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Abstract—Embedded Multiprocessor Systems-on-Chip
(MPSoCs) commonly run multiple applications at once.
These applications may have different time criticalities, i.e. non
real-time, soft real-time, and firm or hard real-time. Application-
level composability is used to provide each application with
its own virtual platform, such that each application may be
developed, verified, and executed independently, given its virtual
platform specification. Composability of functional and temporal
properties has been demonstrated in previous work.

In this paper, we extend composability to include power
management, where each application can manage its energy usage
independently. Each application receives an independent energy
and/or power budget, which it can manage as it sees fit, with its
own application-specific power-management policy. Time, energy,
and power budgets allocated to each application ensure that its
power-management policy cannot cause any interference to the
functional, timing, and power behaviours of other applications.

We implement our technique on an existing composable
and predictable hardware platform (CompSoC), and extend its
Real-Time Operating System (OS) with a power-management
infrastructure. Applications use a power-management API to
communicate with the OS that implements time, energy, and
power budgets. We demonstrate the applicability of our tech-
niques by running several concurrent applications with their own
power managers on an FPGA prototype.

I. INTRODUCTION

Multiprocessor Systems-on-Chip (MPSoCs) may simultan-
eously run multiple applications with both real-time and non-
real-time requirements. Real-time applications must meet their
requirements regardless of other applications that are executing
on the same platform. Integration of multiple applications with
mixed-time criticality requirements pose a problem as they in-
terfere with each others functional and temporal properties on
shared resources. A priori verification of desired properties of
such systems is complex since all applications, and the degree
and nature of their interference must be known. Independent
Development and verification of (real-time) applications is
impossible in this case, since detailed knowledge of other
(e.g. non real-time, possibly unbounded) applications’ resource
usage would need to be known. One solution is platform
virtualisation through application-level composability, where
platform resources are shared such that applications execute
on their own virtual platform. This enables application-level
temporal requirements to be met for the virtual platform,
regardless of other applications executing on the MPSoC. This
has been shown for functional and temporal properties.

While much work has been done on the composability
of applications’ functional and temporal properties [1]–[3],

power-management policies for such systems are generally
made for the entire system, and not per application. In [4]
MPSoCs are cited as one of the justifications for virtualisation,
but lists energy management as one of its limitations, claiming
that power-management is inherently a system-level property,
rather than an application-level property.

In this paper we disprove this hypothesis, as we ex-
tend the application-level composability approach to include
application-level composable power-management, with energy
and power budgets per application. In real terms this adds the
benefit of treating individual applications, e.g. on a mobile
phone, as if they have their own independent energy source.
Even though all the applications share a single battery, or other
power source, they maintain completely separate energy and
power budgets. This is useful from a user point of view, as
illustrated by two common scenarios on a smart phone. An
energy budget can be reserved for the phone-call application,
such that there is guaranteed to be sufficient battery energy
to be able to make a five-minute phone call, even when other
applications are running, such as (battery-hungry) gaming or
wireless video streaming. Similarly, each application can be
given a power budget, to avoid overheating or drawing more
current than is optimal for the battery, or for energy-scavenging
systems where energy is unlimited, but power is not.

The major advantage of composable virtual platforms, with
independent power budgets, is that designers are able to design
their application-specific power-management policy using their
knowledge of their (non) real-time application, without af-
fecting the power or temporal profile of other concurrent
applications. This enables application designers to optimise
their application’s power profile, using their virtual platform’s
specification, independently of the development of other ap-
plications for the same platform. When the applications are
executed concurrently on the platform, their composition will
have no affect on the temporal and power profiles of the
other applications, in comparison to executing independently,
allowing their independent design and verification.

In this paper we describe how this may be achieved for
a predictable and composable hardware platform [5], [6]
and Real-Time Operating System (OS) [7] through use of
an Application Programming Interface (API), that enables
the creation of application-level power-management policies.
We provide some example power-management policies that
exploit temporal and energy budgeting information, to achieve
power reduction through Dynamic Voltage and Frequency
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Scaling (DVFS). In order for power-management to be truly
composable each application must have its own energy or
power budget, so that its power consumption behaviour does
not affect other applications. Subsequently each application
executes in its own virtual platform and manages its own
energy or power budget independently. Meanwhile the OS
allocates and enforces time, energy, and power budgets such
that concurrent applications do not affect each other.

