
A Hybrid Cross Layer Architecture For Wireless
Protocol Stacks

Zhijiang Chang, Georgi Gaydadjiev
Computer Engineering Laboratory

Delft University of Technology, Mekelweg 4, 2628 CD Delft, the Netherlands
email: [zhijiangchang, georgi]@ce.et.tudelft.nl

Telephone: +31 15 278 6177

Abstract—Many architectures to support multiple cross-layer
optimizations have been proposed. Most of them can be cat-
egorized as either signaling-based or function-call based. The
signaling approaches use messages to propagate the information
in the protocol stack, while the function-call uses Application
Programming Interface (API) for direct access to variables. The
signaling approach complies with the layered protocol stack
architecture but introduces latency in the information propa-
gation and additionally increases the packet size. The function-
call approaches are more efficient but highly operating system
dependent. Even a slight protocol modification requires the
function-call middleware to be updated. We previously proposed
an Infrastructure for Cross-layer Designs Interaction (ICDI)
based only on the signaling approach. In this paper, we first
provide in-depth analysis of the two main schemes. Thereafter we
propose a hybrid version of the ICDI architecture that combines
the advantages of both approaches. According to our simulation
results, the packet size overhead is reduced by around 75% (in
bytes) and the propagation latency is reduced by more than
60%. The proposed hybrid system remains operating system
independent.

I. INTRODUCTION

The success of Internet is mainly determined by its layered
architecture [1]. A particular layer can be easily replaced
or modified while the layer’s interface remains unchanged.
Therefore, other layers are not influenced by these changes.
As for the mobile ad hoc network (MANET) context, the
current TCP/IP layered architecture is not suitable. This is
because many problems, such as high bit error rate on the
wireless link were not considered when the TCP/IP protocol
stack was introduced. A way to cope with this is by using
cross-layer (CL) designs [2]. CL designs break the layered
architecture by using the information from one layer to adjust
the actions of another layer, e.g. upper layers that adapt to the
changing wireless link situation using information from MAC
and physical (PHY) layers.

A CL architecture that supports multiple CL designs should
consider the tradeoff between efficiency and modularity. The
modularity of any protocol stack means that protocols are
operating system (OS) independent and functional indepen-
dent from each other. The efficiency is measured in term of
the information propagation latency and the packet overhead
introduced by the architecture. There are mainly two categories
of architectures that support CL designs, namely the signaling

and the function-call approaches. The signaling approaches
favor modularity by using messages to propagate information.
Therefore, the modularity is high and the efficiency is low
because: 1) the information needs to go through the protocol
stack, which increases propagation latency; 2) overhead in
term of additional bytes of CL information is introduced to
normal packets. The function-call approach, on the other hand,
favors efficiency by using APIs to directly access the physical
memory location of a variable. The information also does
not need to go through the protocol stack. This approach,
however, is highly OS dependent because every system has its
own unique API. In addition, different versions of the same
OS may also have different APIs. Therefore, the middleware
of function-call based CL architectures must be frequently
updated along with other systems components. This is not
practical in nowadays multi-OS, multi-vendor environment.
Furthermore, the function-call approach also needs to deal with
read-write conflicts because of the direct memory access style.

We previously proposed an Infrastructure for CL Designs
Interaction (ICDI) [3]. The architecture allowed multiple CL
designs to interact by strictly using the signaling approach for
propagation of CL information. An Interaction InterFace (IIF)
was introduced to each layer to simplify the encapsulation
and de-encapsulation of CL information. After an in-depth
analysis of the function-call and signaling approaches, we
found possible improvements to reduce the packet overhead
and propagation latency of the original signaling-based ICDI
while keeping the architecture OS independent. In this paper,
we present a novel Cross-Layer InterFace (CLIF) component
to replace the IIF in the original architecture. The CLIF uses
function-call style features e.g. storing variables using shared
memory. In addition, the CLIF is further optimized by using
hashing to organize the CL information. The performance of
the individual CL designs is also improved in some cases when
our novel CLIF is introduced in ICDI.

