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Abstract—This paper presents a new set of techniques for hard-
ware implementations of Secure Hash Algorithm (SHA) hash func-
tions. These techniques consist mostly in operation rescheduling
and hardware reutilization, therefore, significantly decreasing the
critical path and required area. Throughputs from 1.3 Gbit/s to
1.8 Gbit/s were obtained for the SHA implementations on a Xilinx
VIRTEX II Pro. Compared to commercial cores and previously
published research, these figures correspond to an improvement in
throughput/slice in the range of 29% to 59% for SHA-1 and 54 %
to 100 % for SHA-2. Experimental results on hybrid hardware/soft-
ware implementations of the SHA cores, have shown speedups up
to 150 times for the proposed cores, compared to pure software im-
plementations.

Index Terms—Crytography, field-programmable gate array
(FPGA), hardware implementation, hash functions, Secure Hash
Algorithm (SHA).

1. INTRODUCTION

RYPTOGRAPHIC algorithms can be divided into three
C several classes: public key algorithms, symmetric key al-
gorithms, and hash functions. While the first two are used to
encrypt and decrypt data, the hash functions are one-way func-
tions that do not allow the processed data to be retrieved. This
paper focuses on hashing algorithms. Currently, the most com-
monly used hash functions are the MD5 and the Secure Hash
Algorithm (SHA), with 128- to 512-bit output Digest Messages
(DMs), respectively. While for MDS5, collision attacks are com-
putationally feasible on a standard desktop computer [1], cur-
rent SHA-1 attacks still require massive computational power
[2], (around 259 hash operations), making attacks unfeasible for
the time being. For applications that require additional levels of
security, the SHA-2 has been introduced. This algorithm outputs
a DM with size from 224 to 512 bits.

The SHA-1 was approved by the National Institute of Stan-
dards and Technology (NIST) in 1995 as an improvement to the
SHA-0. SHA-1 quickly found its way into all major security ap-
plications, such as SSH, PGP, and IPSec. In 2002, the SHA-2 [3]
was released as an official standard, allowing the compression
of inputs up to 2'2® bits.
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To enforce the security in general purpose processors (GPPs)
and to improve performance, cryptographic algorithms have to
be applied at the hardware level, for example in the attestation
of external memory transactions. Specialized hardware cores
are typically implemented either as application-specific inte-
grated circuit (ASIC) cores [4]-[6] or in reconfigurable devices
[7]-[10]. Some work has been done to improve the SHA com-
putational throughput by unrolling the calculation structure, but
at the expense of more hardware resources [11], [12].

In this paper, we propose an efficient hardware implementa-
tion of SHA. Several techniques have been proposed to improve
the hardware implementation of the SHA algorithm, using the
following design techniques:

 parallel counters and balanced carry save adders (CSA), in

order to improve the partial additions [4], [5], [7];
* unrolling techniques optimize the data dependency and im-
prove the throughput [5], [9], [11], [13];
* balanced delays and improved addition units; in this algo-
rithm, additions are the most critical operations [4], [13];
» embedded memories store the required constant values [8];
* pipelining techniques, allow higher working frequencies
[5], [14].

This work extends the ideas originally proposed by the au-
thors in [15] and [16] and presents a significant set of experi-
mental results. Our major contributions to the improvement of
the SHA functions hardware implementation can be summa-
rized as follows:

» operation rescheduling for a more efficient pipeline usage;

¢ hardware reuse in the DM addition;

* a shift-based input/output (I/O) interface;

* memory-based block expansion structures.

A discussion on alternative data block expansion structure has
also been introduced.

The fully implemented architectures proposed in this paper,
achieve a high throughput for the SHA calculation via oper-
ation rescheduling. At the same time, the proposed hardware
reuse techniques indicates an area decrease, resulting in a
significant increase of the throughput per slice efficiency
metric. Implementation results on several FPGA technologies
of the proposed SHA, show that a throughput of 1.4 Gbit/s is
achievable for both SHA-128 and SHA-256 hash functions.
For SHA-512 this value increases to 1.8 Gbit/s. Moreover,
a Througput/Slice improvement up to 100% is achieved, re-
garding current state of the art.

The proposed SHA cores have also been implemented within
the reconfigurable co-processor of a Xilinx VIRTEX II Pro
MOLEN prototype [17]. The hybrid implementation results
indicate a 150 times speedup against pure software implemen-
tations, and a 670% Throughput/Slice improvement regarding
related art.
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Fig. 1. SHA-1 round calculation.