We describe, in this paper, how independent budgets may
be assigned to individual virtual platforms in terms of time in
seconds, and either energy in Joules, or power in Watts. These
budgets must be enforced while maintaining the application’s
temporal requirements, which can be best effort, soft real-time,
or firm real-time. We explain how or application-level power-
management approach is extended to support any mix of best-
effort, soft and firm real-time applications.

The rest of this paper is structured as follows. We present
related work in the following section. In Section III we
describe the background information necessary for Section IV,
in which we explain how application-level composable power-
management may be achieved. We provide experimental ana-
lysis using an FPGA prototype of our system in Section V.
We conclude this paper in Section VI.

II. RELATED WORK

Virtualisation of hardware resources for embedded systems
has been documented multiple times before. In [8] for instance,
it is described how the Xen hypervisor [9] can be extended to
achieve a real-time control loop, using virtualisation to achieve
isolation between time criticality domains. In [10], [11] it is
explained how “temporal isolation” may be achieved through
the use of Variable Bandwidth Servers (VBS) [12]. Their tech-
nique enables multiple applications to execute simultaneously,
providing predictable bounds on latency and throughput, for
application execution. The VBS technique has a more liberal
interpretation of temporal isolation than what we apply in this
paper with our composable approach. In the VBS technique
applications may interfere with each others schedules, so long
as the overall resource utilisation stays below 100%. In our
composable approach, applications are completely temporally
isolated, in that they do not affect each others execution by
even a single cycle.

In [4] the role of virtualisation in embedded systems is
examined. MPSoCs are identified as one of the target use-
cases of virtualisation, but energy management is identified
as one of the limitations of this approach. One of the main
arguments in [4] is that energy, for embedded systems, is a
global physical resource, and cannot therefore be traded off
against performance.

While, e.g. mobile phones, have a global physical energy
resource in the form of a battery, the energy stored in the bat-
tery is only a limitation between replenishments, i.e. charging
the battery. Trade-offs in performance are therefore possible
against replenishment frequency. Embedded systems may also
contain energy scavenging components [13] producing unlim-
ited energy but at a limited rate.

In [14] the aforementioned VBS technique is extended to
included power-aware behaviour that affects frequency and
voltage scaling. This is achieved using off-line and on-line
techniques to detect static and dynamic slack, in order to
reduce the operating frequency to achieve 100% resource
utilisation. The frequency is derived based on the utilisation
of the application set, meaning that individual application’s
cannot affect their own power-management policies, or control
the frequency at which they operate.

It is demonstrated in [15] how power management may
be achieved for individual voltage/frequency islands through
the use of solely on-chip components, enabling fast transition
times. In [16] a technique is described that takes advantage
of fast transition times between high and low, voltage and
frequency states, in order to approximate various frequency
levels, and achieve a reduction in energy consumption.

Also in [4], software complexity is listed as a limita-
tion of virtualisation for embedded systems. We address this
by enabling composable application-level virtualisation, with
composable temporal and energy budgets. As such, while we
may not decrease the complexity of development of individual
applications, we do decrease the complexity of integrating
software from multiple sources on a single platform.

The concept of hierarchical power-management is described
in [17], [18]. In [17] a two-tier hierarchical power-management
approach is applied to shared hardware resources. One tier
is at the system level and the other is at the component-
level. Dynamism at the component-level is regulated by power-
management policy at the system-level. A two-tier approach
is also taken in [18], with the hierarchical power-management
regulating a single hardware resource. The bottom hierarch-
ical level contains multiple pre-computed power-management
policies. The top hierarchical level selects which lower-level
policy to use based on current device state.

