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Abstract—This paper investigates the conversion of 3-moduli
Residue Number System (RNS) operands to decimal. First we
assume a general {mi}i=1,3 moduli set with the dynamic range
M =

∏3

i=1
mi and introduce a modified Chinese Remainder

Theorem (CRT) that requires mod-m3 instead of mod-M calcu-
lations. Subsequently, we further simplify the conversion process
by focussing on {2n + 2, 2n + 1, 2n} moduli set, which has a
common factor of 2. We introduce in a formal way a CRT
based approach for this case, which requires the conversion of
{2n + 2, 2n + 1, 2n} set into moduli set with relatively prime
moduli, i.e.,

{
m1
2

, m2, m3

}
, when n is even, n ≥ 2 and{

m1, m2,
m3
2

}
, when n is odd, n ≥ 3. We demonstrate that such

a conversion can be easily done and doesn’t require the compu-
tation of any multiplicative inverses. Finally, we further simplify
the 3-moduli CRT for the specific case of {2n + 2, 2n + 1, 2n}
moduli set. For this case the propose CRT requires 4 additions,
4 multiplications and all the operations are mod-m3 in case n
is even and mod-m3

2
if n is odd. This outperforms state of the

art converters in terms of required operations and due to the
fact that the numbers involved in the calculations are smaller it
results in less complex adders and multipliers.

Index Terms—Residue Number System, Moduli Set with a
Common factor, RNS-Decimal Converter, Chinese Remainder
Theorem.

I. INTRODUCTION

Carry propagation constitutes the main reason why com-
puting hardware based on Weighted Number System (WNS)
cannot be speed up beyond certain bounds. Consequently, the
reduction/elimination of carry chain is the major challenge in
improving the computer arithmetic units performance. Several
approaches to speed up the carry propagation, e.g., carry
lookahead, prefix calculations, anticipated calculation, and
alternative number representation systems, e.g., (redundant)
signed digit systems, Residue Number Systems (RNS) have
been proposed. RNS has interesting inherent characteristics
such as parallelism, modularity, fault tolerance and carry free
operations and for this reason it has been widely used in
Digital Signal Processing (DSP) applications such as digital
filtering, convolutions, correlation, fast Fourier transforms,
discrete Fourier transforms and image processing [1]-[3]. RNS
based calculation requires data conversions, which must be as
fast as possible not to nullify the RNS advantages. Several
converters have been proposed in the past [3], [4], [6]-[8]
based on either the Chinese Remainder Theorem (CRT) or
Mixed Radix Conversion (MRC).

In this paper we investigate the RNS to binary conversion
for RNS with {m1,m2,m3} moduli set, with m1 > m2 >

m3. Such moduli sets have been extensively studied and
the most utilized are {2n + 1, 2n, 2n − 1}, [2], [4], [6], and
{2n+ 2, 2n+ 1, 2n}, which constitutes an extension of the
first one.

First we assume a general {mi}i=1,3 moduli set with the
dynamic range M =

∏n
i=1mi and introduce a modified

Chinese Remainder Theorem (CRT) that requires mod-m3

instead of mod-M calculations. Subsequently, we focuss on
{2n+ 2, 2n+ 1, 2n} moduli set, which has a common factor
of 2. Given that for such a moduli set CRT cannot be
directly applied we introduce in a formal way a CRT based
approach for this case, which requires the conversion of
{2n+ 2, 2n+ 1, 2n} set into moduli set with relatively prime
moduli, i.e.,

{
m1
2 ,m2,m3

}
, when n is even, n ≥ 2 and{

m1,m2,
m3
2

}
, when n is odd, n ≥ 3. In general such a

moduli set transformation is a complex computation process
but for the case of {2n + 2, 2n + 1, 2n} moduli set we
demonstrate that it can be easily done and doesn’t require
the computation of any multiplicative inverses. Finally, we
further simplify the 3-moduli CRT for the specific case of
{2n+2, 2n+1, 2n} moduli set. For this case the propose CRT
requires 4 additions, 4 multiplications and all the operations
are mod-m3 in case n is even and mod-m3

2 if n is odd. This
outperforms state of the art converters in terms of required
operations and due to the fact that the numbers involved in
the calculations are smaller it results in less complex adders
and multipliers.