The remainder of this paper is organized as follows. Section II
presents the SHA-1 and SHA-2 algorithms and Section III and
4 describes the proposed design. The characteristics of the SHA
function implementations on FPGAs are presented in Section V.
Section VI presents the obtained results and compares them to
related art. Section VII concludes this paper with some final
remarks.

II. SHA-1 AND SHA-2 HASH FUNCTIONS

In 1993, the Secure Hash Standard (SHA) was first published
by the NIST. In 1995, this algorithm was revised [18] in order to
eliminate some of the initial weakness. The revised algorithm is
usually referenced as SHA-1 (or SHA128). In 2001, the hashing
algorithm, SHA-2, was proposed. It uses larger DM, making it
more resistent to possible attacks and allows it to be used with
larger data inputs, up to 2'2® bits in the case of SHA512. The
SHA-2 hashing algorithm is the same for the SHA224, SHA256,
SHA384, and SHAS512 hashing functions, differing only in the
size of the operands, the initialization vectors, and the size of
the final DM.

A. SHAI28 Hash Function

The SHA-1 produces a single output 160-bit message digest
(the output hash value) from an input message. The input mes-
sage is composed of multiple blocks. The input block, of 512
bits, is split into 80 x 32-bit words, denoted as W;, one 32-bit
word for each computational round of the SHA-1 algorithm, as
depicted in Fig. 1. Each round comprises additions and logical
operations, such as bitwise logical operations (f;) and bitwise
rotations to the left (RotL?). The calculation of ft depends on
the round ¢ being executed, as well as the value of the constant
K. The SHA-1 80 rounds are divided into four groups of 20
rounds, each with different values for K and the applied logical
functions (f;) [15]. The initial values of the A to £ variables in
the beginning of each data block calculation correspond to the
value of the current 160-bit hash value, DM to DMy. After the
80 rounds have been computed, the A to E 32-bit values are
added to the current DM. The Initialization Vector (IV) or the
DM for the first block is a predefined constant value. The output
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Fig. 2. SHA-2 round calculation.

value is the final DM, after all the data blocks have been com-
puted. In some higher level applications such as the keyed-Hash
Message Authentication Code (HMAC) [19], or when a mes-
sage is fragmented, the initial hash value (/V) may differ from
the constant specified in [18].

B. SHA256 Hash Function

In the SHA256 hash function, a final DM of 256 bits is pro-
duced. Each 512-bit input block is expanded and fed to the 64
rounds of the SHA256 function in words of 32 bits each (de-
noted by W,). Like in the SHA-1, the data scrambling is per-
formed according to the computational structure depicted in
Fig. 2 by additions and logical operations, such as bitwise log-
ical operations and bitwise rotations. The computational struc-
ture of each round, where the input data is mixed with the current
state, is depicted in Fig. 2. Each W, value is a 32-bit data word
and K, is the 32-bit round dependent constant.

The 32-bit values of the A to H variables are updated in each
round and the new values are used in the following round. The IV
for these variables is given by the 256-bit constant value spec-
ified in [18], being set only for the first data block. The con-
secutive data blocks use the partial DM computed for the pre-
vious data block. Each SHA-256 data block is processed in 64
rounds, after which the values of the variables A to H are added
to the previous DM in order to obtain a new value for the DM.
Comparing Figs. 1 and 2, is it noticeable a higher computational
complexity of the SHA-2 algorithm in comparison to the SHA-1
algorithm.

C. SHA512 Hash Function

The SHA512 hash algorithm computation is identical to that
of the SHA256 hash function, differing only in the size of the
operands, 64 bits instead of 32 bits as for the SHA256. The DM
has twice the width, 512 bits, and different logical functions are
used [18]. The values W, and K; are 64 bits wide and each



CHAVES et al.: COST-EFFICIENT SHA HARDWARE ACCELERATORS

24bits  423bits 64bits
10---01100---000---001000011000
last data block

first data block

Fig. 3. Message padding for 512 bit data blocks.

data block is composed of 16 x 64-bit words, having in total
1024 bits.

