
RESOURCE ALLOCATION ALGORITHM AND OPENMP EXTENSIONS FOR PARALLEL
EXECUTION ON A HETEROGENEOUS RECONFIGURABLE PLATFORM

Vlad-Mihai Sima, Elena Moscu Panainte, Koen Bertels

Computer Engineering
Delft University of Technology

Mekelweg 4, 2628 CD Delft, The Netherlands

ABSTRACT

In this paper, we present the compiler extensions, based on
OpenMP libraries, needed for supporting parallel execution
on the reconfigurable Molen platform. More specifically,
we propose an ILP algorithm to map parallel applications
on the target platform, assuming that for a section of the
application, the designer can select from a set of hardware
implementations with different area and speedup features.
Based on profile information, the algorithm aims to mini-
mize the total execution time of the running threads, taking
into account the limited reconfigurable area. We show that
the speedup of our algorithm compared to other related algo-
rithms is up to 1.9x for a real application and the real hard-
ware implementation of the kernels. We also investigate the
impact of several factors such as the size of the reconfig-
urable area and the number of threads on our algorithm and
determine the range of parameters for which the algorithm
is efficient. 1

1. INTRODUCTION

Due to the increasing complexity of computer systems and
the increasing demands for faster, smaller, low cost and low
price devices, the hardware and software designers investi-
gate new strategies to efficiently use the available and usu-
ally limited resources. Reconfigurable Computing allows
for a wide range of such problems to be solved in a fast, but
also economic and efficient manner, as it combines the flex-
ibility of GPP (general purpose processor) with the speedup
of the (reconfigurable) hardware.

In this paper, we propose a compile-time allocation algo-
rithm that allows the efficient use of the reconfigurable hard-
ware for parallel OpenMP based applications. One main
novelty of the algorithm is that for each kernel, it analyses
a set of hardware implementations for this kernel, which in
the rest of the paper are denoted as scenarios. One common

1This research is sponsored by: hArtes project (IST-035143) supported
by Sixth Framework Programme of the European Community under the-
matic area Embedded Systems

example of scenarios is the implementation on the reconfig-
urable hardware of one, two or more iterations of a loop or
of the kernel inside the loop. The algorithm aims to select
the scenarios that will minimize the total execution time of
the applications.

The paper is organized as follows: in Section 2 we
briefly present the Molen programming paradigm for re-
configurable architectures and related work. Next, we give
a real motivational example and also present the problem
overview. A detailed description of the allocation algorithm
is presented in Section 4. The results of the algorithm are
shown in Section 5, with a comparison to other related al-
gorithms and analyses of the factors that influence the re-
sults. In Section 6, we present conclusions and outline new
research directions.

2. BACKGROUND AND RELATED WORK

The programming model for a reconfigurable platform must
offer an abstraction of the available resources to the pro-
grammer, together with a model of interaction between the
components. The MOLEN programming paradigm [1]
is a paradigm that abstracts the hardware and allows the
programmer and the compiler to use efficiently the underly-
ing hardware. With only ’one time’ architectural extension,
the Molen programming paradigm allows for a virtually in-
finite number of new hardware operations to be executed
on the reconfigurable hardware. For the parallel execution,
the minimal architectural extension include the following
instructions: SET, EXECUTE, BREAK and MOVTX and
MOVFX.

OpenMP is set of compiler directives, library functions
and environment variables that can be used to specify par-
allelism in applications developed for shared memory archi-
tecture. Because of this OpenMP is the obvious choice of
parallelism to be used with Molen.

As far as area allocation for FPGA’s is concerned, the ex-
isting approaches are related mostly to hardware/software
partitioning or placement. In [2] the authors propose an op-
timal placement based on packing classes. Partitioning is

discussed in [3] from the algorithmic point of view. Two
formulations of the problem are given, and it is proven that
one is NP-hard while the other has a polynomial solution. A
simulated annealing algorithm is described in [4] for archi-
tectures that support just serial execution. Dynamic gran-
ularity selection is addressed in [5] where an algorithm is
given to identify the possible partitions for an application.
In [6], two ILP algorithms are given, which minimize the
reconfiguration area by deciding if a kernel should always
be configured, should run in software or just be reconfig-
ured as needed. All these approaches have in common the
fact that they consider a task can be implemented either in
software or hardware.

