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ABSTRACT
This paper examines the opportunity of using compres-

sion for accelerating the (re)configuration of FPGA devices,
focusing on the choice of compression algorithms, and their
hardware implementation cost. As our purpose is the ac-
celeration of the configuration process, estimating the de-
coder speed also plays a major role in our study. We evalu-
ate a wide range of well-established compression algorithms
and we also propose two methods specifically developed for
compressing FPGA configuration bitstreams, one based on
a static dictionary and the other on arithmetic coding. For
the arithmetic coding we propose a statistical model that
takes advantage of the particularities of the configuration
bitstreams of the Virtex 4 FPGA family. We evaluate the ef-
ficiency of the proposed methods along with state of the art
compression algorithms on a number of benchmark circuits,
some selected from the available open source implemen-
tations and some synthetically generated. Our evaluations
indicate that using modest resources we can achieve parity
and even exceed comercial software in terms of compres-
sion ratio, and outperform all other traditional algorithms.
All our implemented decompressors are shown to use less
than 1.5% of the slices available on the FPGA device.

1. INTRODUCTION

Field Programmable Gate Arrays (FPGAs) are, as their name
suggests, arrays of configurable blocks, connected by con-
figurable routes. As the number of blocks and the com-
plexity of the routing resources have increased so has the
amount of memory needed to store the configuration data
and the time needed to upload these data on the chip. Bit-
stream compression has been identified by previous studies
[1, 2, 3] as a possible solution for reducing bitstream storage
requirements and accelerating FPGA (re)configuration.

One of the major FPGA manufacturers, Altera has al-
ready decided to incorporate decompression hardware into
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their products as it is the case with Stratix II family of FP-
GAs [4]. In this case, the compression method has been cho-
sen by the manufacturer and it is hardwired into the product.
Decompression has also been supported in the past by exter-
nal configuration devices, such as the EPC [5] and System
ACE MPM [6]. However, the FPGAs in the Virtex 4 family
[7] are capable of decompressing the bitstream internally,
with a decompressor implemented on the actual FPGA fab-
ric, as indicated in studies of Huebner [8]. This scheme is
generic, but the question of which algorithm is more appro-
priate for the task of bitstream compression remains open.

In this line of reasoning, we make the target of this study
the evaluation of a wide range of compression algorithms.
In addition to the well-established compression methods we
propose two novel techniques, one based on arithmetic cod-
ing and the other using a fixed dictionary.

To evaluate the implications of our proposal we con-
sidered a number of benchmark circuits, mapped them to
a Xilinx Virtex 4 FPGA and compressed the obtained bit-
streams with our methods as well as with other state of the
art compression methods. To give a relative estimation of
the compression ratio achieved by our algorithm, we in-
clude in our tests a popular and highly effective commercial
compression software, RAR [www.rarsoft.com]. The exper-
iments suggest that the first of our methods outperforms all
the other methods in terms of compression efficiency. While
our method outperforms RAR by a small margin, it is im-
portant that it does so while using orders of magnitude less
resources. RAR uses a dictionary and data structures in the
order of megabytes, while the memory requirements of our
algorithm are in the order of tens or hundreds of bytes.

The second proposed method focuses on simplifying the
decompression hardware, and thus achieves the highest de-
compression speed by a margin of 266%, although provid-
ing lower compression ratios. We have implemented in hard-
ware decoders for all the algorithms for which we consid-
ered an implementation to be feasible and we present their
cost and performance for comparison.

The remainder of the paper is organized as follows: Sec-



tion 2 presents related studies concerning bitstream com-
pression techniques. In Section 3 we introduce two meth-
ods we specifically adapted for the task of FPGA bitstream
compression. Section 4 presents experimental results and a
comparison between our algorithms and the algorithms de-
scribed by previous papers. Finally, Section 5 draws some
conclusions from these experiments.