D. Data Block Expansion for SHA Function

The SHA-1 algorithm computation steps described in Fig. 1
are performed 80 times (rounds). Each round uses a 32-bit word
obtained from the current input data block. Since each input
data block only has 16 x 32-bits words (512 bits), the remaining
64 x 32-bit words are obtained from data expansion. This ex-
pansion is performed by computing (1), where Mt(l) denotes the
first 16 x 32-bit words of the sth data block

Wi
:{Mt@, 0<t<15
RotLY(Wy_s®@W,_s®W;_14dW;_16), 16<t<79.
(H

For the SHA-2 algorithm, the computation steps shown in
Fig. 2 are performed for 64 rounds (80 rounds for the SHAS512).
In each round, a 32-bit word (or 64-bit for SHA512) from the
current data input block is used. Once again, the input data block
only has 16 x 32-bits words (or 64-bit words for SHA512), re-
sulting in the need to expand the initial data block to obtain the
remaining words. This expansion is performed by the computa-
tion described in (2), where Mt@) denotes the first 16 words of
the 7th data block and the operator + describes the arithmetic
addition operation

o,
o1 (Wi_2) + Wi_7
—I-U()(Wt,lg;) + W16, 16 <t <63 {OI‘ 79}

2

0<t<15
Wt:

E. Message Padding

In order to assure that the input data block is a multiple of 512
bits, as required by the SHA-1 and SHA256 specification, the
original message has to be padded. For the SHA512 algorithm
the input data block is a multiple of 1024 bits.

The padding procedure for a 512 bit input data block is as
follows: for an original message composed of 7 bits, the bit “1”
is appended at the end of the message (the n + 1 bit), followed
by k zero bits, were k is the smallest solution to the equation
n + 1+ k = 448 mod 512. These last 64 bits are filled with
the binary representation of n, the original message size. This
operation is better illustrated in Fig. 3 for a message with 536
bits (010 0001 1000 in binary representation).

For the SHAS512 message padding, 1024-bit data blocks are
used and the last 128, not 64 bits, are reserved for the binary
value of the original message. This message padding operation
can be efficiently implemented in software.
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III. PROPOSED DESIGN FOR SHA-1

In order to compute the values of one SHA-1 round, depicted
in Fig. 1, the values from the previous round are required.
This data dependency imposes sequentiality, preventing par-
allel computation between rounds. Only parallelism within
each round can be efficiently explored. Some approaches [11]
attempt to speedup the processing by unrolling each round
computations. However, this approach implies an obvious
increase in circuit area. Another approach [12], increases the
throughput using a pipelined structure. Such an approach, how-
ever, makes the core inefficient in practical applications, since
a data block can only be processed when the previous one has
been completed, due to the data dependencies of the algorithm.

In this paper, we propose a functional rescheduling of the
SHA-1 algorithm as described in the work [15], which allows
the high throughput of an unrolled structure to be combined with
a low hardware complexity.

A. Operations Rescheduling

From Fig. 1, it can be observed that the bulk of the SHA-1
round computation is oriented towards the A value calculation.
The remaining values do not require any computation, aside
from the rotation of B. The needed values are provided by the
previous round values of the variables A to D. Given that the
value of A depends on its previous value, no parallelism can be
directly exploited, as depicted in (3)

Ay = ROtLS(At) + [f(B:,Ct, Di) + Er + Ky + Wi]. (3)

In (4), the term of (3) that does not depend on the value of A
is precomputed, producing the carry (3;) and save (S;) vectors
of the partial addition

St + B = f(By,C,Dy) + Ey + Ky + Wy “)

The calculation of A, with the precomputation, is described by
the following:

Ay :ROtLB(At—ﬂ + (St—1+ Bi—1)
St + Bt = f(By,C,Dy) + By + Ky + Wy, (5)

By splitting the computation of the value A and by rescheduling
it to a different computational round, the critical path of the
SHA-1 algorithm can be significantly reduced. Since the cal-
culation of the function f(B, C, D) and the partial addition are
no longer in the critical path, the critical path of the algorithm
is reduced to a three-input full adder and some additional se-
lection logic, as depicted in Fig. 4. With this rescheduling, an
additional clock cycle is required, for each data block, since in
the first clock cycle the value of A is not calculated (A_ is not
used). Note that in the last cycle the values of Bgy, Cs1, Dgi,
and Fg; are not used as well. The additional cycle, however,
can be hidden in the calculation of the DM of each input data
block, as explained further on.

