
Functional Unit Sharing Between Stacked
Processors in 3D Integrated Systems

Demid Borodin, Winston Siauw and Sorin Dan Cotofana
Computer Engineering Laboratory

Faculty of Electrical Engineering, Mathematics, and Computer Science
Delft University of Technology

Mekelweg 4, 2628 CD Delft, The Netherlands
Telephone: +31 152787362, Fax: +31 15 2784898.

E-mail: D.Borodin@TUDelft.nl

Abstract—The emerging Through Silicon Via (TSV) based 3D
integration technology provides the means to stack two or more
dies, enabling a low-latency interface between them. Apart of the
immediate advantages of such an approach, e.g., short wires, it
also opens research avenues for 3D organizations of computation
platforms. In this line of reasoning we propose in this paper
to share resources between stacked processors while focusing on
Functional Units (FUs) inter-die sharing. The purpose of FU
sharing is two fold: (i) it enables inexpensive fault tolerance by
allowing, when possible, redundant instruction execution on idle
FUs of processors located on other stack dies; and (ii) it can result
in performance improvements by remotely executing instructions
on idle FUs located on other dies in the 3D stack, when more
instructions than locally available FUs are issuable. We evaluated
the potential implications of our proposal on a 3D system built
with two stacked processors (dies). In this case only a limited
error detection capability is enabled and the experimental results
indicate that our scheme covers on average 46% of the executed
instructions. When performance improvement is targeted an
average speedup of 6.9% can be achieved for the applications
running on the considered two die stack.

I. INTRODUCTION

Modern semiconductor industry faces severe scaling prob-
lems while attempting to keep pace with Moore’s Law [1].
In particular, one of the major challenges is the increasing
communication delay [2] due to long interconnect wires.
Signal propagation delay and energy consumption of long
wires do not scale so well as the transistor size does. The
emerging three-dimensional (3D) integration technology [3],
[4] has the potential to alleviate some of these problems as it
significantly contributes to overcoming the interconnect scal-
ing barriers, by providing designers with the third dimension.
The third dimension enables them to replace long intra-die
interconnect wires with significantly shorter inter-die (vertical)
communication channels implemented with Through-Silicon
Vias (TSVs). By making use of the z-dimension the 2D circuits
can be folded at different granularities, such as stacking inde-
pendent processors, functional units, or splitting a functional
unit across different dies [3]. Thus, 3D staked implementation
of any wire-dominated circuit can significantly outperform

This work was partially supported by the Dutch Ministry of Economic
Affairs in the context of the 3DIM3 CATRENE project #CT105.

the 2D counterparts in terms of performance [5] and energy
consumption [6].

In addition to the straightforward benefits achievable by
replacing long wires with shorter ones in existing systems,
3D integration opens new design opportunities. These oppor-
tunities can be leveraged to even further improve the system.
For example, dies produced with different fabrication tech-
nologies can be stacked together. This enables, for instance, to
stack high-density DRAM dies with high-performance CMOS
process [7] (known as heterogeneous integration). As another
example, the low-latency vertical communication channels
between dies with processors and dies with caches allow for
the placement of cache banks closer to the processors which
make use of them, and thus reduce the cache access time [8].

In this paper we introduce a novel resource sharing tech-
nique applicable to 3D stacked computation platforms. Our
method relies on the utilization of a TSV based low-latency
interface between stacked dies to enable a fast mutual access
between different parts of processors residing on different
dies. In this way processors can get access to each other’s
resources and in the case that some resources are underutilized
on processor A while processor B is in shortage of such
resources, it can utilize the available remote resources.