The main contributions of this paper are:
1. In-depth analysis of the advantages and disadvantages

of both, function-call and signaling based approaches for
CL information management;

2. A novel Cross Layer InterFace (CLIF) element that uses
shared memory for information organization and access
while keeping the overall architecture OS-independent;

3. Experimental results to validate the improvements due
to our hybrid architecture (the packet overhead is reduced
by more than 70% and the propagation latency is reduced
by more than 60%).

This paper is organized as follows. We analyze the signaling
and function-call based approaches in sections II and III
respectively. In section IV we briefly introduce the ICDI
architecture and describe the novel CLIF element that replaces
the original IIF. The simulation results that evaluate the
improvements of our proposal in terms of latency and packets
overhead are reported in section V. We finally conclude the
discussion in section VI.

II. SIGNALING APPROACH

The fundamental difference between function-call and sig-
naling approaches is that signaling approach uses messaging
to deliver information among different entities. Every entity
only needs to know the packet format (packet header) of its
peer. For protocols in different layers, the communication is
achieved by adding and removing packet header. In this sec-
tion, we use the SNMP [4] and the MobileMAN [5] to explain
the advantages and disadvantages of signaling approach for CL
information architectures.

A. SNMP

The Simple Network Management Protocol (SNMP) [4] is
not designed for CL interaction, but for network management
systems to monitor network-attached devices. SNMP, however,
delivers CL information because the sources of the information
are the IP layer and below, while the destination is the appli-
cation layer. Here we use SNMP to analyze the advantages
and disadvantages of signaling approach for CL interaction.

SNMP forms part of the internet protocol suite as defined by
the Internet Engineering Task Force (IETF). The SNMP uses
GET , SET , and TRAP primitives. The GET or TRAP
primitives are used to inform the status (value) of a network
variable. The SET primitive is used to update or control
a variable or a system. Also, SNMP does not define what
information a managed system should offer. Instead, SNMP
uses an extensible design, where the available information is
defined in a dedicated database called Management Informa-
tion Base (MIB). These characteristics are very suitable for
CL information management. The current structure of SNMP,
however, still has the following problems when it is directly
used for CL information management:
• The SNMP is an application layer protocol. Other pro-

tocols must use the standard TCP/IP protocol stack to
access the information in MIB. Consequently more in-
formation propagation latency and packet overhead are
introduced.

• The MIB is depicted as a tree hierarchy. It is very
powerful to manage information but too complicated and
not necessary for CL information management.

• The MIB structure is suitable for centralized data man-
agement in one protocol. The CL designs, on the other

hand, are decentralized in many protocols of different
layers.

• The interface between SNMP and other protocols is still
not defined because currently SNMP is only used for
network management. It is not used by other protocols
for any other purpose.

B. Dedicated signaling architecture

The Mobileman [5] provides a solution that breaks the
basic layered architecture. The Mobileman architecture adds
another stack component called Network Status. This compo-
nent is a repository provided for network information sharing
among the layers. The Mobileman recommends replacing the
standard protocol layers with a redesigned network status-
oriented protocol architecture. This, however, would lead to
increasing implementation and maintenance efforts. Further-
more, the protocols need modification if the Network Status is
enhanced. Efficiency would be reduced and complexity would
be increased in such cases.

C. Advantages and Disadvantages

The advantages of signaling approach are:
• Simplicity is achieved because the protocol only handles

its own header, nothing else.
• The packet header formats are defined by international

standardization organizations. All industrial and academic
parties can simply connect to the network with the
knowledge of the header format.

• Independency is high when using the signaling approach.
The signaling approach provides a unified solution for the
inter-node and the intra-node interactions because they all
handle the packet headers n the same way.

The disadvantage of the signaling approaches is lower
efficiency compared to function-call approach. By propagating
the information using packets, overhead is introduced because
the system needs more memory to store the additional infor-
mation. In order to provide up-to-date information, signaling
approaches may frequently send information using packets and
consequently introduce more overhead. Another disadvantage
is propagation latency caused by layer-by-layer information
propagation. The time complexity analysis of the signaling
approach is provided in [3].