Run-time solutions for allocation are presented in [7] and
[8] where an algorithm based on early partial reconfigura-
tion and incremental reconfiguration is presented.

3. PROBLEM OVERVIEW

Assume we have several threads that use OpenMP pragmas,
for each thread, several implementations can be available,
each with its specific software execution time, hardware ex-
ecution time and area requirements (an example is given in
Table 1 for a real application).

The solution we propose for an efficient FPGA area al-
location is to select at compile-time a specific scenario for
each of the threads such that the area of all the scenarios is
less than the total area available. The configuration can be
done just once as now there will be no conflicts.

Problem statement: We call a scenario a set of im-
plementations for a kernel executed inside an application
thread. In our context, a kernel can be composed of mul-
tiple functions, for which the execution time is an impor-
tant percent of the total execution time of the thread. The
scenario - sj - will be characterized by: software execution
time tsw, hardware execution time thw and area occupied
a. The scenarios are generated based on the available hard-
ware implementations and profiling information. A scenario
group represents a set of all available scenarios for a partic-
ular kernel Ki. Assuming we have m scenarios for kernel
Ki: SGKi

= {si,j , j = 1..m/si,j = (tsw, thw, a)}.

Our problem can be formulated as follows: having a
set of scenario groups SGS = {SGK1 , SGK2 , ...SGKn}
that are in conflict at runtime, and a total area S, deter-
mine the particular scenarios selection that will be used
SS = {si/si ∈ SGi} that minimizes the total execution
time of the running threads taking into account the parallel
hardware execution on the reconfigurable hardware and the
limited size of the reconfigurable area.

4. RECONFIGURABLE HARDWARE ALLOCATOR
FOR OPENMP AND MOLEN

4.1. MOLEN extensions for OpenMP

The minimal case of MOLEN (see [1] for further details)
that allows parallel execution just for CCUs while the CPU
is stalled is not suited for multiple application scenario. For
the complete case of MOLEN the execution has to be syn-
chronized for the whole FPGA and GPP, which will imply
synchronizing all the running applications. The proposed in-
struction set extension is to use a new instruction that will
interrogate if a specific hardware operation has finished.

To efficiently map OpenMP applications to an architec-
ture implementing MOLEN several tools need extensions.
For the operating system system call will be provided for
each of the MOLEN concepts: configuration, execution and
parameter transfer. The details of the system calls are be-
yond the scope of this paper. The system calls can be gener-
ated at appropriate places by the MOLEN compiler which
is based on GCC 4.2.

The profiler and hardware estimator play an important
role as these tools need to provide to the compiler infor-
mation about all kernels, and the possible implementation,
enabling the compiler to take the correct decisions.

The partitioner identifies the kernels of the application
that will run in parallel and will compete for reconfigurable
area. Using the profiling data, several scenarios will be pro-
vided for each of the identified sections. It is the responsi-
bility of the compiler to choose a specific scenario based on
the area requirements and total execution time.

4.2. Allocation algorithm

In the rest of this section, we present a compile-time allo-
cation algorithm for threads that compete for the reconfig-
urable hardware. We assume that the profiler provides the
set of kernels that require simultaneously the reconfigurable
hardware and we aim to select the optimal scenario for each
kernel such that the total execution time of the threads is
minimized. However taking into account the actual total ex-
ecution time for the threads is dependent on the sequence in
which the threads require the reconfigurable hardware and
we do not have such information at compile time, we want
to minimize the superior limit of this total execution time.
For a set of scenarios with n elements the execution time is
U =

∑n
k=1(tswk

) + maxk(thwk
) .

For the problem defined in Section 3 we transform it in an
ILP problem as follows.

0-1 selection In our case, only one scenario from a sce-
nario group must be selected for execution. We adopt the
following notations:

• n the total number of scenario groups

 0

 5

 10

 15

 20

 25

1006025

S
p

e
e

d
u

p

Area(%)

Speedup for different area - beamforming application

ILP
FixRwSw

Equal
Ideal

Fig. 1. Speedup compared to software execution

• mi be the number of scenarios in scenario group i

• Si,j the j-th scenario from scenario group i

• xi,j a boolean variable such that xi,j

{
0, Si,j /∈ SS
1, Si,j ∈ SS

.