To evaluate this approach, we apply the resource sharing
idea to processor functional units. Functional unit sharing be-
tween processors residing on stacked dies of a multiprocessor
3D integrated system can be utilized for two distinct purposes:
(i) to improve the system reliability and (ii) to improve per-
formance. Reliability improvement is achieved by introducing
a partial fault detection (and possibly correction) capability in
the instruction execution mechanism. If an idle functional unit
of the appropriate type is available on the stacked processor
B, the instruction being executed on processor A is also
redundantly executed on that functional unit of processor B.
The results of the original and the redundant executions are
then compared in order to detect possible faults which do not
affect both processors in the same way (so that processors A
and B produce the same wrong result). This corresponds to
duplication with comparison, a particular case of the classical
N-Modular Redundancy fault detection scheme [9], [10]. For

mailto:D.Borodin@TUDelft.nl?Subject=By the link in "FU Sharing" paper

redundantly executed instructions, this scheme detects both
transient and permanent faults in functional units and data
communication channels between register files, instruction
window, and functional units. If required, other parts of the
pipeline can be protected with data verification methods [11],
such as parity and error detection/correction codes.

Performance improvement is achieved by remotely execut-
ing ready instructions on idle functional units of the stacked
processors, when no appropriate resources are available on
the issuing processor. In other words, if processor A has an
instruction which is ready but cannot be issued due to the lack
of available local functional units, this instruction is executed
on a corresponding idle functional unit of processor B. This
way, some stalls due to the lack of available functional units
are eliminated by making use of the available resources in the
3D stack.

We evaluate both the reliability and performance aspects
of the proposed functional unit sharing scheme using a sim-
ulator based on the SimpleScalar tool set [12]. Two pro-
cessors stacked in a 3D system are simulated, each having
a private memory and running independent workloads. The
results indicate that when the system is configured to improve
reliability, on average 46% of executed instructions can be
protected (redundantly executed on another processor) without
affecting the execution time. When performance improvement
is targeted, an average speedup of 6.9% can be achieved.

The remainder of this paper is structured as follows. Sec-
tion II motivates and describes the implementation of the pro-
posed functional unit sharing mechanism. Section III presents
the experimental results evaluating functional unit sharing
from the reliability and performance points of view. Finally,
Section IV draws conclusions and describes some future work
directions.

II. FUNCTIONAL UNIT SHARING

This section starts by explaining the rationale behind re-
source sharing between stacked processors in 3D multipro-
cessor systems (Section II-A). Subsequently it presents the
proposed 3D system organization which supports functional
unit sharing (Section II-B). Finally, it explains how functional
unit sharing can be used to improve reliability (Section II-C)
and performance (Section II-D) of individual processors, and
thus, of the entire 3D computation platform.

A. Motivation

The lack of resources is a common issue faced by proces-
sors during code execution. Some examples are insufficient
capacity of structures (such as integrated fast cache, branch
history table, instruction window etc.) and insufficient number
of computational resources of the required type (such as
functional units). The lack of resources can be solved (to a
certain extent) by enlarging these resources on the processor,
or increasing their number, at the expense of area and power
overhead. The disadvantage of this approach is especially
prominent if the resources are underutilized, which is quite

(a) 2D system with identical processors.

(b) 2D system with redesigned processors.

(c) 3D system with identical processors.

Fig. 1. Resource sharing in 2D and 3D systems.

frequently the case when applications being executed feature
insufficient parallelism. Underutilized resources still consume
power (possibly less than active resources), and the more of
them are present, the more significant the waste is. However, in
a multiprocessor system, it is quite probable that one processor
is short on a certain type of resources, while another processor
has them being idle. Instead of adding resources to every
processor to solve the resources shortage problem (and by
implication to increase the resource waste when underutilized),
it would be beneficial if individual processors could share their
(idle) resources with other processors in the system.

Figure 1 depicts possible ways to implement resource
sharing between processors. Unfortunately, the feasibility
of resource sharing between processors in traditional two-
dimensional (2D) systems is very doubtful. This is due to
the fact that to provide a direct communication between
corresponding resources in different processors, large num-
bers of very long wires must be introduced, as indicated in
Figure 1(a). To avoid very long wires, it is possible to redesign
the processors so that the shared resources are placed on the
neighbor edges (which is possible if only a few resources are
shared), as Figure 1(b) suggests. However, this approaches
requires redesigning the layout of the entire processor, and it
is not scalable as only two processors can implement resource
sharing this way. The emerging 3D integration technology can
solve these problems as it enables resource sharing between
similar stacked processors (avoiding significant redesign), us-
ing short vertical communication channels (such as TSVs), as
depicted in Figure 1(c). The 3D approach is scalable: it allows
stacking of multiple processors, as long as the communication
overhead does not become prohibitive.