III. FUNCTION-CALL APPROACHES

The function-call based solutions establish direct connection
between layers by providing APIs to access all required
information. This section uses two examples, the ECLAIR and
XIAN architectures, to explain the strength and weakness of
this approach.

A. ECLAIR

The ECLAIR [6] architecture belongs to the function-
call category. This architecture prohibits adaptation loops by
exhaustive listing all the functions that may be called by
CL designs and providing registration scheme to control the
function calls. Because the functions are different in many

operating systems, this architecture is operating system (OS)
dependent. CL architecture should also provide mechanisms
for multiple designs to interact. The ECLAIR architecture does
not clearly state this issue or provide any solution.

Another problem of ECLAIR is that all the CL optimiza-
tions are regarded as stand-alone system component. There-
fore, all the CL optimizations are applications, instead of a
part of the protocol that they are optimizing. This is not
practical in real version-based software releases such as the
operating systems. The CL optimizations are normally a piece
of patchable software to the original protocol. After the patch
is applied, the protocol will be able to adjust its behavior
according to the CL information.

B. XIAN

Another API based solution XIAN is presented in [7]. The
authors listed the available MAC layer APIs to provide CL in-
formation for the network, transportation and application lay-
ers. This architecture only provides bi-directional interaction
between MAC and an upper layer. The interactions between
IP and TCP, or between TCP and application, are impossible.
This significantly limits the capacity of the XIAN architecture.
Like the ECLAIR architecture, the XIAN proposal is also
OS dependent. The authors actually only provided a solution
for Linux which is not the most widely used OS for mobile
terminals.

C. Advantages and Disadvantages

The advantage of function-call based solution is high effi-
ciency. The function-call approach is more efficient than the
signaling approach because:
• Function-call approaches directly accesses memory to

read/write variables. No additional overhead in the pack-
ets is introduced when propagating the information.

• Function calls do not need to go through the layered pro-
tocol stack, which means the function-call approach has
less information propagation latency than the signaling
approach.

• No intermediate entity, such as the intermediate layers in
the signaling approach, is involved in the function-call
process.

As mentioned in the previous section, the most important
feature of protocol stack is that when the implementation of the
layer changes, the interface is still unchanged. The function-
call approach, however, breaks this structure by allowing
direct API access to the variables. This makes the function
call approach very implementation-related and OS-dependent.
This problem cannot be solved even if the middleware of
the function-call based architectures exhaustively including
all APIs. When the protocols are updated and the names of
the APIs are changed, the middleware, the tuning layer of
ECLAIR for example, still requires update.

As shown in figure 1, a real network entity that includes
applications, OS core and network interface card (NIC) in-
volves the software/hardware from many vendors. Listing all
possible APIs is impossible. Furthermore, the MAC and PHY

layer information may be directly generated by hardware so
that no API is available.

Application

TCP

IP

MAC

PHY
NIC}

} OS core

applications

Fig. 1. TCP/IP protocol stack and its implementation in real systems

Inter-node CL interaction using APIs, with Remote Pro-
cedure Call (RPC) for example, are not efficient. RPC is
application layer protocol. This means the overheads of all
layers are introduced even for the interaction that only involves
lower layers. Furthermore, most intermediate nodes such as
routers do not have an application layer. This makes the API
based inter-node solution impossible.

Another weakness of all function-call approaches is that the
write-write conflicts exist when multiple entities try to directly
write the same physical memory in a real-time system.

IV. HYBRID ARCHITECTURE FOR CL INFORMATION
MANAGEMENT

We envision that there is a possibility to combine the advan-
tages of both approaches discussed in the previous chapters.
The simplicity and the OS-independence of the signaling
architectures can be combined with the efficiency of their
function-call counterparts by using direct memory accesses in
a single integrated approach.

An Infrastructure for CL Designs Interaction (ICDI) was
previously proposed in [3] shown in figure 2. This architecture
uses layer-by-layer signaling indicated as packets flow in the
figure to propagate CL information. The CL information is
present only in the protocol (not shown in this figure) that
provides it. The middleware handles the priority of multiple
CL designs. Interaction InterFaces (IIF) are added to each
layer to simplify the encapsulation and de-encapsulation of CL
information as. Compared to the function-call approaches, this
architecture has longer information propagation latency and
additional overheads due to the distributed variables storage
and the propagation approach.