2. RELATED WORK

A number of studies have previously targeted FPGA bit-
stream compression. A notable one [9] focuses on an ear-
lier family of Virtex products. It examines a wide range of
techniques, studies stream regularity, the effect of symbol
length, frame reordering and readback, a wildcard technique
inherited from a previous family of FPGAs, and proposes
methods such as Huffman coding and dictionary based com-
pression (LZSS). Arithmetic coding is mentioned, but with-
out a reference to the statistical model assumed. An older
paper from the same authors [1] targeting xc6200 FPGAs,
exploits a feature of the configuration hardware on that plat-
form, called wildcard registers, that allows programming a
selection of multiple rows and columns at once. A subse-
quent paper [10] addresses the use of runlength encoding for
the same family of FPGAs. The use of don’t cares has also
been proposed in [2] to enhance compression. The method
however requires knowledge of the internal structure of the
FPGA and the bitstream format, which is not published by
the manufacturer in the case of newer devices.

A major direction of research has been the exploitation
of inter-frame regularity either by using a previously up-
loaded frame as a dictionary in a dictionary-based compres-
sion method [9] or by computing the XOR difference be-
tween frames [3]. Frame reordering is particularly useful
for this technique, and complex algorithms like those de-
scribed in [11] were proposed for this task. Although we
have performed experiments in this direction, this method
did not provide better results and for reasons of brevity will
not be presented here.

A modified LZW dictionary-based compression method,
unfortunately having high memory requirements, is presented
in [12], while the more simple LZ77/LZSS algorithm is the
method of choice in [8].

More recent studies [13] propose using static xor masks
dependent on the type of resources found in the FPGA: LUTs,
global routing, local routing. Their study targets the same
early family of Virtex FPGAs.

In general, the cost of decompression hardware was not
addressed in the literature, a notable exception being the
study in [8] (LZSS compression).

In our study, we attempt to move the focus onto more
recent Virtex FPGAs, that is the Virtex–4 (the Virtex–5 was
not available at the beginning of our study). We find that

the change in architecture had a major impact on the struc-
ture of the configuration bitstreams, as so probably had the
evolution of synthesis software. We reproduce for this ar-
chitecture the most significant experiments described in the
literature.

3. PROPOSED ALGORITHMS

In this section we present our two proposed compression
methods. Arithmetic coding is in general perceived as an
expensive compression method, particularly because of the
required multiplication. We show however that a low-cost
arithmetic decoder can be obtained with little loss in terms
of compression ratio. A second method is designed based
on standard dictionary compression methods and focuses on
simplicity and speed.

3.1. Bitstream Compression Based on Arithmetic Cod-
ing

Arithmetic coding is a technique that allows storing symbols
using a fractional number of bits based on the probability of
occurrence. Although at first this may seem non-intuitive or
even impossible, the actual implementation is rather simple.
A detailed description of the algorithm can be found in [14].

Consider a memory unit which holds n bits of data. This
unit, say a register, can store 2n different values. By analogy
a hypothetical storage unit, capable of memorizing a value
between 0 and n − 1 would be said to have a capacity of
log2n bits, which may be a fractional number. As it turns
out such a storage unit is not only possible but it is easy to
implement and consists of two registers, one holding the size
of the interval [0,n) and the other the actual value.

Information is added to this conceptual storage unit an
integer number of bits at a time, by doubling (or multiplying
by 2n) the size of the interval, and choosing a new stored
value from a set of 2n elements, based on the n bits of infor-
mation added. At each step of the algorithm we add as much
information as possible to this storage unit, in order to fully
utilize the available register width. This operation is called
renormalization. Information is removed from the storage
unit by splitting the set of possible values into subsets as-
sociated with each symbol to be encoded. For simplicity,
the subsets are two disjoint intervals. The elements of the
subsets can be seen either as fractions or integer numbers.
Ideally, when decoding a symbol and performing a division
of the set, the size of each subset should be proportional
to the probability of the symbol it represents. Because the
number of elements in the set is constrained by the size of
the registers, a certain approximation must be tolerated.