The rest of the article is organised as follows: In Section II
we introduce the necessary background. Section III presents
our proposal starting from the formal representation of the
CRT for moduli set sharing a common factor. In Section IV
we evaluate the performance of our scheme while the paper
is concluded in Section V.

II. BACKGROUND

RNS is defined in terms of a set of relatively prime moduli
set {mi}i=1,n such that gcd (mi,mj) = 1 for i 6= j, where
gcd means the greatest common divisor of mi and mj , while
M =

∏n
i=1mi, is the dynamic range. The residues of a

decimal number X can be obtained as xi = |X|mi thus
it can be represented in RNS as X = (x1, x2, x3..., xn),
0 ≤ xi < mi . This representation is unique for any
integer X ∈ [0,M − 1]. We note here that in this paper
we use |X|mi to denote the X mod mi operation and the

978-1-4244-2167-1/08/$25.00 ©2008 IEEE 791



operator Θ to represent the operation of addition, subtraction,
or multiplication. Given any two integer numbers K and
L RNS represented by K = (k1, k2, k3, ..., kn) and L =
(l1, l2, l3, ..., ln), respectively, W = KΘL, can be calculated
as W = (w1, w2, w3, ..., wn), where wi = |kiΘli|mi , for
i = 1, n. This means that the complexity of the calculation of
the Θ operation is determined by the number of bits required to
represent the residues and not by the one required to represent
the input operands.

For a moduli set{mi}i=1,n with the dynamic range M =∏n
i=1mi, the residue number (x1, x2, x3, ..., xn) can be con-

verted into the decimal number X, according to the Chinese
Reminder Theorem, as follows [1]:

X =

∣∣∣∣∣
n∑
i=1

Mi

∣∣M−1
i xi

∣∣
mi

∣∣∣∣∣
M

, (1)

where M =
∏n
i=1mi, Mi = M

mi
, and M−1

i is the multiplica-
tive inverse of Mi with respect to mi.

We note here that the moduli set {mi}i=1,n must be
pairwise relatively prime for Equation (1) to be directly used.
For the {2n+ 2, 2n+ 1, 2n} moduli set 2n+ 2 and 2n share
a common factor. This implies that to utilize Equation (1) in
the conversion this moduli set must be first mapped to a set
of relatively prime moduli. If a moduli set is not pairwise
relatively prime, then not every residue set (x1, x2, x3, ..., xn)
corresponds to a number and this results into inconsistency.
As given in [1], a set of residues is consistent if and only
if |xi|k = |xj |k where k = gcd(mi,mj) for all i and j. If
this holds true the decimal equivalent of (x1, x2, x3, ..., xn)
for moduli set which are not pairwise relatively prime can be
computed as follows [1]:

|X|ML
=

∣∣∣∣∣
n∑
i=1

αixi

∣∣∣∣∣
ML

, (2)

where ML is the Lowest Common Multiple (LCM) of
{mi}i=1,n, the set of moduli sharing a common factor, X is
the decimal equivalent of {xi}i=1,n, αi is an integer such that
|αi|ML

µi

= 0 and |αi|µi = 1, and {µi}i=1,n is a set of integers

such that ML =
n∏
i=1

µi and µi divides mi. It should be noted

that αi may not exist for some i.

III. PROPOSED ALGORITHM

The main idea behind our approach is to simplify Equa-
tion (1) by eliminating the large modulo M and by removing
the cost of computing M−1

i . In this section we demonstrate
that the first is possible for any 3-moduli RNS, while the
second one can be achieved only for 3-moduli sets which are
not pairwise relatively prime.

We first introduce a modified CRT for general moduli set
of length three which doesn’t require mod-M computations.

Theorem 1: For a moduli set {mi}i=1,3 the decimal equiv-
alent X of the residue set {x1, x2, x3} can be computed as:

X = (x1 + x2) +m1m2

∣∣∣k1x1 + k2x2 +
∣∣M−1

3

∣∣
m3

x3

∣∣∣
m3

,

where M−1
3 is the multiplicative inverse of M3, k1 =

(M1|M−1
1 |m1

−1)

m1m2
and k2 =

(M2|M−1
2 |m2

−1)

m1m2
.