In order to reduce the propagation latency and the packet
overhead of the original ICDI, we propose a novel CLIF
element that replaces the IIF. The CL information is stored in
a hash table. Shared memory is used to access this information
from different layers. The signaling based propagation is used
for the inter-node interactions and intra-node interactions that
may lead to write-write conflicts.

A. Novel Cross Layer Interface component

The CLIF is a component introduced to each protocol layer
that replaces the original IIF. The CLIF is responsible to:
• decode the CL information from packets when packets

arrive;

Fig. 2. the Infrastructure for Cross-layer Design Interaction

• provide information to core protocol in XML format;
• propagate the CL information to other layers when a

packet is sent out.

protocol CLIF Header CL info.data

Header data

To other layers

From other layers

CL information

Header data

Header CL info.data

B interface

A interface

Fig. 3. CL interface and packet handling

The CLIF provides two interfaces for the protocols as
shown in figure 3. The “A Interface” is the interface that
transfers the standard packet. Therefore, a protocol that cannot
handle the CL designs is still functioning in this architecture.
The “B Interface” is available only to CL aware protocols
and is used to exchange the CL information with the CLIF.
This interface uses simple ASCII encoded commands, e.g.
action, parameters.... The CLIF supports the following com-
mands related to variable handling:

• SET , variable name, value: The SET command is used
by protocols to add or update a variable in the CLIF.

• GET , variable name: The GET command helps the
CLIF to retrieve the value of a variable from a protocol.
The complete value format is returned to a buffer. The
protocol then needs to cast the value to the desired data
type before using it.

• UPDATE, variable name, value: The UPDATE com-
mand is used by the CLIF to request a protocol to update
its parameter.

• CANCEL, variable name: The CANCEL command
is used by protocols to cancel the registration of a
variable. If the CANCEL operation is successful, the
variable is removed from the CLIF so that no other
protocol can access it.

The protocols use SET to update the information stored
in the CLIFs. Please note that there is a single copy of
each variable that can be accessed by all CLIFs (this will be
explained later). If the protocol requesting the update is not
the owner of the variable, an UPDATE action is used by the
CLIF to synchronize the local value in the protocol that owns
it. UPDATE is also used when inter-node CL designs need
to write variables in other nodes.

In order to enable such interactions between the CLIFs and
protocols, the protocols need to support the above APIs as they
need to support other protocols’ header formats. The following
is the difference between the CLIF API and the API in the
functional-call approach. The function-call approaches require
the protocols to provide APIs, while CLIF provides standard
APIs to protocols. The APIs provided by different protocol
implementations are not standardized, but the APIs provided
by CLIF (SET , GET , UPDATE, CANCEL) are universal.

Therefore, the following is the complete procedure of in-
coming packet handling with the CLIF:

1. The CLIF handles the CL information before the packet
is handled by the destination protocol.

2. After removing the CL information in the packet, the
CLIF forwards the packet to the destination protocol.

3. The CLIF sends the GET command to request the CL
information from a protocol.

4. The protocol uses the SET and CANCEL functions
via “B Interface” to access and manage the CL informa-
tion in the CLIF.

5. When a protocol sends out a packet, the CLIF attaches
the CL information that is to be forwarded. Therefore, the
standard protocols are not responsible for handling the
CL information. Instead, they access the CL information
from the CLIF of its layer.

6. The CLIF uses UPDATE to synchronize the value in
its shared memory and the protocol that owns the variable
(the owner protocol).

B. Compatibility

In order to cooperate and coexist with network entities
that do not support CL optimizations, the CL architecture
should allow the protocols to operate without knowing the
existence of any CL information. The CL architecture needs
to be notified if additional information is attached to the
normal packet. Appropriate pre-handling de-encapsulates the
additional information before the packet is handled by the
standard protocol. We use the unused bits in the protocol
headers to indicate if CL information is attached to normal
packets. Then the novel CLIF detaches the information from
packets if present.