After the 80 SHA-1 rounds have been computed, the final
values of the internal variables (A to F) are added to the current
DM. In turn, the DM remains unchanged until the end of each
data block calculation [15]. This final addition is performed by
one adder for each 32 bits portion of the 160-bit hash value.
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Fig. 4. SHA-1 rescheduling and internal structure.

However, the addition of the value DMy is directly performed
by a CSA adder in the round calculation. With this option, an
extra full adder is saved and the DM, value calculation, that
depends on the value A, is performed in one less clock cycle.
Thus, the calculation of all the DM is concluded in the same
cycle.

B. Hash Value Initialization

For the first data block the internal hash value (DMj) is ini-
tialized, by adding zero to the Initialization Vector (IV). This
initial value is afterwards loaded to the internal registers (B to
E), through a multiplexer. In this case, the value of DM}, is not
set to the register A. Instead, A is set to zero and DMy, is directly
introduced into the calculation of A, as described in (6)

So + Bo = f(Bpwm, , Cpms, Dowm,)
+ Epm, + Ko + Wy + RotL>(DMy)
Ay = RotL*(Ag) + (So + fo)

=RotL® (0) + (So + fo)- (6)

The IV can be the constant value defined in [ 18] or an applica-
tion dependent value, e.g., from the HMAC or from the hashing
of fragmented messages. In applications, where the IV is always
a constant, the selection between the IV and the current hash
value can be removed and the constant value set in the DM reg-
isters. In order to minimize the power consumption, the internal
registers are disabled when the core is not being used.

C. Improved Hash Value Addition

After all the rounds have been computed, for a given data
block, the internal variables have to be added to the current DM.
This addition can be performed with one adder per each 32 bit
of the DM, as depicted in Fig. 4. In such structure, the addition
of B through F with the current DM requires four additional
adders. Taking into account that

Ey= D1 = Cy_y = RotL*(B;_3) @)

DM,

Fig. 5. Alternative SHA-1 DM addition.

the computation of the DM from the data block « can be calcu-
lated from the internal variable B, as

DM4; = RotL*°(B;_3) + DM4;_1;
DM3; = RotL*°(B;—s) + DM3;_y;
DM2; = RotL*°(B; 1) + DM2; i;
DMI1; = B; + DM1;_;. ®)

Thus, the calculation can be performed by just a single addition
unit and a multiplexer unit, used to select between the value
B and its bitwise rotation, RotL°. The rot() function in (9)
represents the optional rotation of the input value

DM[j]; = rot(Bi—j+1) + DM[jli-1 5 1<j<4. (9
The alternative hardware structure for the addition of the values
B to E with the current DM is depicted in Fig. 5.

D. SHA-1 Data Block Expansion

For efficiency reasons, we expand the 512 bits of each data
block in hardware. The input data block expansion described
in (1), can be implemented with registers and XOR operations.
Finally, the output value W} is selected between the original data
block, for the first 16 rounds, and the computed values, for the
remaining rounds. Fig. 6 depicts the implemented structure. Part
of the delay registers have been placed after the calculation, in
order to eliminate this computation from the critical path, since
the value W, is connected directly to the the SHA-1 core. The
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Fig. 6. Register-based SHA-1 block expansion.

one bit rotate-left operation can be implemented directly in the
routing process, not requiring additional hardware.

IV. PROPOSED DESIGN FOR SHA-2

Like for the SHA-1, the functional rescheduling can also be
applied to SHA-2 algorithm. However, as depicted in Fig. 2,
the SHA-2 computational path is more complex and with an
even higher data dependency level. In each round of the algo-
rithm, the values A through H have to be calculated, but only
the values A and E require computation. In the proposed SHA-2
computational structure [16], we identified the part of the com-
putation of a given round ¢ that can be computed ahead in the
previous round £ — 1.