This work focuses on sharing Functional Units (FUs) be-
tween stacked processors. Depending on the workload being
executed, on its available Instruction-Level Parallelism (ILP)
and Task-Level Parallelism (TLP), it is quite likely that some

processors in a system suffer from functional units shortage,
while others might have idle units due to stalls. However, other
processor elements can also be considered for such sharing.
For example, it might be useful to share branch predictors if
processors are running the same application. Depending on
the achieved access time, it might also be useful to share L1
caches.

We suggest that functional unit sharing can be employed to
improve two system aspects: reliability and performance. As a
side-effect of performance improvement, a total system energy
consumption reduction can be expected, because the execution
time is shortened. The following sections introduce the system
organization, and discuss how functional unit sharing can be
utilized in order to improve reliability and performance.

B. Organization

Figure 2 presents the organization of a 3D system with
stacked processors employing the proposed functional unit
sharing mechanism. Only two processors are presented for the
sake of simplicity. Ready instructions residing in Reservation
Stations (RS) of any of the stacked processors can be issued
both to local and to remote functional units. This organization
can be seen as a set of stacked processors sharing a single
pool of functional units.

The way processors interact in order to determine the
functional units availability and decide where to remotely
execute available instructions is a key issue in the design of
the functional unit sharing scheme. In this paper, however,
we do not address this aspect in details as we are mostly
interested in determining the potential impact our proposal
might have on the 3D system performance. In view of that,
we assume for the sake of simplicity, that when a processor has
an instruction to execute remotely, it broadcasts it (along with
its input operands and the issuing processor’s identifier) to all
the stacked processors. Processors with idle functional unit(s)
of appropriate type send an acknowledgement and execute this
instruction. If at least one acknowledgement has been received,
the issuing processor knows that the instruction is being
remotely executed. After execution, the result is delivered back
to the issuing processor by the Result Distribution (RD) unit.
We note that other sharing mechanism can be used and we are
currently investigating this issue.

The complexity of the network required for the inter-die
communication depends on the number of processors involved
in resource sharing. For the case with only a few stacked
processors, a simple bus is sufficient. A more complex scalable
network might be desirable for large numbers of communicat-
ing processors. Alternatively, the processors can form multiple
sharing groups communicating through simple buses. This is,
however, outside the scope of this work, since stacking large
numbers of dies in 3D integrated systems appears not to be
feasible in foreseeable future.

C. Reliability Mode

With a given technology featuring fixed characteristics, reli-
ability is usually improved by introducing some type of redun-

RD

...
FU

FU

RFRS

...
FU

FU

RFRS

RD

Fig. 2. System employing functional unit sharing. RS=reservation station,
FU=functional unit, RD=results distributor, RF=register file.

dancy. This can be space (additional hardware), information
(additional data) and/or time (performing an operation multiple
times sequentially) redundancy [9]. For very critical systems
such as those used in aviation and for military purposes,
significant amounts of expensive space redundancy is justified.
It is common, for example, to run the same workload on
multiple processors and make sure their results match on those
systems. For the desktop and embedded markets, however, the
demands significantly differ. On one hand, modern technology
trends such as shrinking the feature size and increasing the
integration level have increased the fault probability [13],
leading to the need to integrate fault tolerance features. On
the other hand, very expensive fault tolerance methods are
prohibitive for these markets. This led to an extensive research
in the area of inexpensive fault tolerance approaches.

One such fault tolerance approach duplicates the exe-
cuted instructions and compares their results, making sure
they match. This corresponds to the classical duplication
with comparison error detection method, a special case of
the N-Modular Redundancy fault detection and/or correction
scheme [9], [10] with N equal to two. Instructions can be
duplicated both in hardware [14] and in software [15]. Instruc-
tion duplication in hardware can also take the form of thread
duplication [16] based on Simultaneous Multithreading [17].
It has been indicated that a partial fault coverage (protecting
only a subset of executed instructions, when required resources
are available) is still beneficial [18].