Figure 1 presents the structure of the arithmetic decoder.
The high cost of the decoder arises from the use of a mul-
tiplier circuit. We attempt to reduce the cost, by decreasing



Fig. 1. The arithmetic decoder

Fig. 2. Effect of precision on compression ratio

the precision of the operands involved, however this reduc-
tion results in a penalty in terms of compression ratio.

We have studied the effect of precision reduction on the
compression ratio by encoding all data sets available using
different operand sizes. The results are presented in Figure 2
and Table 1. The value represents the size of the data com-
pressed with the given precision relative to the ideal com-
pression ratio. The penalty is asymetric with respect to the
two operands of the multiplication. A higher precision of
the external probability value is more important than the in-
ternal scaler. The first column in the table corresponds to
using no multiplier at all, a solution that is used in popular
image compression schemes.

We have focused our study on low-precision encoding
schemes, which allow efficient hardware implementation with-
out a large penalty in terms of compression ratio. A proba-
bility representation of 6 bits and scaler of only 3 bits allow
achieving a compression ratio of only 0.8% of the theoreti-
cal bound.

Arithmetic coding is known to provide optimal compres-
sion, subject only to the limitations of the statistical model
used to provide the probability of symbol occurrence. When
developing the statistical model we keep in mind the hard-
ware requirements of the decompressor.

Table 1. Effect of precision on compression ratio

Fig. 3. Decompressor

Our work started by building correlation maps of the
bits inside each frame of the bitstream. In order to simplify
the structure of the decoder we then limited our search to
the correlation of each bit with other bits occupying certain
fixed positions relative to itself. Such an approach is advis-
able as it allows the utilization of a shift register as a his-
tory context. By exhaustive search within the length of one
frame we determine the subset of bits occupying positions
{160, 112, 48, 24, 8, 4} in the history, as the most relevant
in generating the symbol probability. To further improve the
model we set up two special conditions that may affect the
probability of the incoming symbol. One tests for runs of
consecutive zeros and is implemented as an AND between
the last 8 or 16 processed bits. The other determines if the
sequence at a displacement of 160 bits matches the current
sequence. This model has produced consistent results over
all tests and seems to be a characteristic of the FPGA family
our tests targeted.

Symbol probabilities are stored in a table which has to be
initialized prior to beginning the decompression. The hard-
ware decompressor is presented in Figure 3.

3.2. A Fixed Dictionary Approach

The largest limitation of the decoder in terms of speed is
the number of bits it can process at a time. In this respect,
compression methods like LZ78 [15] most widely known
through its variant LZW, have the distinct advantage of be-
ing able to read an entire input word at a time, as encoded
words have the same length. However, the same technique
has the disadvantage of having to dynamically generate and
maintain the contents of the dictionary.

A solution that targets both speed and simplicity would



Fig. 4. Symbols for fixed dictionary compression

be to use a statical dictionary that is computed based on the
contents of the entire bitstream and is used throughout the
entire decompression. Unlike the Huffman dictionary, there
is no clear methodology for how such a dictionary can be
created in an optimal way (at least not to the knowledge of
the authors), but the characteristics of the bitstream make
the choice an easy one. In particular, due to the high proba-
bility of occurrence of the zero symbol, the coding scheme
degenerates into a bit-level RLE with minor modifications.

In order to make sure that there is always a way to en-
code any input sequence, we build our dictionary in a way
similar to the Huffman tree. Starting from the root, we add
two branches, one corresponding to the sequence formed of
one ”0” bit and one for the sequence consisting of one ”1”
bit. After that, as long as there are enough codes to repre-
sent more sequences, we expand the most commonly occur-
ring sequence that we already have a representation for, by
adding to it two new branches, the same way as the first step.
Additional symbols that are not part of the tree can be used
as shortcuts. Figure 4 illustrates a possible dictionary com-
position. The stored sequences are obtained by traversing
the tree edges from the root to the leaf nodes, or the extra
symbol chains from left to right. The percentages marked
on the figure are probabilities of occurrence of the sequences
ending on the specific nodes.

