
Toward a Run-time Support System for
Molen Hardware Organization

Mojtaba Sabeghi, Koen Bertels

Computer Engineering Lab, Delft University of Technology, Delft, the Netherlands

ABSTRACT

In this paper we propose a runtime support system for the Molen Hardware
Organization. This runtime system is responsible for task and resource management
based on the runtime changing conditions. We present a resource allocation strategy
as well as a few decision metrics. Furthermore, we discuss some of the
implementation issues on the Molen platform.

KEYWORDS: Runtime System; Molen Hardware Organization; Resource Management

1. Introduction

With development of reconfigurable computers [1] containing FPGAs with millions of
systems gates, it is now feasible to consider the possibility of serving multiple
concurrent applications executing on a shared logic area. This will improve the resource
utilization and reduce the costs. However, it will increase the degree of complexity in
order to manage the shared resources. Needless to say, dynamic and partial
reconfiguration is an important factor in sharing the FPGA logic area. Run-time
reconfiguration provides the ability to change the configuration not only between
applications, but also within a single application.

Considering multiple application on a system which are executing concurrently, there
must be mechanisms and policies that manage the competition for resources between
different applications and resolve the conflicts. However, current efforts for designing
reconfigurable systems are not flexible as they manage the hardware with static and
design time decisions based on fixed rules.

In the context of the Molen hardware platform [2] and using Delft Workbench [3] tool
chain, the FPGA allocation is currently static and is being done by the Molen compiler.
As it was mentioned before, the main problem of this approach is the management of
the reconfigurable hardware in a multi-tasking environment.

In this paper we propose a runtime system that efficiently operate the system and
resolve the conflicts between executing tasks. In fact, this system is responsible for task
and resource management. The reminder of the paper is organized as follows. In section
2, we briefly present the Molen hardware organization. In section 3, we discuss the
runtime system specification and implementation requirements. And, we conclude the
paper in section 4.

2. Molen Hardware Organization

Within the Molen concept, a general purpose core processor controls the execution and
reconfiguration of reconfigurable coprocessors (RP), tuning the latter to various
application specific algorithms. An operation, executed by the RP, is divided into two
distinct phases: set and execute. In the set phase, the RP is configured to perform the
required operation and in the execute phase the actual execution of the operation is
performed. This decoupling allows the set phase to be scheduled well ahead of the
execute phase, thereby hiding the reconfiguration latency. [4]

Molen hardware organization as it is depicted in figure 1 consists of two parts; the
general purpose processor (GPP) and the reconfigurable processor (RP) usually
implemented on an FPGA. Another key component is the Arbiter which performs a
partial decoding of the instructions received from the instruction fetch unit and issues
them to the appropriate processor (GPP or RP). The Exchange Registers (XREGs) are
used for data communication between the Core Processor and Reconfigurable
Processor. Parameters are moved from the register file to the XREGs and the results
stored back from the XREGs in the register file. [2]

Figure 1 Molen Hardware Organization

3. Runtime System Specification and Implementation

Currently, in the context of Delft Workbench (DWB) [3], FPGA area allocations are
being done at design and compile time using the Molen compiler [5]. The profiler
identifies the computing intensive parts of the application(s) and annotates the source
code. These computing intensive parts can be compiled to VHDL manually or using a C
to VHDL compiler called DWARV. Then, the Molen compiler at compile time decides
how to allocate the area based on the profile information and also area availability.
However as it was mentioned before, in a multitasking system with the dynamic
changing environment it is very difficult to manage and allocate the resources at
runtime.

To solve this problem, we proposed a consistent, protected, low overhead interface
which decides how to allocate the hardware at run-time based on the status of the
system.

To decide, this layer needs some information. A part of this information can be
provided from the design time ─for example the Configuration Call Graph (CCG)─ and
embedded in to the binary or provided in a separate file. The Configuration Call Graph
(CCG) is a directed graph that can be used by the runtime system to perform the
allocation of the hardware reconfigurations. Its nodes are the operations that can be run
in the hardware and the edges represent the dependencies.

The allocation is based on configuration latency, total execution time in hardware and
software, the configuration order and availability of the hardware. Some heuristics can
also be beneficial among which we can mention most frequency used configuration,
best speed up configuration, lowest power consumption configuration and even a
combination of them. Using the CCG, we can also look at the future and obtain a near
optimal schedule.

For each operation annotated by the profiler, the Molen compiler put a call to the
hardware besides the software implementation of that operation. This can be done
using Molen set and execute instructions. At runtime, the runtime system can choose to
execute either the software version or the hardware call. By means of this mechanism
we can avoid runtime binary transformation.

The Molen set and execute instruction are very important for the runtime system. Since,
we need a mechanism to inspect and instrument the code to recognize the computation
intensive parts. And, this is exactly what Molen set and execute instructions do.
However, these instructions do not configure or execute anything on the hardware. The
set just informs the runtime system of a possible future call to a hardware and the
execute instruction is a signal to system to run the hardware if that is appropriate.

The runtime system receives all the sets and executes form all the applications and
based on the allocation strategy and allocation metrics decides which one should be run
on hardware and which one in software. It has to keep track of the already configured
modules and whether they are being used or not. This can be achieved by a simple data
structure called Hardware Control Block (HCB). This is a table containing the relevant
information of each hardware module and the process to which they belong. Also, it can
contain some extra information about the usage trends of that hardware module. They
can be used in the heuristic part of the decision procedure.

Another important issue that must be addresses by the runtime system is the XREGs.
The XREGs are being used for data exchange between hardware and software. The
runtime system is responsible for allocating them to each process. On the other hand, as
it is not known before which operation will be run on the hardware, the runtime system
most also take an active role in the parameter transfer through the XREGs.

4. Conclusion and Future Works

In this paper we presented a runtime system for Molen hardware platform. The
resource allocation strategy as well as some decision metrics was discussed. In the
future, we will work on a detailed specification of this runtime system. Furthermore, we
will compare it with current static and compile time approaches and also with other
runtime techniques.

5. References

[1] Katherine Compton, Scott Hauck, Reconfigurable computing: a survey of systems
and software, ACM Computing Surveys, vol. 34, no. 2, pp 171-210, June, 2002

[2] Stamatis Vassiliadis, Stephan Wong, Georgi Gaydadjiev, Koen Bertels, Georgi
Kuzmanov, Elena Moscu Panainte, The MOLEN Polymorphic Processor, IEEE
Transactions on Computers, vol. 53, no. 11, pp. 1363-1375, November, 2004.

[3] Koen Bertels, Stamatis Vassiliadis, Elena Moscu Panainte, Yana Yankova, Carlo
Galuzzi, Ricardo Chaves, Georgi Kuzmanov, Developing applications for
polymorphic processors: the Delft Workbench, Technical Report, pp. 7, January,
2006

[4] Stamatis Vassiliadis, Georgi Gaydadjiev, Koen Bertels, Elena Moscu Panainte, The
Molen Programming Paradigm, Proceedings of the Third International Workshop on
Systems, Architectures, Modeling, and Simulation, pp. 1-10, July 2003

[5] Elena Moscu Panainte, Koen Bertels, Stamatis Vassiliadis, The Molen Compiler for
Reconfigurable Processors, ACM Transactions in Embedded Computing Systems, vol. 6,
no. 1, February, 2007.