In this work we use functional unit sharing between stacked
processors to implement a partial fault detection at a very low
cost. Fault detection is achieved by instruction duplication and
results comparison in hardware. When executing an instruc-
tion, the processor looks for an idle functional unit of the
appropriate type on the other stacked processors. If one is
found, a redundant copy of the instruction is executed there,
and the results are compared to detect possible faults. This
way, without using dedicated redundancy, when resources are
idle on other processors, they are used to improve reliability.
Note that as an additional benefit, this organization protects
against possible common faults better than executing on a
dedicated local redundant functional unit. This is because a
local functional unit on the same die is more likely to be

affected by the fault source in the same way as the original
unit, and thus it is more likely to produce the same wrong
result.

As mentioned earlier, only idle functional units are used
for redundant execution. If the execution takes only one clock
cycle, or if the functional unit is pipelined, this never affects
the performance of the processor whose unit is shared. The
only case when this scheme can degrade performance of the
sharing processor is if a multi-cycle operation is executed on a
functional unit which is not pipelined, and which must be used
by the local processor before the remote operation completes.

D. Performance Mode

Running applications often face a lack of functional units.
This happens at high-ILP phases, when the number of ready
instructions exceeds the number of available appropriate func-
tional units. To solve this problem, functional unit sharing is
used in this work to employ other processors’ functional units,
if possible.

When a processor is unable to issue an instruction because
all the appropriate local functional units are busy, it looks for
an idle functional unit of appropriate type on the other stacked
processors. If it finds one, the instruction is executed there, as
if that functional unit were local. This way, processors in low-
ILP phase help processors in high-ILP phase to avoid stalls.

Two strategies are possible when implementing the func-
tional unit sharing in performance mode. The issuing processor
can try to execute an instruction locally, and if it does not
succeed, try to execute it remotely immediately. Alternatively,
the issuing processor can first try to issue as many instructions
as possible locally. Then, if still possible, it tries to execute
some instructions on remote functional units. In this work the
second approach is chosen, because it provides the following
advantages. First, because the local execution has a priority,
fewer instructions are executed remotely. This decreases the
amount of traffic between the processors, and thus improves
the scalability of the approach (more processors can be in-
volved in sharing). Second, the synchronization between the
processors is expected to be simpler: because all the local
instructions are executed first, when a remote execution is
attempted, the remote functional units are already likely to
know if they are idle at this time.

As in reliability mode discussed in Section II-C, only
idle functional units are shared in performance mode. Thus,
it can only slow down the sharing processor if a multi-
cycle operation is executed on a functional unit which is not
pipelined, and which must be used by the local processor
before the remote operation completes.

III. EXPERIMENTAL EVALUATION

This section experimentally evaluates the proposed func-
tional unit sharing methods. Section III-A describes the used
simulator and benchmarks. Section III-B assesses the fault
detection capability of functional unit sharing. Section III-C
evaluates the execution speed benefits achieved in performance
mode.

TABLE I
BASE PROCESSOR CONFIGURATION.

Issue out-of-order
Fetch/Dec./Issue Width 4
of Int. ALUs 4
of Int. Mult./Div. 1
of FP ALUs 1
of FP Mult./Div. 1
RUU Size 64
LSQ Size 32
Memory Latency 112 cycles (first chunk),

2 cycles (subsequent chunks)
L1 Data Cache 32 KB, 2-way set associative
L1 Instruction Cache 32 KB, 2-way set associative
L2 Unified Cache 512 KB, 4-way set associative

A. Experimental Setup

The evaluation is performed using a modified version of
the SimpleScalar tool set [12]. The most detailed simulator,
sim-outorder, has been adapted to model a 3D system, such
that it can simulate multiple stacked processors employing
functional unit sharing in either reliability or performance
mode. The stacked processors have the same configuration
and run different workloads. The system does not feature a
shared memory, the processors work independently. The base
configuration of every processor is described in Table I. The
number of stacked processors in this work is limited to two.