Unfortunately, the size of the dictionary grows exponen-
tially with the word size chosen for the encoding, so we only
found it feasible to use a word size of 4. Unlike most of the
word-based compression methods, but similar to 1-bit LZW,
the method does not take advantage of the natural data align-
ment, which results in a penalty in terms of compression ra-
tio.

4. EXPERIMENTAL RESULTS

The compression algorithms that were evaluated are: the
commercial software RAR (used with the highest compres-
sion setting), the arithmetic coding and the fixed dictionary
method described in Section 3, Huffman coding [16], the
dictionary based methods LZSS [17] and LZW [15], the
Burrows-Wheeler transform [18], and the combination of
Huffman and LZSS. We have used our own implementa-

tions for all algorithms except RAR, in order to be able to
test various word size as suggested in previous studies and
we tested the implementations by correctly decompressing
the output.

4.1. The benchmark bitstreams

In our experiments we have assumed large designs in order
to ensure a high area utilization of the FPGA. The tests were
produced using the default configuration of the hdl synthe-
sizer (Xilinx ISE 6.3i), with no attempt to increase struc-
ture regularity by manual optimization. All tests were per-
formed using bitstreams for an xc4vlx25 Virtex 4 FPGA,
which have a size of approximately 1MB.

We utilized a benchmark suite composed out of eight
designs. Five were real-world tests mostly originating from
opencores.org: a general purpose processor (opnrisc), a float-
ing point unit (fpu), a dataflow processor (dflow), an array of
AES encoders and decoders (aes), and an array of Ethernet
controllers (ether). Of the last two, as many instances were
created as would fit on the chosen FPGA chip. Three other
tests were automatically generated to use the FPGA struc-
ture at the maximum possible extent: a perfectly regular
mesh of look-up tables (mesh), a circuit with random con-
nections (randlnk), and a circuit with random connections
and forcedly placed to uniformly cover the surface (rand-
full). For the mesh circuit perfect regularity was ensured
by connecting each LUT to four of its neighbors, having in
all cases the same relative placement. At the edges of the
mesh, wrap-around occurred. In spite of this regularity we
found that synthesis tools have a randomizing effect in both
placing and routing, which resulted in little similarity to be
exploited by the dictionary based compression algorithms.

We have only considered the useful bitstream data for
compression, empty frames were discarded as they would
have generated unrealistically good reports. Error detection
codes were also discarded, since it would make more sense
to send them uncompressed.

4.2. Compression Efficiency

Here, we present the compression efficiency of the evaluated
algorithms using the favorable word lengths. The names
present in the table are as follows: “rar” is of course the
RAR commercial software, “arith” is the arithmetic coder
using a simple statistical model that only takes into account
the ratio of 0 and 1 bits, “apc6x3” is the arithmetic coder us-
ing the statistical model presented in Section 3, “apc5x2r” is
an arithmetic coder with reduced precision and a simplified
statistical model still based on the one described in Section
3, “huf4” and “huf8” are the Huffman encodings with word
sizes of 4 and 8 respectively, “lzw4” is the LZW algorithm
with a word-size of 4, “bwt8” is the Burrows-Wheeler trans-
form followed as suggested by the authors by move-to-front
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Fig. 5. Compression efficiency

Table 2. Compression efficiency

and Huffman, “lzhf4” and “lzhf8” represent the LZSS com-
pression method followed by Huffman coding, “lzss4” is the
plain LZSS method and finally “fdic” is the fixed dictionary
approach.

All methods were tested using the 8 benchmarks pre-
viously mentioned. The results, expressed as a ratio be-
tween the compressed size and the initial size (excluding
zero frames and error recovery codes), are presented in Ta-
ble 2 and plotted on the graph in Figure 5. The leading algo-
rithm in terms of compression ratio is the arithmetic coding
used in conjunction with our statistical model.

