardware required by the serial ase.When the SW is aelerated with RVE with blokingfator b=2, the speedup is 401 times the serial aseand the hardware used is around 1250 times the se-rial ase. Similarly, for RVE with bloking fator b=3,the speedup is inreased to 429 times the serial aseand the hardware used is around 9000 times the serialase. It is lear from this trend that hardware utiliza-tion is more than linear as ompared to speedup beyondthe best known hardware aeleration. The reason isthat in RVE, we have given priority to parallelizationas ompared to the hardware utilization and do manyrepeated omputation to ahieve the speedup, whihinreases the hardware utilization. The speedup anbe inreased further by inreasing the bloking fatorprovided we an dediate more hardware for that.5 ConlusionIn this paper, we have presented a new tehniqueto parallelize the SW algorithm with linear gap penal-ties, whih has the apability to expose more paral-lelism than the prevalent parallel tehniques. We haveshown that this tehniques inreases the speedup bya fator of 1.6 and 1.71 for bloking fator b=2 andb=3 respetively, as ompared to the best known par-allel tehnique. This does not represent the maximumahievable speedup using this method, rather we animprove this further by inreasing the bloking fator,given we have enough hardware.

Referenes[1℄ S. F. Altshul et al. Basi loal alignment searh tool.J. Mol. Biol., pages 403�410, 1990.[2℄ D. A. Benson et al. Genbank. Nul. Aids Res.,28(1):15�18, 2000.[3℄ A. D. Blas et al. The kestrel parallel proessor.IEEE Transations on Parallel and Distributed Sys-tems, 16(1):80�92, 2005.[4℄ B. Boekmann et al. The swiss-prot protein knowl-edgebase and its supplement trembl in 2003. NuleiAids Researh, 31:365�370, 2003.[5℄ M. Borah et al. A simd solution to the sequene om-parison problem on the mgap. In ASAP, 1994.[6℄ M. O. Dayho�. Survey of new data and omputermethods of analysis. In Atlas of Protein Sequene andStruture, volume 5, page 29, 1978.[7℄ M. Farrar. Striped smith-waterman speeds databasesearhes six times over other simd implementations.Bioinformatis, 23(2):156�161, 2007.[8℄ M. Y. Galperin. The moleular biology database ol-letion: 2007 update. Nulei Aids Researh, 35:D3�D4(1), January 2007.[9℄ L. Hasan, Z. Al-Ars, and S. Vassiliadis. Hardwareaeleration of sequene alignment algorithms - anoverview. In DTIS'07, pages 96�101, September 2007.[10℄ S. Heniko� and J. Heniko�. Amino aid substitutionmatries from protein bloks. In Proeedings of the Na-tional Aademy of Sienes, volume 89, pages 10915�10919, 1992.[11℄ X. Jiang et al. A reon�gurable aelerator for smith-waterman algorithm. IEEE Transations on Ciruitsand Systems II, 54(12):1077�1081, De. 2007.[12℄ D. J. Lipman and W. R. Pearson. Rapid and sensitivesequene omparison with fastp and fasta. MethodsEnzymol., 183:63�98, 1990.[13℄ Z. Nawaz et al. Reursive variable expansion: Aloop transformation for reon�gurable systems. InICFPT'07, 2007.[14℄ T. Oliver, B. Shmidt, and D. Maskell. Reon�gurablearhitetures for bio-sequene database sanning onfpgas. IEEE Transations onCiruits and Systems II,52(12):851�855, De. 2005.[15℄ B. Shmidt, H. Shröder, and M. Shimmler. Mas-sively parallel solutions for moleular sequene analy-sis. In IPDPS '02, page 201, 2002.[16℄ T. Smith and M. Waterman. Identi�ation of ommonmoleular subsequenes. J. Mol. Biol., 147:195�197,1981.[17℄ D. States, W. Gish, and S. Altshul. Improvedsensitivity of nulei aid database searh usingappliation-spei� soring matries. In Methods: Aompanion to Methods in Enzymology, volume 3, pages66 � 77, 1991.[18℄ Y. Yamaguhi, Y. Miyajima, T. Maruyama, andA. Konagaya. High speed homology searh using run-time reon�guration. In FPL '02, pages 281�291, 2002.