In performance mode, various configurations are used to
investigate how they affect the overall system performance.
Both in-order and out-of-order execution models have been
explored. In addition, the number of integer ALUs has been
varied from 1 to 4, and the fetch, decode, issue, and commit
width changed accordingly to preserve a balanced organiza-
tion. We only focus on integer ALUs because integer arith-
metic operations significantly dominate (constitute about 90%)
in the considered benchmarks.

Since multimedia domain is one of those targeted by 3D
architectures, several multimedia kernels and applications are
used as benchmarks for the evaluation. Image Addition, Matrix
Multiplication (with the input matrices of the size 200×100
and 100×200), and Sum of Absolute Differences (SAD) are
kernels very often used in multimedia applications. The fourth
kernel computes the Fibonacci numbers, which are widely
used in science, and even in financial market trading and
music [19]. As full applications, encoders and decoders for the
following standards (taken from the MediaBench benchmark
suite [20]) are used:

• JPEG image compression.
• MPEG2 video compression.
• ADPCM sound compression.
• GSM sound (voice) compression.
Unless specifically mentioned otherwise, functional unit

sharing between stacked processors is only enabled while
both processors are busy executing some workloads. If one
processor finishes executing earlier than the other, the sharing

fib
o

na
cc

i

sa
d

a
d

d
_

im
a

g
e

s

m
ut

ri
x

m
ul

t.

cj
p

e
g

d
jp

e
g

M
P

E
G

2
 e

nc
.

M
P

E
G

2
 d

e
c.

A
D

P
C

M
 e

nc
.

A
D

P
C

M
 d

e
c.

G
S

M
 e

nc
.

G
S

M
 d

e
c.

A
ve

ra
g

e

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

(a) Strict case (functional unit sharing on idle processors is disabled).

fib
o

na
cc

i

sa
d

a
d

d
_

im
a

g
e

s

m
ut

ri
x

m
ul

t.

cj
p

e
g

d
jp

e
g

M
P

E
G

2
 e

nc
.

M
P

E
G

2
 d

e
c.

A
D

P
C

M
 e

nc
.

A
D

P
C

M
 d

e
c.

G
S

M
 e

nc
.

G
S

M
 d

e
c.

A
ve

ra
g

e

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

(b) Ideal case (one processor is idle).

Fig. 3. Percentage of instructions executed redundantly using functional unit sharing.

is disabled. This is because all functional units on the idle
processor are free, and thus they will fulfill any request from
the other processor. In real multiprocessor systems it can
happen that some processors are idle if no sufficient TLP is
available. However, in this study we explore the worst case
when all processors are busy. To avoid significant influence on
the results, we have tried to couple (run on different proces-
sors) benchmarks with comparable execution times. However,
in several cases one benchmark still completes significantly
earlier than the other one, thus disabling the functional unit
sharing for the rest of that benchmark, and worsening the
results.

B. Reliability Mode

Figure 3(a) depicts the percentage of instructions executed
redundantly on another processor using functional unit sharing
in reliability mode. Here and subsequently, the benchmarks
presented in figures are executed in pairs (on two stacked
processors) in the given order. For example, fibonacci is
executed on one processor, and sad on the other. For another
experiment, add images is executed in parallel with mutrix
mult., etc.

Figure 3(a) suggests very different results for various bench-
marks. The best results are achieved when both processors
execute low-ILP workloads, such as fibonacci and sad, which
represent a sequence of dependent operations. When executing
a low-ILP workload, a processor executes fewer instructions in
parallel, and thus sends fewer instructions to other processors
to re-execute. At the same time, the processor has more idle
functional units that are available for sharing. On the contrary,
high-ILP workloads generate many instructions to execute in
parallel, saturating the local processor, and submitting many
instructions for remote execution.

Figure 3(a) indicates that on average 45.8% of executed
instructions are protected in reliability mode. Note that the
functional unit sharing is only enabled when both stacked
processors are busy, this in some cases negatively affects the
results. Moreover, as mentioned above, it can happen that some
processors in a multiprocessor system are idle due to the lack
of TLP. In this case, all their functional units are available for

sharing. To explore also the best-case scenario, Figure 3(b)
presents the case when one of the two processors in the system
is always idle, case in which on average 89.7% of instructions
are executed redundantly. In reality, depending on the TLP
available in the system workload, the results can be expected
to fit in between those in Figure 3(a) and in Figure 3(b).

