
Extending Loop
Unrolling and
Shifting for
Reconfigurable
Architectures
Ozana Silvia Dragomir∗,1,
Koen Bertels∗,1

∗ TU Delft, Mekelweg 4, 2628CD, Delft, The Netherlands

ABSTRACT

Loops are an important source of optimization. In this paper, we propose an extension to our work
on loop unrolling and loop shifting for reconfigurable architectures. By applying unrolling and
shifting to a small loop containing a hardware kernel and some software code, we relocate the
function calls contained in the loop body such that in every iteration of the transformed loop,
software functions (running on the GPP) execute in parallel with multiple instances of the kernel
(running on FPGA). For larger loops containing an arbitrary number of kernels with pieces of
code occurring in between the kernels, we study the effects of splitting the loop and applying the
unrolling and shifting technique to the small achieved loops.

KEYWORDS: loop optimizations, reconfigurable computing

1 Introduction

Loops represent an important source of optimization in many real life applications. Various
loop transformations (such as loop unrolling, software pipelining, loop shifting, loop distri-
bution, loop merging, or loop tiling) can be used successfully to maximize the parallelism
inside the loop and improve the performance. Although some loop transformations may not
beneficial in most compilers because of the large overhead that they introduce when applied
at instruction level, they may show a great potential for improving the performance when
applied at a coarse-level (i.e., function level). Note that in the rest of this paper we will refer
to the generic loop shifting (when the shift is more than 1) as loop pipelining.

Target code. The applications we target in our work have loops that contain kernels inside
them. In our previous work [Drag08a, Drag08b] we focused on simple loops containing only
one hardware kernel that would be accelerated on the FPGA and some software code that

1E-mail: {O.S.Dragomir, K.L.M.Bertels}@tudelft.nl
This work is supported by the FP6 EU project hArtes, with integrated project number 035143.



Figure 1: Loop containing several kernels

will always execute on the GPP. For this kind of simple loops, we proposed algorithms for
loop unrolling and loop unrolling plus shifting to determine which would be the best unroll
factor that would allow the maximum parallelization and performance. We want to extend
the model to more generic loops with an arbitrary number of kernels and pieces of software
code occurring in between the kernels, as illustrated in the example from Fig. 1a).

The example shows a loop with several functions – the SWj functions are executed al-
ways on the GPP, while the Ki functions are the application kernels that are meant to be
accelerated in hardware. These can be viewed as a task chain, where we assume that there
are dependencies between consecutive tasks in the chain, but not between any two tasks
from different iterations.

In Fig. 1b) we illustrate the execution pattern of the loop when the unrolling technique is
applied: different instances of each software function are executed sequentially, and the dif-
ferent instances of each kernel are executed in parallel. In Fig. 1c) we illustrate the execution
model of the loop when the loop shifting technique is applied. In this case, the first and the
last kernels of the loop body will execute in parallel with software functions from different
iterations. The loop prologue and epilogue resulted from the pipelining are not shown on
the figure. The new loop body resulted when combining loop unrolling and loop pipelining
is shown in Fig. 1d).

Target architecture. Our target architecture is Molen [Vass04], which allows running mul-
tiple kernels/applications at the same time on the reconfigurable hardware. The unroll factor
is computed (at compile time) taking into consideration profiling information about mem-
ory transfers, execution times for the kernel in hardware and in software (in GPP cycles),
area requirements for the kernel, and memory bandwidth. Our assumptions regarding the
application and the framework are the following:



Figure 2: Possibilities of loop distribution

1. There are no data dependencies between different iterations.
2. The loop bounds are known at compile time.
3. The loops are perfectly nested.
4. Inside the kernel, all memory reads are performed in the beginning and memory writes

in the end.
5. On-chip memory shared by the GPP and the CCUs is used for program data.
6. All necessary data are available in the shared memory.
7. All transfers to/from the shared memory are performed sequentially.
8. Kernel’s local data are stored in the FPGA’s local memory, not in the shared memory.
9. The area constraints do not include the shape of the design.

10. The placement is decided by a scheduling algorithm such that the configuration la-
tency is hidden.

11. The interconnection area needed for CCUs grows linearly with the number of kernels.

2 Overview of the problem

In our current work, we analyze loops that contain an arbitrary number of tasks, which can
be either kernels or software functions. We consider that all the software code between two
kernels in the loop body is a software task. We have already proven in [Drag08b] that for a
loop containing a hardware kernel and a software function, it is always beneficial to apply
loop shifting (if the data constraints allow it). However, if a loop contains more than one
kernel, it might be more beneficial to distribute it into smaller loops where different unroll
factors might be applied due to different area or memory constraints for the kernels, leading
to better performance.

The problem of deciding how to partition the loop into smaller loops is not trivial, as it is
possible that between any two consecutive kernel tasks there is a software task. Then, in case
of splitting the loop between the two kernels, a decision has to be made whether to distribute



the software task with the first kernel or with the second one. Figure 2a) shows a loop with
two hardware kernels and three software functions. The possibilities of splitting this loop
between the two kernels are illustrated in Fig.2b) and Fig.2d). In Fig.2c) we illustrated the
parallel execution model for each of the three cases of a loop containing one hardware kernel
inside, depending on the position of the software code – where i−1, i, and i+1 are iteration
numbers.

We consider that a performant distribution algorithm is a Deep First Search algorithm,
applied to the sorted list of kernels. The sorting is performed according to a heuristic based
on the hardware execution time and the memory-constrained maximum unroll factor for
each kernel.

3 Conclusion

In our previous work we discussed the performance enhancement obtained by parallelizing
a loop with a hardware kernel and some software code, using loop unrolling and loop shift-
ing. In our ongoing work we analyze the effects of these transformations on loops contain-
ing several kernels and pieces of software code. Preliminary results on randomly generated
tests show that there is potential for improving the performance by splitting such loops and
applying the loop unrolling and loop shifting transformations to the resulted smaller loops.

References

[Drag08a] O. DRAGOMIR, E. MOSCU-PANAINTE, K. BERTELS, AND S. WONG. Optimal
Unroll Factor for Reconfigurable Architectures. In Proceedings of the 4th Interna-
tional Workshop on Applied Reconfigurable Computing (ARC’08), pages 4–14, March
2008.

[Drag08b] O. DRAGOMIR, T. STEFANOV, AND K. BERTELS. Loop Unrolling and Shifting for
Reconfigurable Architectures. In Proceedings of the 18th International Conference
on Field Programmable Logic and Applications (FPL’08) (to appear), September 2008.

[Vass04] S. VASSILIADIS, S. WONG, G. GAYDADJIEV, K. BERTELS, G. KUZMANOV, AND
E. PANAINTE. The MOLEN Polymorphic Processor. IEEE Transactions on Com-
puters, 53(11):1363–1375, November 2004.


	Introduction
	Overview of the problem
	Conclusion