In this paper we address the energy management limitation
for embedded virtualisation by demonstrating how it may be
achieved on a CompSoC [5], [6] hardware platform, running
the CompOSe OS [7]. Our power-management system exists
at a higher-level than in [17], [18]. Figure 1b illustrates that
power management on our platform exists at the application-
level, and interacts with application specific budgeting data
stored in the RTOS, via an API interface. We demonstrate
how applications may use energy budget information to enable
power reduction through the use of DVFS.
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III. BACKGROUND

In [3] we demonstrated how application-level composable
virtualisation may be achieved for functional and temporal
properties. For this purpose CompSoC [5], [6] is used con-
sisting of composable and predictable hardware and OS. The
tile-based hardware is built around composable and predictable
Æthereal NoC [19] and memory controllers [20].

Computational tiles consist of Xilinx µBlaze processors that
communicate via the NoC through the use of a DMA [21].
This decouples and parallelises computation and communic-
ation. The tile is also equipped with a programmable Timed
Interrupt Module (TIM), that sends an interrupt to the µBlaze
at a precise programmed time in the future. A Voltage and
Frequency Control Module (VFCM) enables programmable
tile frequencies. The tile clock is either derived from a system
clock (illustrated in Figure 2), or it can be locally generated. In
our platform, the clock frequency in the system clock domain
is constant at the maximum available frequency. The tile clock
frequency is a scaled derivative of the system clock frequency,
as programmed using the VFCM. Time in both system and
tile clock domains is measured in clock cycles. As such, the
progression of time in the tile clock domain is scaled in
comparison to the system clock domain. When referring to
time we use the following time domains:
• Wall time (t): Actual real-world time, measured in seconds.
• System time (csys): Time in the fixed-frequency system

clock domain, measured in clock cycles at the system clock
frequency (fsys).

• Tile time (ctile): Time in the variable-frequency tile clock
domain, in clock cycles at the tile clock frequency (ftile).

For real-time applications that interact with the environment,
it is essential that the time observed inside a virtual platform
can be translated into wall time. The time domains in clock
cycles at a particular frequency can be converted to and from
wall time using t = csys/fsys or t = ctile/ftile.

Per-application virtual platforms are enabled using the Com-
pOSe OS [7] in combination with the CompSoC hardware.
Applications are scheduled by the CompOSe OS following a
TDM schedule. This schedule is regulated by a TIM that sends
an interrupt to the processor, as illustrated in Figure 3. Once
an interrupt is received by the OS a fixed-duration period of
OS time is started, lasting COS

sys cycles measured in system
time. During this time the context of the previous application
is stored and the next application is scheduled following the
TDM schedule. The context of the scheduled application is
restored, and, for composability [1], [7], the tile clock is gated
until exactly COS

sys cycles of time has passed.

TDM slot

OS slot Application slot

start task

Capp
sys

updateBudgets(app_id)

call power manager
schedule next task

updateBudgets(next_app_id)

TIM
interrupt

TIM
interrupt

schedule next application
updateBudgets(previous_app_id)

setFrequency(app_id, frequency)

COS
sys

Figure 3. Example timeline for a single TDM table slot.

After the fixed-duration OS time has elapsed, a fixed period
of application time begins, lasting Capp

sys cycles, in system
time. The application is executed in its virtual platform at
a frequency specified by the application, with the application
execution’s temporal frame of reference being in tile time.
The application executes until its current task is finished or
until the interrupt arrives from the TIM. If the application
finishes before the end of the application slot the tile clock is
gated until the interrupt arrives. The interrupt signals another
iteration of OS time. The OS time and task time continue to
occur alternatively.

In [3] we implement OS-level power-management for real-
time data-flow applications. Applications that follow a data-
flow graph model like Synchronous Dataflow (SDF) [22], or
Cyclo-static SDF (CSDF) [23], are split into tasks that may
be represented as vertices in a graph, as illustrated for an
H264 decoder in Figure 4. Each vertex vn in the graph is
connected to other vertices by FIFO communication edges. All
communication between vertices happens across these edges.
The task vertices are annotated with the worst-case work of
the task, measured in cycles. The worst-case work is the
maximum number of clock cycles required to complete the
task’s execution, independent of the clock frequency at which
it is executed. Dynamic execution time information, enables
dynamic variations in task execution time, i.e. a task finishing
earlier than its worst case, to be translated into lower operating
frequencies while maintaining the graph’s real-time throughput
requirements.