Note that Figure 3(b) indicates that not all instructions are
executed redundantly, although all the functional units on the
other processor are available. This is due to the fact that in our
setup not all types of instructions can be shared. In the absence
of a shared memory, memory access instructions cannot be
shared, because processors have their private memory spaces
and cannot access each other’s.

C. Performance Mode

Figure 4 presents the speedup achieved in the perfor-
mance mode over the normal execution without functional
unit sharing. Different processor organizations are explored,
with both in-order and out-of-order execution models. Func-
tional unit sharing in performance mode does not prove
valuable when the stacked processors have balanced orga-
nizations. With 4 integer ALUs (with the corresponding
fetch/decode/issue/commit width of 4) the speedup varies
from 0% to 0.4% in out-of-order system, and barely exceeds
0% in in-order system. However, for unbalanced processor
organizations (with either reduced number of functional units
or increased fetch/decode/issue/commit width), significantly
better results are achieved.

To explain this behavior, Figure 5 presents the number
of candidate instructions, and Figure 6 presents the hit rate.
Candidates are instructions that do not find an appropriate
functional unit on the local processor, and try to execute
remotely. Hit rate represents the percentage of candidate
instructions that succeed to execute remotely. Note that (as
shown in Figure 5) there can be more candidate than executed
instructions. This happens when the system resources are so
saturated that instructions become candidates multiple times.
If an instruction does not find a functional unit neither on the
local nor on a remote processor, it can become a candidate
again on the next clock cycle.

fib

on
ac

ci
sa

d

ad
d_

im
ag

es

m
utr

ix
m

ult
.

cjp
eg

djp
eg

M
PEG2

en
c.

M
PEG2

de
c.

ADPCM
 e

nc
.

ADPCM
 d

ec
.

GSM
 e

nc
.

GSM
 d

ec
.

Ave
ra

ge
0%

10%

20%

30%

40%

50%

OO, 4 ALU
OO, 2 ALU
OO, 1 ALU
OO, 4 ALU, width 8
IO, 4 ALU
IO, 1 ALU

Fig. 4. Speedup in performance mode over normal execution without functional unit sharing. OO=out-of-order, IO=in-order, width=fetch/decode/issue/commit
width.

fib

on
ac

ci
sa

d

ad
d_

im
ag

es

m
utr

ix
m

ult
.

cjp
eg

djp
eg

M
PEG2

en
c.

M
PEG2

de
c.

ADPCM
 e

nc
.

ADPCM
 d

ec
.

GSM
 e

nc
.

GSM
 d

ec
.

Ave
ra

ge
0%

200%

400%

600%

800%

1000%

OO, 4 ALU
OO, 2 ALU
OO, 1 ALU
OO, 4 ALU, width 8
IO, 4 ALU
IO, 1 ALU

Fig. 5. Ratio of candidate instructions to the number of executed instructions.

fib

on
ac

ci
sa

d

ad
d_

im
ag

es

m
utr

ix
m

ult
.

cjp
eg

djp
eg

M
PEG2

en
c.

M
PEG2

de
c.

ADPCM
 e

nc
.

ADPCM
 d

ec
.

GSM
 e

nc
.

GSM
 d

ec
.

Ave
ra

ge
0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

OO, 4 ALU
OO, 2 ALU
OO, 1 ALU
OO, 4 ALU, width 8
IO, 4 ALU
IO, 1 ALU

Fig. 6. Percentage of candidate instructions that hit (execute on a remote functional unit).

Figure 5 indicates that on balanced systems, there are
very few candidates to execute on another processor (up to
1.9% of executed instructions). This explains why balanced
organizations achieve almost no speedup as although a large
percentage of candidates becomes hits (see Figure 6), there are
too few instructions to execute remotely. With fewer functional
units, the candidates ratio grows, achieving almost 8 times
the number of executed instructions with a single integer
ALU. However, with fewer functional units, fewer of them
are available on remote processors, and thus less percentage of
candidates hit. This is why the average speedup on processors

with one ALU does not significantly exceed the speedup with
two ALUs.