MAC and PHY layers provide most of the CL information
that is involved in the CL designs. Therefore, by default, the
packets from MAC layer are attached with CL information.
In the IP header, one bit in “flag” is reserved. The IP header
provides notification by setting this flag. There are still four
reserved bits in the TCP header, after the Explicit Congestion
Notification (ECN) [8] uses two of the six original reserved

bits. The IP header also has one bit reserved in the “flag” field.
These bits can be used to notify the CLIF if the packet contains
additional CL information. The application layer has dedicated
methods to negotiate parameters like QoS configuration for
lower layers. This layer generally only reads CL information
from the CLIF. Consequently, no flag in application headers
is needed to indication CL information.

C. CLIF with hash table

In order to improve the search speed and simplify the
storage of CL information, we use a hash table to store CL
information in the CLIF. The name of the layer where the
variable comes from is the hashing key as shown in figure 4.
This is because the variables matched to the same key belong
to the same layer. Therefore, the protocol can efficiently update
all its own CL information.

The time complexity of inserting an item is O(1). The time
complexity of searching an item is in the worst case O(n),
where “n” is the number of CL variables in this layer.

MAC/PHY

IP

TCP

Application

others

name value name value \0

name value name value \0

name value name value \0

name value name value \0

name value name value \0

N

N

N

N

N

Fig. 4. The hash table to store CL information in CLIF

D. Shared Memory for Information Synchronization

Instead of storing a complete copy of CL information from
all layers, the CLIF only stores the CL information from its
own layer. The CLIFs use the memory address reference to
each other to access the CL information that does not belong
to its layer. According to the CLIF data structure shown in
figure 3, the position of variables can be precisely calculated
given the layer and name of the variable. By referencing the
addresses instead of copying the values, the synchronization
of variables is achieved. Figure 5 also clearly shows that this
implementation detail is hidden from the protocols that use
the CL information.

MAC/PHY

IP

TCP

Application

others

N

N

N

N

MAC/PHY

IP

TCP

Application

others

N

N

N

N

IP

MAC

CLIF

CLIF

Fig. 5. The shared memory of CLIF hash tables in MAC and network layers

The challenge of shared memory approach is the write-write
conflicts. The write-write conflict is introduced when multiple
protocols update a value at the same time. In order to remove
such conflicts, in our proposal the signaling approach is used
when a protocol needs to update a parameter that is not in its
own layer. The message is sent to the CLIF of the destination
layer. The CLIF then updates the value in shared memory
and uses UPDATE action to synchronize the value in the
protocol. Therefore, only the CLIF API from the same layer
as the parameter can update the parameter in shared memory.
The write-write conflict is thus avoided.

In order to accelerate the speed of fetching variables, the
CLIF maintains the name list of the stored variable. Therefore,
the protocols can use the search function provided by the CLIF
to directly access the physical address of the variable. The
following algorithm is used by protocols to fetch a variable
from the shared memory.

// This is the definition of CL information
// stored in the CLIF.
struct CLInformation {

name;
value;
owner;
last_update_timestamp;

}
FUNCTION FetchInformation (Name)
{

// data is the reference to CL information
CLInformation *data;
// Search for the index "N" of information in shared
// memory using the CLIF function.
N = searchByName(Name);
// Calculate the start address of the CL information
address = StartAddress + N * SizeOf(CLInformation);
// Fetch data, cast it to the desired type.
data = (CLInformation *)address;
return data;

}

E. Packet Overhead Consideration

In the original signaling-based only ICDI, complete in-
formation about a variable including the layer, the protocol,
the name and the value is propagated along with normal
packets. With the proposed shared memory access mechanism,
this additional information is significantly reduced. Instead
of transporting the complete information description, only
maintenance information is attached in most cases. The com-
plete CL information is only propagated along with normal
packets when a protocol from other layer needs to update a
CL variable. The packet overheads introduced by the hybrid
architecture include:
• registration of the CL designs;
• broadcast that notifies all layers that a CL parameter is

available or unavailable (canceled);
• write request in case that the parameter and the protocol

that updates it are not in the same layer.