This policy schedules applications and also the application’s
tasks in the OS. The power-management of the application is
also carried out in OS time. The OS time has a fixed duration
and as such must bound the time taken to complete all of these
things. Even though it is composable, due to the fixed-length
OS time, an application with, e.g. complex task scheduling
or power-management, will cause a greater fixed OS time
overhead for all applications. By moving such application
dependent overheads into application time, the OS slot can
be shorter, enabling a higher utilisation of the processing core
by applications, rather than OS administration.

We will now continue by explaining how power-
management can be meaningfully lifted out of OS time and
moved into application time, as illustrated in Figure 1.
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IV. APPLICATION-LEVEL POWER MANAGEMENT

Our previous work has shown how virtualisation may be
used to achieve temporal and functional application-level
composability. Integrating multiple mixed-time criticality ap-
plications for composable systems, can be achieved with
relative ease. We propose extending the concept of application-
level composability to also include the energy/power domain,
thus enabling application designers to develop application
specific power-management, while retaining the same ease
of integration. To achieve this we propose an application-
level power-management system that enables each application
to define its own power manager and manage its energy,
or power budget independently from other applications. We
enable power-management policy to be specified per applic-
ation, using API commands to interact with energy/power
budgeting information that is maintained at the OS-level, as
illustrated in Figure 1b. In the following sections we explain
how power-management functions may be specified, how
energy and power budgets may be specified and maintained
per application, and finally how our budgeting technique is
extended for a real-time power manager to use with a real-
time application.

A. Power Managers
Application-level power-management policies are encapsu-

lated in power-management functions. The user may use one
of the provided power-management functions, or specify their
own power-management function, to make use of the energy
information however they see fit for their needs. We enable
configuration of the power-management via an API interface.
Application independent power-management functions are as-
signed to each application using the following interface:
setPowerManager(app_id, power_manager)

where power_manager is a pointer to a power-management
function. Some example power-management functions for
DVFS consist of:

• Performance: Execute the application at the maximum
available frequency fmax.

• Conservative: Execute the application at the maximum
frequency permitted, while maintaining the specified power
usage constraint.

• Powersave: Execute the application at the minimum avail-
able frequency fmin.

These functions are called by the application, e.g. before
scheduling a task, making the appropriate changes to the op-
erating frequency. No restriction is placed on when, during an
application slot the application’s power-management function
may be called. In the case of the Conservative power

manager, energy budget information is used in the derivation of
the appropriate frequency level, and is implemented as follows:

Conservative(app_id){
freq = getMaxFrequency(remaining_energy);
setFrequency(app_id, freq);

}

where getMaxFrequency represents an API call to obtain
the maximum frequency at which the application can run,
considering its remaining energy. This API command is power
model specific, and is therefore beyond the scope of this paper.

In order to provide the power-management functions with
information to make power-management decisions, we extend
the already existing Application Control Block (ACB) inform-
ation per application in CompOSe, to contain the following
extra information:

• energy_budget: Energy allocation, in Joules.
• power_budget: Power allocation, in Joules per applica-
tion slot.

• energy_this_slot: Current energy consumption this
slot, in Joules.

• remaining_energy: Current total energy left, in Joules.
• last_budget_update: Last time this information was
updated, in absolute time, in cycles system time.