A. Operation Rescheduling

While the variables B, C, D, F, G, and H are obtained di-
rectly from the values of the round, not requiring any computa-
tion, the values A and F for round ¢ cannot be computed until
the values for the same variables have been computed in the pre-
vious round, as shown in (10)

Eiy1 =Dy + ¥1(Er) + Ch(Ey, Fy, Gr) + Hy + K + Wy
At+1 = E(](At) + Maj(Bh Ct7 Dt) =+ El(Et)
+ Ch(Ey, Fy,Gy) + Hy + Ky + Wy, (10)
Taking into account that the value H;, is given directly by
G which in its turn is given by F;_1, the precalculation of H
can thus be given by H, 1 = F;_;. Since the values K; and W,
can be precalculated and are directly used in each round, (10)
can be rewritten as

b =H; + Ki + Wy =G + K  + W,
Et-‘,—l = Dt + El(Et) + Ch(Etl Ft7 Gt) + 6t
At""l = EO(Af) + Ma’j(At: Bh Cf) + El(Ef)

+ Ch(Ey, Fy, Gy) + 64 (11)
where the value 6, is calculated in the previous round. The value
0t4+1 can be the result of a full addition or the two vectors from a
carry save addition. With this computational separation, the cal-
culation of the SHA-2 algorithm can be divided into two parts,
allowing the calculation of ¢ to be rescheduled to the previous
clock cycle, as depicted by the grey area in Fig. 7. Thus, the
critical path of the resulting hardware implementation can be re-
duced. Since the computation is now divided by a pipeline stage,
the computation of the SHA-2 requires an additional clock cycle
to perform all the rounds.
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B. Hash Value Addition and Initialization

Similar to SHA-1, the internal variables of SHA-2 also have
to be added to the DM. If this addition is implemented in a
straightforward manner, eight adders would be required, one for
each internal variable, of 32 or 64 bits for SHA256 or SHAS512,
respectively. The experimental results for the SHA-1 implemen-
tation, presented in Section VI, suggest the DM addition with
the shift to be more area efficient. Thus only this approach is
studied in the proposed SHA-2 structure for the addition of the
internal values with the DM value. Since most of the SHA-2
internal values do not require any computation, they can be di-
rectly obtained from the previous values of A and £

Hi=Gi1=F2=FE3

Dy =Ciq1 = Bi—p = Ay—3. 12)

The computation of the DM for the data block 7 can thus be
calculated from the internal variables A and E, as

DM7; = E;_3 + DM7,_;
DM6; = E;_s + DM6;_;
DMS5; = E,_1 + DM5;_;
DM3; = A;_3 + DM3;_;
DM2; = A;_» + DM2;_;

DM1; =A;_1 + DM1,_4 (13)
with only two addition units
DM[j +4]; = Ei—; + DM[j +4];-1; 1<5<3
DM[jli = As—j + DM[jli—1; 1< <3, (14

The selection of the corresponding part of the DM[4] could be
performed by a multiplexer. However, taking into account that
the values of DM][j] are used sequentially, a shifting buffer can
be used, as depicted in the right most part of Fig. 7. Since the
values A; and F; require computation and the final value is
calculated in the last clock cycle, the calculation of the values
DMO; and DM4; is performed in a different manner. Instead
of using a full adder, after the calculation of the final value of
A and F, the DM is added during the calculation of their final
values. Since the value of DM;_; is known, the value can be
added during the first stage of the pipeline, using a CSA.

After each data block has been computed, the internal values
A to H have to be reinitialized with the newly calculated DM.
This is performed by a multiplexer that selects either the new
value of the variable or the DM, as depicted in the left most side
of Fig. 7. The values A and E are the exception, since the final
value computed for the two variables is already the DM.

In the first round, all variables, except A and F, are initialized
by loading the values of the DM registers, operation depicted in
the leftmost part of Fig. 7. For the A and E variables, the value
are fed through the round logic. In this case, all the variables are
set to zero (Reset) except the DM and DM, inputs. Thus, the
resulting value for the registers A and F will be the initialization
values of the DM registers.
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Fig. 7. SHA-2 round architecture.

In the SHA-2 algorithm standard, the initial value of the DM
(loaded in A through H) is a constant value, that can be loaded
by using set/reset signals in the registers. If the SHA-2 algorithm
is to be used in a wider set of applications and in the computation
of fragmented messages, the initial DM is no longer a constant
value. In these cases, the initial value is given by an Initialization
Vector (IV) that has to be loaded. In order to optimize the archi-
tecture, the calculation structure for the DM can be used to load
the IV, not being directly loaded into all the registers. The value
of the A and E registers is set to zero during this loading, thus
the existing structure acts as a circular buffer, where the value is
only loaded into one of the registers, and shifted to the others.
This circular buffer can also be used for a more efficient reading
of the final DM, providing an interface with smaller output ports.