Proof: We use lemmas presented earlier in [7]:
Lemma 1: |am1|m1m2

= m1 |a|m2

Lemma 2: M1

∣∣M−1
1

∣∣
m1

= 1 + k1m1m2

Lemma 3: M2

∣∣M−1
2

∣∣
m2

= 1 + k2m1m2

Expanding Equation (1) for n = 3 we obtain:
X = |M1

∣∣M−1
1

∣∣
m1

x1 +M2

∣∣M−1
2

∣∣
m2

x2

+M3

∣∣M−1
3

∣∣
m3

x3|m1m2m3 (3)

Using Lemma 2 and 3 in the above equation, we have:
X = |(1 + k1m1m2)x1 + (1 + k2m1m2)x2

+M3

∣∣M−1
3

∣∣
m3

x3|m1m2m3 (4)

Further simplification gives:
X = (x1 + x2) + |k1m1m2x1 + k2m1m2x2

+M3

∣∣M−1
3

∣∣
m3

x3|m1m2m3 (5)

Applying Lemma 1, we get:
X = (x1 + x2) +m1m2|k1x1 + k2x2

+M∗
3

∣∣M−1
3

∣∣
m3

x3|m3 (6)

Here, M∗
3 = M3

m1m2
= 1, the equation then reduces to:

X = (x1 + x2) +m1m2|k1x1 + k2x2

+
∣∣M−1

3

∣∣
m3

x3|m3 (7)

It can be observed that Equation (7) makes use of mod-m3

(the smallest modulus) instead of mod-M operations thus the
magnitude of involved values is smaller than in the traditional
CRT, and that k1 and k2 can be precomputed.

The next simplification step is the elimination of the M−1
i .

To achieve that we restrict to {2n+ 2, 2n+ 1, 2n} moduli sets
and first introduce a formal representation of Equation (2).

Theorem 2: For a moduli set {mi}i=1,n sharing a common
factor, which must first be mapped into a set of pairwise
relatively prime moduli, {µi}i=1,n, the decimal equivalent X
of the residue set {x1, x2, x3, ..., xn} can be computed as:

|X|ML
=

∣∣∣∣∣
n∑
i=1

βi
∣∣β−1
i

∣∣
µi
xi

∣∣∣∣∣
ML

, (8)

where ML = LCM {mi}ni=1 =
n∏
i=1

µi, βi = ML

µi
,
∣∣β−1
i

∣∣
µi

is

the multiplicative inverse of βi with respect to µi.
Proof: To demonstrate the correctness of Equation (8),

we shall relate it to Equation (2). All the conditions in Equa-
tion (2) have been taken care of in our mapping formula except
for the condition that αi is an integer such that |αi|ML

µi

= 0

and |αi|µi = 1.
Let us assume that αi = βi ∗ k. This implies that

|βi ∗ k|µi = 1, meaning that: k =
∣∣β−1
i

∣∣
µi

. We can then write
αi = βi ∗

∣∣β−1
i

∣∣
µi

and this is what we have in Equation (8).
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We then show that |αi|ML
µi

= 0. |αi|ML
µi

=
∣∣∣βi ∗ ∣∣β−1

i

∣∣
µi

∣∣∣ML
µi

,

which implies that |αi|ML
µi

=
∣∣∣ML

µi
∗
∣∣β−1
i

∣∣
µi

∣∣∣ML
µi

since βi =

ML

µi
, |αi|ML

µi

= 0. Hence, Equation (8) is a formal representa-
tion of Equation (2).

To utilize Equation (8) in the conversion we need a method
to compute relatively prime {µi}i=1,n for a moduli set
{mi}i=1,n sharing a common factor. According to [3] and [4]
the moduli set {2n+ 2, 2n+ 1, 2n} with a common factor
can be mapped to a set of pairwise relatively prime moduli,
µi given by:

1) {n+ 1, 2n+ 1, 2n}, which implies that the new moduli
set is

{
m1
2 ,m2,m3

}
, when n is even, n ≥ 2,

2) {2n+ 2, 2n+ 1, n} , which implies that the new moduli
set is

{
m1,m2,

m3
2

}
, when n is odd, n ≥ 3.

The conditions (n ≥ 2) and (n ≥ 3) are very important as due
to them µi > 1 meaning that

∣∣β−1
i

∣∣
µi

in Equation (8) and as
consequence αi in Equation (2) always exists.