The energy_budget is the amount of energy that
an application has been allocated. Power is the rate of
energy. For a power budget, the power_budget value
is the amount of energy allocated per application slot.
Both energy and power budgets may be specified at
the same time. The energy_this_slot keeps track
of the amount of energy consumed during a single ap-
plication slot. The remaining_energy value is ini-
tially set equal to the energy_budget and is depleted
as the application consumes energy by decrementing the
energy_this_slot value at the end of each applica-
tion slot. The remaining_energy value may also be
augmented in the case of a power budget when there
is no simultaneous energy budget. In this instance the
remaining_energy is incremented following each slot by
the power_budget. It is essential to keep track of when the
budget information was last updated, so that the appropriate
changes may be applied the next time the budget information is
updated. To achieve this, the last_budget_update value
stores the time, in system time, when the budget information
was last updated. ACB budget information is available to the
application via API “get” functions, that effectively make the
data read-only.

The power management functions use the application’s
budget information to derive a DVFS operating frequency that
is set using the setFrequency(app_id, frequency)
API call. The setFrequency OS-level API command is
called by the application-level power-management function
to change the operating frequency, and is implemented at as
follows:

setFrequency(app_id, frequency){
frequency = power_model_check(frequency);
if(frequency < fmin){
frequency = fmin;



} else if(frequency > fmax) {
frequency = fmax;

}
updateBudgets(app_id);
setVFCM_frequency(frequency);

}

This function checks against the processor power model,
represented by power_model_check, to find out if the
application has got enough power allocated to sustain the
frequency request. If the application has sufficient power, the
frequency is changed to the requested level. If the application
does not have sufficient power the closest frequency, for which
the application has sufficient power, is set. The frequency is
also checked to make sure that it is within the available DVFS
frequency range fmin to fmax. The updateBudgets
API command is called to update the application’s budget
information, and is described in more detail in Section IV-B.
The setFrequency API command is not restricted to being
called from within a power-management function, and can be
called at any time by the application.

While these example power-management policies are relat-
ively straight forward, the user has the ability to craft much
more complex power-management functions that take advant-
age of budgeting information. Regardless of the complexity
level, the power management functions execute composably in
the application’s space, on the application’s own time budget.
Other application’s executing concurrently on the platform are
unaffected by the power-management decisions made by the
application.

B. Maintaining the Budget Information
The budgeting information on which the power-

management functions rely must be initialised and kept
up-to-date. At the application’s start, the energy_budget
and remaining_energy value are set equal to Eapp.
The budget information is kept up-to-date using the
updateBudgets(app_id) API command. Budget
information is updated before the start, and after the end of
each application slot, and whenever the application power
consumption changes, e.g. a change in voltage and frequency
levels requested by the application. A power model is
required to obtain energy values in order to update the budget
information, e.g. for our platform that supports DVFS we
use a table storing the power that the tile consumes at each
(voltage)-frequency level. An implementation of the OS-level
API function, looks as follows:

updateBudgets(app_id){...
if(slot_starting){
last_budget_update = slot_start_time;
return;

}
if(slot_ended){
elapsed=slot_end_time-last_budget_update;

} else {
elapsed = system_time-last_budget_update;

}
energy = elapsed*f_to_energy[f_tile];
energy_this_slot += energy;
remaining_energy -= energy;
if(slot_ended && power_budget

&& !energy_budget){

remaining_energy += power_budget;
}
last_budget_update = system_time;

...}

Budget updates may occur during application time, e.g.
whenever the frequency is changed using setFrequency
function, or in OS time, initiated by the OS before and after
every application slot. If a slot is starting, slot_starting,
the last_budget_update is set to the slot start time, and
the function returns without updating any other budget inform-
ation. This is because the application has not consumed energy
or performed work while it has not been scheduled. If the slot
has ended, slot_ended, and the application has a power
budget, power_budget, then the remaining_energy
is incremented by the energy_budget, energy per slot
amount. The application is not necessarily scheduled in every
application slot. As such elapsed is the elapsed time, in
system time, that the application has been scheduled since the
last budget update.

The energy that has been consumed since the
last_budget_update in system time, is calculated
by multiplying the elapsed system time with the per-
cycle of system time energy value. This is obtained
from the f_to_energy table, that is indexed using
the tile frequency between budget updates, f_tile. The
remaining_energy is decremented by the energy
amount, while energy_this_slot is incremented by the
same amount.