V. VALIDATION AND RESULTS

In order to validate our novel CLIF, we implement the CLIF
in the Network Simulator 2 (ns-2) version 2.28 [9]. The new

implementation is based on the original implementation of
ICDI with the following improvements:
• the original IIF is replaced by the CLIF using the hashing

and shared memory mechanism;
• The system time is used to evaluate the propagation

latency inside a node;
The same simulation scenarios to validate of the original

ICDI are used in this paper in order to compare the perfor-
mance of the original signaling-based only architecture and
the improved hybrid architecture with novel CLIF. We use the
following network scenario:
• mobility model: random waypoint [10];
• number of nodes: 50;
• area: 500m × 500m;
• node speed: 0 to 20m/s;
• data sources: 25 FTP on TCP, and 10 CBR on UDP;
• test duration: 600s, pause time is the time when the nodes

are stationary;
Ad hoc On-demand Distance Vector (AODV) [11] and Op-
timized Link State Routing (OLSR) [12] are used in order
to investigate the behavior of both proactive and reactive
routings. The NS-2 OLSR patch is provided in [13]. We
still use the three CL optimizations that validate the original
architecture in [3]. The details of the three CL optimizations
were explained in [3].

0

1

2

3

4

5

6

0 30 60 120 300 600

original

improved

T
o

ta
l
o

v
e

rh
e

a
d

 %

Pause time

Fig. 6. Overhead improvement

Figure 6 shows the reduction of packet overhead in the
new design. The overheads of both the original and the
improved systems are proportional to the number of packets.
Consequently, the pause time only has minor effect on the
results. The packet overhead reduction is mainly contributed
by the smaller size of additional information in the new design.

The system time is used to compare the propagation latency
of the original and the improved systems. The latency is the
period from the time when a variable is requested, to the time
when the value of variable is fetched. Because the absolute
propagation latency is strongly related to the memory and the
CPU used for the simulation, the normalized values of the
latency (value of the original ICDI as 1) are compared. We
find the improved design is averagely 70% faster to deliver the
information value to their destinations. This validates that the
novel CLIF with shared memory access mechanism introduces
less latency than the original ICDI using signaling propagation.

0

0.2

0.4

0.6

0.8

1

1.2

0 30 60 120 300 600

original

improved

P
ro

p
a
g
a
ti
o
n
 l
a
te

n
c
y

(n

o
rm

a
liz

e
d
)

Pause time

Fig. 7. Normalized propagation latency comparison

The up− to− date CL information is defined as: At time
t, a protocol in layer d reads the value of the variable V (Vtd)
from the CLIF; The value of V in the layer s that provides this
information is Vts; The information is up-to-date if Vts = Vtd.
We further define the information correctness as the ratio
of queries that fetch up-to-date CL information to the total
number of such queries.

0

10

20

30

40

50

60

70

80

90

0 30 60 120 300 600

original

improved

C
o
rr

e
c
tn

e
s
s
 %

Pause time

Fig. 8. Information correctness comparison

Figure 8 shows the information correctness of the original
signaling-based and new hybrid architectures. The hybrid
architecture always provides better results because correctness
increases when the information propagation latency is reduced.
However, it is impossible to guarantee 100% correctness
because any real system has computation delay as well as
propagation delay. Neither the signaling nor the function-call
approach can completely avoid these delays.

With reduced information propagation latency, the pro-
tocols can access more CL information that is up-to-date.
Consequently, the successful delivery of packets, measured
in terms of throughput percentage, is improved as shown in
figure 9 and 10. The improvements mostly happen when the
MAC/PHY layer CL information is changing rapidly due to
fast changing topology (small pause time). When the topology
becomes more stationary, the CL information changes less
frequently. Consequently, less improvement is achieved. The
end-to-end packet delay is also slightly improved (around 1%)
using the new hybrid architecture.