• A the total area available

Finding the result set of scenarios is reduced to finding
the values for all xi,j .

The objective function is min(
∑n

i=1(
∑mi

j=1(tswi,j
∗

xi,j))+maxn
i=1(

∑mi

j=1(thwi,j
∗xi,j))) which can be simply

expressed as:

min(
n∑

i=1

mi∑
j=1

(tswi,j ∗ xi,j) + y) (1)

for each i from 1 to n:
mj∑
j=1

(thwi,j
∗ xi,j) ≤ y (2)

The constraints can be represented as a system of linear
pseudo-boolean inequalities. The one scenario per sce-
nario group constraint will be expressed for each i = 1..n
as:

∑mj

j=1 xi,j = 1.
The selected scenarios must fit together on the available

reconfigurable hardware, thus we have the area constraint:∑n
i=1

∑mi

j=1(ai,j ∗ xi,j) ≤ A.

5. RESULTS

In this section, we present the results of the algorithm for
two case studies: a beamforming application and synthetic
results.

The beamforming application idea is to enhance the ca-
pabilities of sensors - in our case microphones - by jointly
taking the individual signals of multiple sensors into one
computation and thereby modify their spatial directivity.
The application is composed of two threads: one that com-
putes the signals for each source and one that adjusts the

Thread Scenario SW Time HW Time Area
(ms) (ms) (%)

1 s1,1 1635000 0 0
...........................

s1,5 87325 44792 81
2 s2,1 1570000 0 0

...........................
s2,6 25 13326 84

Table 1. Scenarios for beamforming applications

parameters of the computation based on the movement of
the sources in space. For the computation thread the ker-
nel is the FIR filter, executed in parallel for all the sources.
The thread that performs the adjustments has a kernel repre-
sented by a matrix multiplication.

The synthetic applications are generated for different
numbers of conflicting scenario groups. We analyzed when
the number of scenario groups ranges from 2 to 7. For each
case, a number of 300 problems were randomly generated,
with a number of 2 to 8 scenarios per scenario group and a
speedup between 2 and 20. The area used for the hardware
scenarios was from 5 to 50 and the total area was propor-
tional to the number of scenario groups. The previous pa-
rameters were chosen after analyzing the beamforming ap-
plications and various hardware kernels.

We target an architecture similar to Xilinx Virtex series,
and we assume there is enough local memory on the FPGA
so that the kernels can be executed independently without
bus conflicts. For the beamforming application, we have
implemented and tested each kernel individually using the
DWARV tool ([9]). We used Xilinx Virtex II Pro running
at 300 Mhz and the hardware designs clocked at 100 Mhz.
The results for the whole execution were estimated from the
profilling information available.

We compare our algorithm which is denoted in the rest
of the section as ILP to a simple allocation solution when
the total available area is equally divided between running
threads - referred to as the Equal case and to an adapted ver-
sion of one of the algorithms proposed in [6] reffered to as
FixRwSW. The FixRwSw algorithm relies just on choosing
from a hardware or a software version of the kernel. For all
the algorithms we consider the average execution time of all
possible schedules - as the threads can execute in different
order, and can’t be scheduled from the compile time as they
may depend on inputs. We also compute the ideal case -
marked Ideal in the graphs. The ideal case represents the
minimum time that can be obtained for the best allocation
and execution sequence.

The results for the beamforming application are sum-
marized in Figure 1. Our algorithm performs better than
both Equal and FixRwSW and is close to the ideal case. The

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 90000

 100000

65432

T
im

e
(m

s
)

Number of threads

Average time for algorithms

ILP
FixRwSw

Equal
Ideal

Fig. 2. Execution time for synthetic applications for differ-
ent number of threads

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 30 40 50 60 70 80 90 100

T
im

e
(m

s
)

Area(%)

Total execution time function of area

ILP
FixRwSw

Equal
Ideal

Fig. 3. Execution time vs area for synthetic applications

difference from the ideal case is due to the fact that the algo-
rithm optimises the execution time for any order, while the
ideal case considers just the best possible order.

The behavior of the algorithms when the number of
threads is increased is presented in Figure 2. For all the
cases the ILP algorithm obtains a smaller execution time for
the averages of schedules.