C. Specifying Energy and Power Budgets
An application may have an energy budget, a power budget,

or both. This is specified at the OS-level by an application use-
case manager, the details of which are beyond the scope of
this paper. The use-case manager assigns budget information
to the application via API commands. An energy budget may
be specified for an application using the following API call:
setEnergyBudget(app_id, energy)

where app_id is the application’s enumerated identifier,
and energy is a quantity of energy in Joules. This spe-
cifies a fixed quantity of energy for the application to con-
sume. The value energy_budget is assigned the value
of energy. The remaining_energy is set equal to the
energy_budget, and will not be replenished. A power
budget is specified per application using the following inter-
face:
setPowerBudget(app_id, power)

where power is the requested average power level per applic-
ation slot, in Watts. This power level is translated into the per
application slot power_budget, as per the application’s al-
location in the application TDM scheduling table. For power
P allocated to an application, the application’s slot energy
budget Eapp is calculated as follows:

TTDM = STDM ×
COS

sys + Capp
sys

fmax
(1)

ETDM = P × TTDM (2)

Eapp =
ETDM

Salloc
(3)



where in Equation 1, COS
sys and Capp

sys are the durations of the OS
slot and application slot respectively, in cycles in system time.
STDM is the number of TDM slots in the TDM table. TTDM
is the period of the TDM table, in seconds. In Equation 2,
ETDM is the energy that is consumed at power P in one TDM
table period, in Joules. The power level P only applies to the
application it was assigned. As such, the entire ETDM energy
can be used by the application, during its allocated TDM slots.
The application’s energy budget Eapp is therefore obtained
by dividing ETDM by the number of slots allocated to the
application in the TDM table Salloc, as shown in Equation 3.

D. Real-Time Extension

We continue by extending the application-level power-
management of the last section to include support for Dataflow
modelled real-time applications, such as the H264 decoder
illustrated in Figure 4. Applications are split into tasks that
are represented as vertices in the graph. In CompOSe task
information is kept in a Task Control Block (TCB) with an
enumerated ID, in a similar manner to how the application
information is stored in an ACB. Task scheduling is performed
on the application’s virtual platform, using the application’s
task scheduler. Temporal accounting is maintained at the task-
level using the following information in the TCB’s.

• time_budget: Duration of time in system time that the
task has been allocated for completion.

• remaining_time_budget: Current duration of time in
system time before the task must be completed.

• wc_work: Maximum number of cycles required to com-
plete the task.

• remaining_work: Current number of cycles left before
the task is complete.

In order to maintain the application throughput require-
ment, each task must complete its execution within its
time_budget. For this budget to be feasible it must
be greater than, or equal to, the task’s wc_work. Dur-
ing task execution, the remaining_work value tracks the
work in cycles a task must still complete before it finishes
its current iteration. Before the beginning of each itera-
tion of the task’s execution, the task’s remaining_work
is set equal to the task’s wc_work, and the task’s
remaining_time_budget is incremented by the task’s
time_budget.

We extend the updateBudgets() API command, from
Section IV-B, to maintain the temporal budget of the currently
executing task. As before, budget information is updated at
the end of each application slot and whenever a change to the
processor’s frequency level is requested. The temporal budget
information is updated as follows:

updateBudgets(app_id){...
elapsed = system_time-last_budget_update;
work = (elapsed*f_tile)/f_system;
remaining_time_budget-= elapsed;
remaining_work-= work;

...}

where elapsed is the elapsed system time since the
last budget update, f_tile is the tile frequency between

updates and f_system is the system frequency. The
elapsed time in system time is decremented from the
remaining_time_budget. The elapsed time is translated
from system time to the quantity of work actually performed
in tile time.

Once the task completes its execution, the task’s
remaining_work is set to zero, while any
remaining_time_budget is left over as slack. We
provide an example real-time power-management function,
that takes advantage of this slack accumulation, as follows:

• RT_Powersave: Execute the application at the minimum
possible frequency, while still maintaining the application’s
real-time throughput requirement.