4.3. Word length

Most of the compression algorithms are sensitive with re-
spect to the size of the encoded words. Previous studies
[9, 8] have shown word sizes of 6 and 9 to be more effective
for compressing the bitstreams of Virtex (1) FPGAs. This
was based on knowledge of the internal organization of the
bitstream and was verified experimentally. As the internal
structure of the Virtex-4 family bitstreams is not disclosed
by the manufacturer, we have performed our tests for all
word sizes within the feasible range. The results of the ex-
periment are presented in Figure 6. Local minima can be
observed for word sizes of 4 and 8 bits.

 35

 40

 45

 50

 55

 60

 65

 70

 1  2  3  4  5  6  7  8  9  10  11  12

co
m

pr
es

se
d 

si
ze

 %

word size (bits)

rar
arith
apc
huf
lzw
lzhf
lzss
bwt

Fig. 6. Effect of word size on compression ratio

Table 3. Performance vs. Cost

4.4. Hardware implementations

For the compression algorithms showing good compression
ratios we provide hardware implementations. Table 3 in-
cludes these results along with the respective compression
ratios. We implemented arithmetic modules with and with-
out prediction, Huffman decoders, a LZSS decoder, a fixed
dictionary decoder, and a combined LZSS and Huffman de-
coder. The rawsize entry represents the bitstream size with-
out compression.

The decoders were implemented in Verilog and synthe-
sized the Xilinx ISE 9.2i suite using settings for speed opti-
mization. The decoders were pipelined in order to achieve
better performance. The presented values for area and fre-
quency are post place and route, as reported under ”Best
Acheivable Case”. The speed grade selected was 11, with
default values for voltage and temperature. Verification was
performed in simulation post-synthesis.

For the LZHF8 decoder a large, 4KB dictionary was
used as the module already had large memory requirements
because of from the Huffman decoder, while for LZHF4 and
LZSS a smaller dictionary of 32 words was used. RAR was
not included in the table as it is not suitable for a hardware
implementation. The compression penalty is expressed in
terms of a percentage of the size increase relative to the file
produced by the most efficient algorithm.



The highest advantage in terms of speed, 266% above
the next competitor, belongs to the fixed dictionary approach.
The drawback is a relatively low compression ratio. At the
other end, the arithmetic coder achieves the highest com-
pression ratio at a cost in area and more importantly speed
(a loss of 78.6% in speed). Two of the decoders, those using
large Huffman tables, require the usage of Block RAMs in
addition to FPGA slices.

The frequencies obtained for the decoders range from
198Mhz to 424Mhz, however, the hardware implementa-
tions of different algorithms are able to produce a different
number of output bits per clock. Consequently, the speed
of the decoders was expressed in effective output rate rather
than clock frequency.

Buffering circuitry and serializers/deserializers were not
included with the exception of the fixed dictionary decom-
pressor which had special requirements because of its high
throughput. Decoders that have either a steady input or a
steady output rate, i.e., all decoders except LZHF, have an
advantage by requiring buffering at one end only. In addi-
tion, Arithmetic and Huffman coding have the advantage of
a more steady compression ratio, while LZSS is at the op-
posite end, producing bursts when a sequence already in the
dictionary is found.

5. CONCLUSIONS

In this paper we have studied the opportunity of using com-
pression for accelerating configuration and reconfiguration
of FPGAs. The contributions of this paper can be summa-
rized as follows: we implemented a wide range of compres-
sion algorithms, for variable word widths; we implemented
highly optimized hardware decompressors for those algo-
rithms showing promising results; we have tested techniques
previously shown to provide an advantage in compressing
FPGA bitstreams; we have proposed two new compression
methods, specifically tailored to the purpose of FPGA bit-
stream compression.

Our study suggests that the internal organization of bit-
streams is likely to change from one family of FPGA devices
to another. This was found true when comparing the Virtex 4
with the devices targetted by previous studies. At least one
conclusion though seems likely to hold in the future: syn-
thesis tools produce a randomization of the input bitstream,
leaving the ratio of “0” and “1” symbols as a main source of
redundancy and turning the focus toward simple compres-
sion methods.
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