Based on these observations we can deduce that the recom-
mended approach is not to reduce the number of integer ALUs,
but to increase the fetch/decode/issue/commit width instead,
to create more candidate instructions. Such a configuration
generates on average 37.4% candidates (compared to 0.3%
in a balanced out-of-order system), out of which on average
29.4% hit. The average speedup achieved with this approach
is 6.9%. The average speedup achieved by the best another
configuration (with one integer ALU) is 6.1%. Moreover, the

fib

on
ac

ci
sa

d

ad
d_

im
ag

es

m
utr

ix
m

ult
.

cjp
eg

djp
eg

M
PEG2

en
c.

M
PEG2

de
c.

ADPCM
 e

nc
.

ADPCM
 d

ec
.

GSM
 e

nc
.

GSM
 d

ec
.

Ave
ra

ge
0%

10%

20%

30%

40%

50%

OO, 4 ALU OO, 4 ALU, width 8

Fig. 7. Speedup in performance mode over normal execution. Ideal case
when one of the stacked processors is idle.

absolute execution speed in the recommended case is 2.1 times
faster than the one ALU case.

To explore the limits, the ideal case (when one of the stacked
processors is idle) has been investigated for the base and
recommended configurations. Figure 7 presents the speedup
results. As mentioned above, in reality speedups in between
Figure 4 and Figure 7 can be expected. Due to moderate
numbers of candidate instructions, the average speedup of a
balanced system is still negligible, and that of a system with
enlarged fetch/decode/issue/commit width is 10.6%.

IV. CONCLUSIONS

This work proposes resource sharing, focusing on functional
units, between processors stacked in 3D integrated multipro-
cessor systems. Functional unit sharing is used to improve
the system reliability or performance. In reliability mode, it
enables inexpensive fault detection capability without intro-
ducing significant hardware redundancy and without affecting
performance. In performance mode, it speeds up execution
without introducing significant overhead. Experimental results
demonstrate that on a system with two stacked processors,
functional unit sharing in reliability mode is able to protect
(in the worst case) on average 45.8% of executed instructions.
In performance mode, it is able to reduce the execution time by
6.9% for processors with enlarged fetch/decode/issue/commit
width. As a positive side effect, performance improvement is
expected to reduce the system energy consumption.

The hardware cost of functional unit sharing implemented
using TSVs is expected to be low, if only a limited number of
processors are involved in sharing. A more detailed investiga-
tion of this aspect is planned as a future work. In particular, we
plan to determine the maximum feasible number of processors
preventing that the sharing communication becomes a system
bottleneck. We also plan to evaluate functional unit sharing
between more than two stacked processors. In addition, we
plan to evaluate if using combinations of reliability and
performance modes can further improve the results.

REFERENCES

[1] G. E. Moore, “Cramming More Components Onto Integrated Circuits,”
Electronics, vol. 38, no. 8, pp. 114–117, April 1965.

[2] R. Ronen, S. Member, A. Mendelson, K. Lai, S. lien Lu, F. Pollack,
John, and J. P. Shen, “Coming Challenges in Microarchitecture and
Architecture,” in Proc. IEEE, 2001, pp. 325–340.

[3] Y. Xie, G. H. Loh, B. Black, and K. Bernstein, “Design Space Explo-
ration for 3D Architectures,” J. Emerg. Technol. Comput. Syst., vol. 2,
no. 2, pp. 65–103, 2006.

[4] B. Black, M. Annavaram, N. Brekelbaum, J. DeVale, L. Jiang, G. H.
Loh, D. McCaule, P. Morrow, D. W. Nelson, D. Pantuso, P. Reed,
J. Rupley, S. Shankar, J. Shen, and C. Webb, “Die Stacking (3D) Mi-
croarchitecture,” in MICRO-39: Proc. of the 39th Annual IEEE/ACM Int.
Symp. on Microarchitecture. Washington, DC, USA: IEEE Computer
Society, 2006, pp. 469–479.