The RT_Powersave power-management function utilises
static slack, e.g. from task time_budget over-dimensioning,
and dynamic slack, e.g. from dynamic variation in task end
times. This power-management function is implemented as
follows:

RT_Powersave(app_id){
work = remaining_work;
budget = remaining_time_budget;
frequency = (work/budget)*fmax;
setFrequency(app_id, frequency);

}

The remaining_budget value is only decremented by
work that has been done. Any static or dynamic variation in
the end time of a task, in comparison to its time_budget,
results in the accumulation of slack. This enables processor
frequency reduction while still maintaining the task’s through-
put requirement.

Power management functions are called by the applica-
tion before beginning task computation, and may be called
at any time by the application that is executing. As de-
scribed in Section IV-A, the power manager functions are
user specifiable, enabling more complicated policies that take
advantage of the available temporal and energy budget in-
formation, described in this section. Information such as the
remaining_energy, remaining_time_budget and
remaining_work enable application designers to create
real-time power-management policies, using run-time inform-
ation.

Application-level composable temporal and energy budget-
ing enables a platform that supports mixed time criticality
applications, that utilise their budgeting information for in-
dependent power-management without affecting the temporal
or power performance of other applications.

V. EXPERIMENTS

We demonstrate the applicability of our technique through
experimentation, on our CompSoC platform prototyped on
a Xilinx ml605 FPGA board. For this purpose we use a
version of our CompSoC hardware and with two processing
tiles as the one illustrated in Figure 2. Each processor has a
maximum frequency of 50 MHz and a modelled maximum
power consumption of 1.5 Watts. We extend the existing
CompOSe OS with temporal and energy budgeting extensions,
as described in Section IV. On this platform we exercise a
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(d) Task iteration completion times.

Figure 5. Synthetic application analysis.

real-time h264 decoder application mapped on two tiles, as
illustrated in Figure 4 and a synthetic application consisting
of a chain of 5 tasks, with task 1, 3, and 5 mapped on one
tile and the rest on the other tile.

To investigate the composable integration of our application-
level energy budgeting information, we instantiate the syn-
thetic application 3 times concurrently using different power-
management policies for each of the executing applications.
Each application is allocated a single slot in the application
TDM table, with a length of 3. Applications 1 to 3 are assigned
the RT_Powersave, Powersave, and Conservative
power managers, respectively. Application 1 and 2 are al-
located the same fixed energy budget, while application 3 is
allocated a power budget.

With this configuration, we carry out 4 experiments, meas-
uring application-level energy consumption, budget depletion,
frequency level and application graph iteration completion
times. All measurements are made per application task iter-
ation completion. To investigate if composable integration is
achieved, each experiment is carried out 4 times, once with
each of the 3 applications executing alone, and once with
the composition of all three applications. For application-level
composability to have been achieved, the difference between
running an application independently and after integration
should always be zero, which is the case for all tested
scenarios. However, due to lack of space we do not display
all those graphs. The results for the composition of all three
applications (App 1, App 2, App 3) and the case in which the
synthetic application is executed with no power management
policy (App1 noPM) are presented in Figure 5.

For application 1, with the RT_Powersave power man-
ager, the energy consumption per iteration, displayed in
Figure 5a, fluctuates in concordance with the application’s
frequency level, shown in Figure 5c. The RT_Powersave
power manager is targeted at real-time applications by us-
ing temporal budgeting information to exploit accumulated
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(e) Core 1 unused power budget.
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Figure 6. H264 decoder application analysis.

slack, in order to reduce the processor frequency, while still
meeting the application’s throughput requirement. As slack
is accumulated a general trend of decreasing frequency level
and energy consumption can be seen. This is reflected in
application 1’s energy budget depletion, as can be seen in
Figure 5b. Application 1’s energy budget depletes at a con-
tinuously lower rate, as the frequency level tends to decrease.
Application 1’s graph completes at a higher throughput than
applications 2 and 3, which is observable in the lower gradient
sloping line in Figure 5d. This is as expected, considering
application 1’s frequency is continuously higher than the other
two applications.