C. SHA-2 Data Block Expansion

As mentioned in Section II, the W, input value has to be ex-
panded according to (2). This operation is performed by the data
block expansion unit. The computation structure is similar to the
one presented for SHA128. The arithmetic addition represented
by the operator B, replaces the bitwise XOR operation (). The
proposed structure is depicted in Fig. 8.

V. SHA IMPLEMENTATION

In order to evaluate the proposed SHA designs, they have
been implemented as processor cores on a Xilinx VIRTEX II
Pro (XC2VP30-7) FPGA. All the values presented in this paper
for the proposed cores were obtained after Place and Route.

Fig. 8. SHA-2 data block expansion unit.

When implementing the ROM used to store the K; values
of SHA256 or SHAS512, the FPGA embedded RAMs (BRAMs)
have been efficiently employed. For the SHA256 structure, a
single BRAM can be used, since the 64 32-bits fit in a single
32-bit port embedded memory block. Since BRAMs have dual
output ports of 32 bits each, the 80 x 64-bit SHA-512 constants
can be mapped to two 32-bit memory ports; one port addresses
the lower 32 bits of the constant and the other, the higher part
of the same constant. Thus, only one BRAM is used to store the
64-bit K; constants.

A. Discussion on Alternative Data Block Expansion Structures

Alternatively to the register-based structure presented in
Fig. 6, other structures for the SHA-1 data block expansion can
be implemented. One is based on memory blocks addressed
in a circular fashion. In the presented implementation, the
VIRTEX II embedded RAMs (BRAMs) are used. The other
structure is based on first-inputs—first-outputs (FIFOs).
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Fig. 10. FIFO-based data block expansion unit.

A 16-word memory is used to store the values with 14 (w;_14)
and 16 (w;—_1¢) clock cycles delay. In order to use the dual port
BRAMSs, the address of the new value has to be the same as the
last one, thus the first and the last position of the circular buffer
coincide. For this scheme to work properly, the memory must
allow for write after read (WAR). This however, is only available
on the VIRTEX II FPGA family. In technologies where WAR is
not available, the first and last position of this circular memory
can not coincide, thus an additional position in the memory is
required as well as an additional port. The W;_14 can be ad-
dressed by using the W;_14(= W;) address value subtracted by
2. Identically, the W;_3 address can be obtained by subtracting
5 from the W;_g address. The implementation of the 16 bit po-
sition circular memory can be done by chaining two eight po-
sitions circular memories, thus requiring less memory for the
entire unit, as depicted in Fig. 9.

The data block expansion can also be implemented with
FIFOs. In technologies where FIFOs can be efficiently used,
the registers used to create the temporal delay of W, can be
replaced by FIFOs. The FIFOs start outputting the values
after n clock cycles, where n is the desired delay. The FIFOs
have been automatically generated by the coregen tool from
Xilinx. The resulting computational structure is depicted in
Fig. 10. Circular memories can also be used. For this structure
(FIFO-MEM-based), modulo 5 and modulo 6 counters have
to be used, as well as memories that do not require the WAR
mode.

In order to completely evaluate the proposed structures, they
have been implemented on a Xilinx VIRTEX II FPGA. The
obtained results are presented in Table I. From Table I, it can
be concluded that when memories with WAR mode are avail-
able, the memory-based implementation is more efficient. It re-
quires only 38 slices and two 32 x 8 bit memories, resulting in
a slice occupation of only 30% of the register-based approach,
at the expense of two BRAMs. When, only, memories without
WAR mode are available, a reduction of 35% in terms of slice
usage can still be achieved, at the expense of two embedded
RAMs. These data block expansion structures for the SHA-1
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TABLE 1
SHA-1 DATA BLOCK EXPANSION UNIT COMPARISON

[ Design [| Slices | BRAMs |
Register based 144 0
Memory based 38 2
FIFO based 100 2
FIFO-MEM based 90 2

TABLE II
SHA-1 DM ADDITION COMPARISON

[ Design [ traditional addition [ shift based addition |
Slices 596 565
Freq. (MHz) 227 227
TrPut.(Mbps) 1420 1420
TP/Slice 2.4 2.5

algorithm can be directly mapped to the data block expansion
of the SHA-2 algorithm. For the remainder of this paper, only
the register-based unit is considered, in order to obtain less tech-
nology dependent experimental results.