We also investigate the impact on performance of the size
of the reconfigurable hardware. For a set of 4 tasks, the
results are presented in Figure 3. We notice that our algo-
rithm converges faster than Equal and ILP to the ideal case.
As FixRwSW doesn’t consider parallelism we can see it will
not improve the execution time after a certain area. Also ILP
becomes just 1.2 times worse than Ideal.

From the above results we can conclude that our algo-
rithm can be applied effectively when the available area is
comparable to the area used by a scenario group in case all
the iterations are implemented in parallel. However our al-
gorithm is not suitable for small kernels which can be dy-
namically configured at run-time. In order to dynamically
change the selected scenarios run-time algorithm must be
addressed.

6. CONCLUSIONS

In this paper, we propose an allocation algorithms that se-
lects between multiple implementations of the kernels tak-
ing into account the hardware parallel execution and the size
of the available reconfigurable area. We compared the ILP
algorithm to a simple allocation algorithm which equally di-
vides the available area to the number of threads and esti-
mated that for a real application and hardware implemen-
tation our algorithm has a double speedup. Our algorithm
is close (up to 33%) to the ideal case (ideal sequence of
threads). Finally we determine that our algorithm performs
well for those cases where the size of the reconfigurable area
is not large enough to fit all the largest scenarios inside.
When validating these algorithms using the beamforming
application, we demonstrated that the estimated speedup ob-
tained when applying the ILP algorithm, is close to the ideal
case.

In our future work, we will extend the ILP model with
additional constraints like available memory and memory
bandwidth. Additionally we will investigate the runtime al-
gorithms for allocation and scheduling in the context of the
runtime support.

7. REFERENCES

[1] S. Vassiliadis, S. Wong, G. Gaydadjiev, K. Bertels, G. Kuzmanov, and E. M.
Panainte, “The molen polymorphic processor,” IEEE Trans. Comput., vol. 53,
no. 11, pp. 1363–1375, 2004.

[2] S. Fekete, E. Köhler, and J. Teich, “Optimal fpga module placement with tem-
poral precedence constraints,” in DATE ’01: Proceedings of the conference on
Design, automation and test in Europe. Piscataway, NJ, USA: IEEE Press,
2001, pp. 658–667.

[3] P. Arató, Z. Ádám Mann, and A. Orbán, “Algorithmic aspects of hard-
ware/software partitioning,” ACM Trans. Des. Autom. Electron. Syst., vol. 10,
no. 1, pp. 136–156, 2005.

[4] S. Banerjee and N. Dutt, “Efficient search space exploration for hw-sw parti-
tioning,” in CODES+ISSS ’04: Proceedings of the 2nd IEEE/ACM/IFIP interna-
tional conference on Hardware/software codesign and system synthesis. New
York, NY, USA: ACM, 2004, pp. 122–127.

[5] J. Henkel and R. Ernst, “An approach to automated hardware/software partition-
ing using a flexible granularity that is driven by high-level estimation techniques,”
IEEE Trans. Very Large Scale Integr. Syst., vol. 9, no. 2, pp. 273–290, 2001.

[6] E. M. Panainte, K. Bertels, and S. Vassiliadis, “Compiler-driven fpga-area alloca-
tion for reconfigurable computing,” in DATE ’06: Proceedings of the conference
on Design, automation and test in Europe. 3001 Leuven, Belgium, Belgium:
European Design and Automation Association, 2006, pp. 369–374.

[7] D. A. K. . G. B. W. Martyn A. George, Mathew J. Pink, “Efficient allocation of
fpga area to multiple users in an operating system for reconfigurable computing,”
in In Proceedings of ERSA, 2002, pp. 238–242.

[8] B. Jeong, S. Yoo, S. Lee, and K. Choi, “Hardware-software cosynthesis for run-
time incrementally reconfigurable fpgas,” in ASP-DAC ’00: Proceedings of the
2000 conference on Asia South Pacific design automation. New York, NY, USA:
ACM, 2000, pp. 169–174.

[9] Y. D. Yankova, G. Kuzmanov, K. Bertels, G. N. Gaydadjiev, J. Lu, and S. Vassil-
iadis, “Dwarv: Delftworkbench automated reconfigurable vhdl generator,” in In
Proceedings of the 17th International Conference on Field Programmable Logic
and Applications (FPL07), August 2007, pp. 697–701.