The results for application 2, in Figure 5c show that it
executed continuously at the minimum frequency, which is in
accordance with the Powersave power manager that it used.
Due to this, application 2’s energy consumption per iteration
varies very little, as observable in Figure 5a, with any variation
being due to dynamic variation in task completion times.
Due to the application’s continuous usage of the minimum
frequency level, its energy consumption is relatively small
in comparison to that of application 1. This is reflected in
Figure 5b, where both application 1 and 2 started with the
same energy budget, application 2 depletes its budget at a
lower rate.

In Figure 5d, it can be seen that applications 2 and 3 have a
very similar temporal profile. Both applications are identical,



have the same allocation in the application TDM scheduling
table, and execute continuously at minimum frequency. Even
though application 3 executes continuously at minimum fre-
quency, it does this using the Conservative power man-
ager. This power manager uses power budgeting information
to calculate the maximum sustainable frequency level that an
application can use for execution, given its current budget. A
sustainable frequency is one that consumes less power than the
budgeted power for the application. As is visible in Figure 5b,
application 3 is assigned a relatively low power budget. The
Conservative power manager calculates that the minimum
frequency is the highest sustainable frequency.

For our second investigation we utilise the H264 decoder
application. The results of this investigation are displayed in
Figure 6. With this configuration, 3 experiments are carried
out for each of the 2 cores, measuring frequency level, task
iteration completion time and unused power budget. Each
of these experiments is carried out twice, once for with
the RT_Powersave power manager, and once without any
power-management. In both cases energy accounting is still
maintained. Each core is assigned a power budget that is
the exact requirement to sustain the application’s execution
at maximum frequency.

Figures 6a and 6b show the frequency levels of both
cores. It can be seen in the graphs how the RT_Powersave
power manager scales the H264 decoder’s frequency level,
in response to dynamic variations in task completions.
When the H264 application is executed without any power-
management it continuously executes at maximum frequency.
Figures 6c and 6d indicate that, as expected, when no power
management is applied, the tasks of the H264 decoder com-
plete earlier than when the RT_Powersave power manager
is applied.

The reduced frequency levels, of the power managed H264,
translates into reduced power consumption. Figures 6e and 6f
display the accumulated remaining energy that is left from the
power budget after each task iteration. The H264 decoder that
runs without power-management continuously runs at max-
imum frequency, and therefore always consumes the power
budget it is assigned, as can be seen from the horizontal line
it creates in both graphs in Figures 6e and 6f. The H264
decoder with the RT_Powersave power-management, runs
predominantly below maximum frequency and therefore does
not consume all the energy it receives from its power budget.
This can be seen as energy accumulating in Figures 6e and 6f.
Both cores do not accumulate energy at the same rate due to
the variations in task worst-case work and dynamic variations
in execution.

In summary, with our experimentation we have verified that
composable power-management has been achieved, provided
a power-management policy analysis for our example policies,
and demonstrated the behaviour of our example real-time
power-management policy with an H264 decoder application.

VI. CONCLUSION

In this paper we extend application-level composability to
encapsulate the independent power-management of an applica-
tion, with energy and/or power budgets per application. Using

a composable and predictable hardware platform and OS we
demonstrate how this may be achieved for an MPSoC run-
ning mixed-time criticality applications. Our technique enables
application developers to independently design and verify
applications, and application power management policies for
a virtual platform specification. When these independently
developed applications, and their associated power manage-
ment, are combined on a single platform, the composition
of applications will not affect the application’s temporal or
power profiles, in comparison to when they were verified
independently.

To achieve this we propose an API for setting power man-
agement policies, assigning and updating energy and/or power
budgets and we describe its implementation for the CompOSe
real-time operating system. Furthermore, we present four ex-
amples of power managers, one of them targeting the real-time
domain. Experimental analysis on an MPSoC prototype on
FPGA demonstrates that our technique provides application-
level composable power management.
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