Based on this we wrote a C++ program for the moduli set
{2n+ 2, 2n+ 1, 2n} to obtain the LCM of the moduli for

different values of n and taking the condition ML =
n∏
i=1

µi

and |mi|µi = 0 into consideration. From the pattern of results
obtained we could see that mapping from mi to µi can be
done by classifying the values of n into even and odd, which
is in good agreement with what has been suggested in [3] and
[4]. Moreover, based on the collected experimental data, some
of which are displayed in Table III, IV, V and VI, we observed
that there is a well established relationship between the various
multiplicative inverses and the moduli. Deductions are made
based on this observation and the relations are presented in
Table I and II.

The experimental results presented in Table I, using the new
set
{
m1
2 ,m2,m3

}
, suggest that the following relations exist

between the moduli and the multiplicative inverses:∣∣µ−1
1

∣∣
µ3

= m1
2 ,
∣∣∣(µ1µ2)−1

∣∣∣
µ3

= m1
2 ,∣∣∣(µ2µ3)−1

∣∣∣
µ1

= m3
4 + 1,

∣∣∣(µ1µ3)−1
∣∣∣
µ2

= m2 − 2,∣∣µ−1
1

∣∣
µ2

= 2.
Similarly,Table II, using the new set

{
m1,m2,

m3
2

}
, suggest

that the following holds true:∣∣µ−1
1

∣∣
µ3

= m1
4 ,
∣∣∣(µ1µ2)−1

∣∣∣
µ3

= m1
4 ,∣∣∣(µ2µ3)−1

∣∣∣
µ1

= m1 − m3
2 ,
∣∣∣(µ1µ3)−1

∣∣∣
µ2

= m2 − 2,∣∣µ−1
1

∣∣
µ2

= 2.
As previously mentioned for moduli sets with a common

factor not all remainder sets are valid numbers. The following
proposition state the condition for a 3-residue set to represent
a valid number.

Proposition 1: For RNS with moduli set {m1,m2,m3}
sharing a common factor, (x1, x2, x3) represents a valid num-
ber if and only if (x1 + x3) is even.

Proof: This proposition has been proved in [4].
Making the appropriate substitution in Theorem 1 we can
particularize it for 3-moduli RNS sharing a common factor
as follows:

S/N Multiplicative inverses Equivalent values

1
∣∣µ−1

1

∣∣
µ2

2

2
∣∣µ−1

2

∣∣
µ3

1

3
∣∣µ−1

1

∣∣
µ3

m1
2

4
∣∣(µ1µ2)−1

∣∣
µ3

m1
2

5
∣∣(µ2µ3)−1

∣∣
µ1

m3
4

+ 1

6
∣∣(µ1µ3)−1

∣∣
µ2

m2 − 2

Table I
MULTIPLICATIVE INVERSE VALUE FOR N EVEN ((n ≥ 2))

S/N Multiplicative inverses Equivalent values

1
∣∣µ−1

1

∣∣
µ2

1

2
∣∣µ−1

2

∣∣
µ3

1

3
∣∣µ−1

1

∣∣
µ3

m1
4

4
∣∣(µ1µ2)−1

∣∣
µ3

m1
4

5
∣∣(µ2µ3)−1

∣∣
µ1

m1 − m3
2

6
∣∣(µ1µ3)−1

∣∣
µ2

(m2 − 2)

Table II
MULTIPLICATIVE INVERSE VALUE FOR N ODD ((n ≥ 3))

Corollary 1: For the moduli set {2n + 2, 2n + 1, 2n} the
decimal equivalent X of the residue set {x1, x2, x3}, (x1 + x3)
being even, can be computed as follows:

1) If n is even:

X = (x1 + x2) +
m1m2

2
|k1x1

+k2x2 +
m1

2
x3|m3 ,

where

k1 =
2((m2m3)(m3

4 + 1)− 1)
(m1m2)

,

k2 =
2( (m1m3)

2 (m2 − 2)− 1)
m1m2

.

2) If n is odd:

X = (x1 + x2) +m1m2

∣∣∣k1x1 + k2x2 +
m1

4
x3

∣∣∣
m3
2

,

where

k1 =
(m2m3

2 (m1 − m3
2 )− 1)

m1m2
,

k2 =
(m1m3

2 (m2 − 2)− 1)
m1m2

.

Proof: Trivial with proper substitutions from Table I and
II and due to Proposition 1.