VI. PERFORMANCE ANALYSIS AND RELATED WORK

In order to compare the architectural gains of the proposed
SHA structures with the current related art, the resulting cores
have been implemented in different Xilinx devices.

A. SHA-I Core

In order to compare the efficiency of the DM addition
through shift registers proposed in Section III-C, the SHA-1
algorithm with variable IV has been implemented with both
presented structures. Table II presents the obtained results for a
realization on the VIRTEX II Pro FPGA. The obtained figures
suggest an area reduction of 5% with no degradation on the
achievable frequency, resulting in a Throughput/Slice increase
from 2.4 to 2.5 Mbit/s. In technologies where full addition units
are more expensive, like ASICs, even higher improvements can
be expected.

The SHA-1 core has also been implemented on a VIRTEX-E
(XCV400e-8) device (Column Our-Exp. in Table III), in order
to compare with [11]. The presented results in Table III for the
VIRTEX-E device are for the SHA-1 core with a constant ini-
tialization vector and without the data block expansion module.
When compared with the folded SHA-1 core proposed in [11],
a clear advantage can be observed in both area and throughput.
Experimentations suggest 20% less reconfigurable hardware
and 27% higher throughput, resulting in a 57% improvement
on the Throughput/Slice (TP/Slice) metric. When compared
with the unfolded architecture, the proposed core has a 28%
lower throughput, however, the unrolled core proposed in [11]
requires 280% more hardware, resulting in a TP/Slice, 2.75
times smaller than the core proposed in this paper.

Table III also presents the SHA-1 core characteristics for the
VIRTEX II Pro FPGA implementation. Both the core with a
constant initialization vector (Our-Cst.) and the one with a vari-
able IV initialization (Our+IV) are presented. These results also
include the data block expansion block.

When compared with the leading commercial SHA-1 core
from Helion [21], the proposed architecture requires 6% less
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TABLE III
SHA-1 CORE PERFORMANCE COMPARISONS
[ Design || Lien [11] | Lien [11] | Our—Exp.]| CAST [20] | Helion [21] [ OurCst. [ Our+IV |
Device Virtex-E Virtex-E | Virtex-E || XCV2P2-7 XCV2P-7 | XCV2P30-7 | XCV2P30-7
Expansion no no no yes yes yes yes
v cst. cst. cst. cst. cst. cst. yes
Slices 484 1484 388 568 564 533 565
Freq. (MHz) 103 73 135 127 194 230 227
TrPut.(Mbps) 659 1160 840 802 1211 1435 1420
TP/Slice 1.4 0.8 2.2 1.4 2.1 2.7 2.5
TABLE IV
SHA256 CORE PERFORMANCE COMPARISON
| Architecture || Sklav [22] [ Our || McEv. [13] | Our [ Helion [23] [ Our |
Device XCV XCV XC2V XC2V XC2PV-7 XC2PV-7
v cst yes cst yes cst yes
Slices 1060 764 1373 797 815 755
BRAMS >1 1 >1 1 1 1
Freq. 83 82 133 150 126 174
Cycles n.a. 65 68 65 n.a. 65
Throughput 326 646 1009 1184 977 1370
TP/Slice 0.31 0.84 0.74 1.49 1.2 1.83
TABLE V
SHAS512 CORE PERFORMANCE COMPARISON
| Architecture || Sklav [22] [ Lien [11] | Lien [11] | Our [ McEv. [13] | Our || Our |
Device XCV XCV XCV XCV XC2V XC2V || XC2VP
Expansion yes no no yes yes yes yes
v cst cst cst yes cst yes yes
Slices 2237 2384! 3521 1680 2726 1666 1667
BRAMS n.a. n.a. n.a. 2 >1 1 1
Freq. 75 56 67 70 109 121 141
Cycles n.a. n.a. n.a. 81 84 81 81
Throughput 480 717 929 889 1329 1534 1780
TP/Slice 0.21 0.3 0.26 0.53 0.49 0.92 1.01

slices while achieving a throughput 18% higher. These two re-
sults suggest a gain on the TP/Slice metric of about 29%.

For the SHA-1 core capable of receiving an IV other than the
constant specified in [18], a slight increase in the required hard-
ware occurs. This is due to the fact that the IV can no longer
be set by the set/reset signals of the registers. This however has
a minimal effect in the cores performance, since this loading
mechanism is not located in the critical path. The decrease of
the Throughput/Slice metric, from 2.7 to 2.5, caused by the ad-
ditional hardware for the /V loading is counterbalanced by the
capability of this SHA-1 core (Our+/V) to process fragmented
messages.