96

96.5

97

97.5

98

98.5

99

99.5

0 30 60 120 300 600

original

improved

A
O

D
V

 T
h
ro

u
g
h
p
u
t
%

Pause time

Fig. 9. AODV throughput percentage comparison

55

60

65

70

75

80

85

90

95

100

0 30 60 120 300 600

original

improved

O
L
S

R

T

h
ro

u
g
h
p
u
t
%

Pause time

Fig. 10. OLSR throughput percentage comparison

VI. CONCLUSION

This paper analyzed the advantages and disadvantages of
the existing CL architectures based on the function-call and
the signaling approaches. Then we proposed a hybrid CL
architecture using a novel cross-layer interface (CLIF) element
that combined the advantages of both the signaling approach’s
simplicity and OS independency, and the function-call ap-
proach’s efficiency. This architecture is an improved version
of a previously proposed CL proposal. The information propa-
gation latency and packet overhead were reduced by 75% and
60% respectively in the new design. The proposed CLIF used a
hash table to efficiently organize the CL information stored in
the memory. The shared memory mechanism further reduced
the total required memory space. The write-write conflicts
were avoided by providing separate access mechanisms to a
particular variable for the owner layer and the other protocol
layers. The synchronization of the variable value in the CLIF
and that in the owner protocol was also achieved using the
shared memory mechanism.

ACKNOWLEDGMENT

This work is supported by the Dutch Government as part
of the decree on subsidies for investments in the knowledge
infrastructure (Bsik) program. This work is done within the
Micro Satellite (MISAT) project.

REFERENCES

[1] I. Chiamtac, M. Conti, and J. Liu, “Mobile ad hoc networking, imper-
atives and challenges,” in Ad Hoc Networks, vol 1, no. 1, July 2003.

[2] V.Kawadia and P. Kumar, “A cautionary perspective on cross layer
design,” in IEEE Wireless Commun., vol. 12, no.1. IEEE, feb. 2005,
pp. 3–11.

[3] Z. Chang, G. N. Gaydadjiev, and S. Vassiliadis, “Infrastructure for cross-
layer designs interaction,” in the 16th IEEE International Conference on
Computer Communications and Networks (IC3N), August 2007.

[4] D. P. J. Case, R. Mundy and B. Steward, “Rfc 3410 introduction and
applicability statements for internet standard management framework,”
2002.

[5] M. Conti, G. Maselli, G. Turi, and S. Giordano, “Cross-layering in
mobile ad hoc network design,” in Computer, Volume 37, Issue 2,, 2004,
pp. 48–51.

[6] V. Raisinghani and S. Iyer, “Architecting protocol stack optimizations on
mobile devices,” in Communication System Software and Middleware,
2006. Comsware 2006. First International Conference on, Jan. 2006, pp.
1–10.

[7] H. Aiache, V. Conan, J. Leguay, and M. Levy, “Xian: Cross-layer
interface for wireless ad hoc networks,” in Mediterranean Ad Hoc
Networking Workshop (Med-Hoc-Net), 2006.

[8] N. W. Group, “Rfc 3168 the addition of explicit congestion notification
(ecn) to ip,” in Mediterranean Ad Hoc Networking Workshop (Med-Hoc-
Net), 2006.

[9] “The network simulator - ns-2,” in http://www.isi.edu/nsnam/ns/.
[10] T. Camp, J. Boleng, and V. Davies, “A survey of mobility models for

ad hoc network research,” in Wireless Communications and Mobile
Computing (WCMC): Special issue on Mobile Ad Hoc Networking
Research, Trends and Applications, volume 2, number 5, 2002, pp. 483–
502.

[11] C. Perkins, E. Belding-Royer, and S. Das, “Ad hoc on-demand distance
vector (aodv) routing,” in Internet Engineering Task Force (IETF) draft,
July 2003.

[12] T. Clausen and P. Jacquet, “Optimized link state routing protocol (olsr),”
in Internet Engineering Task Force (IETF) draft, October 2003.

[13] F. J. Ros, “University of murcia um-olsr documentation,” in
http://masimum.dif.um.es/um-olsr/html/index.html, March 2005.