IV. PERFORMANCE EVALUATION

Clearly, it can be seen that the numbers involved in the
multiplication are very small when compared to the numbers
involved in the direct CRT implementation. Additionally, the
large modulo M calculations are replaced by modulo calcu-
lations with the smallest modulus in the moduli set under
consideration.
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n Given Set New Set
∣∣(µ1µ2)−1

∣∣
µ3

2 {6, 5, 4} {3, 5, 4} 3
4 {10, 9, 8} {5, 9, 8} 5
6 {14, 13, 12} {7, 13, 12} 7
8 {18, 17, 16} {9, 17, 16} 9

10 {22, 21, 20} {11, 21, 20} 11
12 {26, 25, 24} {13, 25, 24} 13

Table III
MAPPING FOR N EVEN AND MULTIPLICATIVE INVERSE

n
∣∣µ−1

1

∣∣
µ3

∣∣(µ2µ3)−1
∣∣
µ1

∣∣(µ1µ3)−1
∣∣
µ2

2 3 2 3
4 5 3 7
6 7 4 11
8 9 5 15
10 11 6 19
12 13 7 23

Table IV
MULTIPLICATIVE INVERSE VALUES FOR N EVEN

Previous work on 3-moduli RNS in [3,4] has demonstrated
improvement over traditional CRT in terms of operands mag-
nitude as this determines the complexity and delay of the
associated RNS hardware. Additionally, [4] outperformed [3]
in terms of the operands magnitude thus we compare our
proposal with this approach. As indicated in Table VII our
proposal requires less arithmetic operations and even more
important for the hardware, complexity of the operands mag-
nitude is significantly reduced. More specifically, the modulo
operation has been reduced from modulo M = m1m3 to
modulo m3 or m3

2 .

V. CONCLUSIONS

First we assumed a general {mi}i=1,3 moduli set with
the dynamic range M =

∏n
i=1mi and introduced a modi-

fied Chinese Remainder Theorem (CRT) that requires mod-
m3 instead of mod-M calculations. This scheme can be

n Given Set New Set
∣∣(µ1µ2)−1

∣∣
µ3

3 {8, 7, 6} {8, 7, 3} 2
5 {12, 11, 10} {12, 11, 5} 3
7 {16, 15, 14} {16, 15, 7} 4
9 {20, 19, 18} {20, 19, 9} 5

11 {24, 23, 22} {24, 23, 11} 6
13 {28, 27, 26} {28, 27, 13} 7

Table V
MAPPING FOR N ODD AND MULTIPLICATIVE INVERSE

n
∣∣µ−1

1

∣∣
µ3

∣∣(µ2µ3)−1
∣∣
µ1

∣∣(µ1µ3)−1
∣∣
µ2

3 2 5 5
5 3 7 9
7 4 9 13
9 5 11 17
11 6 13 21
13 7 15 25

Table VI
MULTIPLICATIVE INVERSE VALUES FOR N ODD

Operations [4] Proposed Algorithm
Additions 5 4

Multiplications 4 4
Reduced M m3m1 m3 or m3

2

Table VII
PERFORMANCE COMPARISON

utilized in conjunction with well established moduli sets,
e.g, {2n + 1, 2n, 2n − 1} and {2n+ 2, 2n+ 1, 2n} and makes
the CRT based conversion more effective as it reduces the
magnitude of the values involved in the conversion thus
the associated costs in area and delay. Subsequently, we
further simplified the conversion process by focussing on
{2n+ 2, 2n+ 1, 2n} moduli set, which has a common factor
of 2. Given that for such a moduli set CRT cannot be
directly applied, we introduced in a formal way a CRT based
approach for this case, which requires the conversion of
{2n+ 2, 2n+ 1, 2n} set into moduli set with relatively prime
moduli, i.e.,

{
m1
2 ,m2,m3

}
, when n is even, n ≥ 2 and{

m1,m2,
m3
2

}
, when n is odd, n ≥ 3. We demonstrated that

the moduli set transformation can be easily done and doesn’t
require the computation of any multiplicative inverses. Finally,
we further simplified the 3-moduli CRT for the specific case of
{2n+2, 2n+1, 2n} moduli set. For this case the propose CRT
required 4 additions, 4 multiplications and all the operations
are mod-m3 in case n is even and mod-m3

2 if n is odd. This
outperforms state of the art converter in terms of required
operations and due to the fact that the numbers involved in
the calculations are smaller it results in less complex adders
and multipliers. Our proposal is particularly suitable in DSP
applications where the moduli sets are restricted and the
dynamic range does not necessarily need to be too large.
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