B. SHA 256 Core

The proposed SHA256 hash function core has been also com-
pared with the most recent and most efficient related art. The
comparison figures are presented in Table IV. When compared
with the most recent academic work [13], [22] the results show
higher throughputs, from 17% up to 98%, while achieving a
reduction in area above 25% up to 42%. These figures sug-
gest a significant improvement to the TP/Slice metric in the

range of 100% to 170%. When compared with the commercial
SHA256 core from Helion [23], the proposed core suggests an
identical area value (less 7%) while achieving a 40% gain to the
throughput, resulting in an improvement of 53% to the TP/Slice
metric. The structure proposed by McEvoy [13] also has mes-
sage padding hardware, however, no figures are given for the
individual cost of this extra hardware. This message padding is
performed once at the end of the message, and has no significant
cost when implemented in software. Thus, the majority of the
proposed cores do not include the hardware for this operation.

C. SHA 512 Core

Table V presents the implementation results for our SHAS512
core and the most significant related art, to out best knowledge.
When compared with [22], our core requires 25% less recon-
figurable logic while a throughput increase of 85% is achieved,
resulting in a TP/Slice metric improvement of 165%. From all
known SHAS512 cores, the unrolled core proposed by Lien in
[11] is the only one capable of achieving a higher throughput.
However, this throughput is only slightly higher (4%), but re-
quires twice as much area as our proposal and indicates a 77%
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higher TP/Slice metric. It should also be noticed that, the re-
sults presented by Lien in [11] do not include the data expansion
module, which would increase the required area even further.

D. Integration on the MOLEN Processor

In order to create a practical platform where the SHA cores
can be used and tested, a wrapping interface has been added
to integrate these units in the MOLEN polymorphic processor.
The MOLEN operation [17], [24] is based on the coprocessor
architectural paradigm, allowing the usage of reconfigurable
custom designed hardware units. The MOLEN computational
paradigm enables the SHA cores to be embedded in a re-
configurable coprocessor, tightly coupled with the GPP. The
considered polymorphic architecture prototype uses the FPGA
with an embedded PowerPC, running at 300 MHz as the core
GPP, and a main data memory running at 100 MHz. The
implementation is identical to the one described in [25].

For this coprocessor implementations of the SHA hash
functions, the SHA128, SHA256, and SHAS512 cores, with
IV loading, have been used. Implementations results of the
SHA128 CCU indicate a device occupation of 813 slices, using
a total of 6% of the available resources on a XC2VP30 FPGA.
In this functional test the CCU is running with same clock
frequency as the main data memory, operating at 100 MHz,
thus achieving a maximum throughput of 623 Mbit/s. When
compared with the pure software implementations, capable of
achieving a maximum throughput of 4 Mbit/s and 5 Mbit/s for
SHA128 and SHA256, respectively, the usage of this hybrid
HW/SW approach allows for a speedup up to 150 times.

The CCUs for the SHA256 and SHAS512 cores require 994
and 1806 Slices using in total 7% and 13% of the available re-
sources, respectively. At 100 MHz, the SHA-2 CCUs are ca-
pable of achieving a maximum throughput of 785 Mbit/s for
SHA-256 and 1.2 Gbit/s for the SHA-512 hash function.

VII. CONCLUSION

We have proposed hardware rescheduling and reutilization
techniques to improve SHA algorithm realizations, both in
speed and in area. With operation rescheduling, the critical path
can be reduced in a similar manner to structures with loop un-
rolling, without increasing the required hardware, also leading
to the usage of a well balanced pipeline structure. An efficient
technique for the addition of the DM is also proposed. This
technique allows for a substantial reduction on the required
reconfigurable resources, while concealing the extra clock
cycle delay introduced by the pipeline.

Implementation results clearly indicate significant perfor-
mance and hardware gains for the proposed cores when com-
pared to the existing commercial cores and related academia
art. Experimental results for hybrid, hardware/software, im-
plementations of the SHA algorithms suggest a speed up of
150 times for both hash computations regarding pure software
implementations.

A. SHA Evaluation Prototypes

SHA evaluation prototypes are available for download at:
http://ce.et.tudelft.nl/MOLEN/applications/SHA/.
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