[5] A. Rahman and R. Reif, “System-Level Performance Evaluation of
Three-Dimensional Integrated Circuits,” IEEE Trans. on Very Large
Scale Integration Systems, vol. 8, no. 6, pp. 671–678, 2000.

[6] J. W. Joyner and J. D. Meindl, “Opportunities for Reduced Power
Dissipation Using Three-Dimensional Integration,” in Proc. of the IEEE
2002 Int. Interconnect Technology Conf., Burlingame, CA, USA, Jun
2002, pp. 148–150.

[7] G. H. Loh, Y. Xie, and B. Black, “Processor Design in 3D Die-Stacking
Technologies,” IEEE Micro, vol. 27, no. 3, pp. 31–48, 2007.

[8] F. Li, C. Nicopoulos, T. Richardson, Y. Xie, V. Narayanan, and M. Kan-
demir, “Design and Management of 3D Chip Multiprocessors Using
Network-in-Memory,” SIGARCH Comput. Archit. News, vol. 34, no. 2,
pp. 130–141, 2006.

[9] B. Johnson, Design and Analysis of Fault-Tolerant Digital Systems.
Addison-Wesley, Jan 1989.

[10] D. Siewiorek and R. Swarz, Reliable Computer Systems: Design and
Evaluation, 3rd ed. A K Peters Ltd, Oct 1998.

[11] M. Franklin, “Incorporating Fault Tolerance in Superscalar Processors,”
in HiPC-96: Proc. Third Int. Conf. on High-Performance Computing.
Washington, DC, USA: IEEE Computer Society, Dec 1996, pp. 301–
306.

[12] T. Austin, E. Larson, and D. Ernst, “SimpleScalar: An Infrastructure
for Computer System Modeling,” IEEE Computer, vol. 35, no. 2, pp.
59–67, 2002.

[13] P. I. Rubinfeld, “Managing Problems at High Speed,” IEEE Computer,
vol. 31, no. 1, pp. 47–48, 1998.

[14] M. Franklin, “A Study of Time Redundant Fault Tolerance Techniques
for Superscalar Processors,” Proc. IEEE Int. Workshop on Defect and
Fault Tolerance in VLSI Systems, pp. 207–215, Nov 1995.

[15] N. Oh, P. Shirvani, and E. McCluskey, “Error Detection by Duplicated
Instructions in Super-Scalar Processors,” IEEE Transactions on Relia-
bility, vol. 51, no. 1, pp. 63–75, Mar 2002.

[16] E. Rotenberg, “AR-SMT: A Microarchitectural Approach to Fault Toler-
ance in Microprocessors.” in FTCS-29, Madison, Wisconsin, USA, Jun
1999, pp. 84–91.

[17] D. Tullsen, S. Eggers, and H. Levy, “Simultaneous Multithreading:
Maximizing On-Chip Parallelism,” in ISCA-95: Proc. 22nd Annual Int.
Symp. on Computer architecture, New York, NY, USA, 1995, pp. 392–
403.

[18] M. Gomaa and T. Vijaykumar, “Opportunistic Transient Fault Detec-
tion,” ISCA-05: Proc. 32nd Annual Int. Symp. on Computer Architecture,
pp. 172–183, Jun 2005.

[19] “Fibonacci numbers at Wikipedia,” http://en.wikipedia.org/wiki/
Fibonacci number.

[20] C. Lee, M. Potkonjak, and W. H. Mangione-Smith, “MediaBench: A
Tool for Evaluating and Synthesizing Multimedia and Communicatons
Systems,” in MICRO-30: Proc. of the 30th Annual ACM/IEEE Int. Symp.
on Microarchitecture. Washington, DC, USA: IEEE Computer Society,
1997, pp. 330–335.

http://en.wikipedia.org/wiki/Fibonacci_number
http://en.wikipedia.org/wiki/Fibonacci_number

	Introduction
	Functional Unit Sharing
	Motivation
	Organization
	Reliability Mode
	Performance Mode

	Experimental Evaluation
	Experimental Setup
	Reliability Mode
	Performance Mode

	Conclusions
	References

