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Abstract. The fast growth of bioinformatics field has attracted the at-
tention of computer scientists in the last few years. At the same time
the increasing database sizes require greater efforts to improve the com-
putational performance. From a computer architecture point of view, we
intend to investigate how bioinformatics applications can benefit from fu-
ture multi-core processors. In this paper we present a preliminary study
of the Cell BE processor limitations when executing two representative
sequence alignment applications (Ssearch and ClustalW). The inherent
large parallelism of the targeted algorithms makes them ideal for archi-
tectures supporting multiple dimensions of parallelism (TLP and DLP).
However, in the case of Cell BE we identified several architectural limi-
tations that need a careful study and quantification.

1 Introduction

Currently, bioinformatics is considered as one of the fields of computing technol-
ogy with fastest growth and development [4]. This is a vast field composed of
a variety of tasks, each with different computational requirements, algorithms,
data, and so on. One of the most important tasks is the comparison and align-
ment of biological sequences (DNA, proteins, RNA), which is basically the prob-
lem of finding an approximate pattern matching between two or more sequences.

At the algorithmic level, researchers have developed various approaches for
sequence comparison that fall into two categories: global alignment and local
alignment. In the first case, the goal is to find the best possible alignment that
span the entire length of the sequences. In contrast, the local alignment goal is
to identify some regions of the sequences where similarity between them exists.
Several algorithms using dynamic programming techniques (DP) for the two
approaches have been proposed. Among them, the Smith-Waterman (SW) [17]
and the Needleman-Wunsch (NW) [9] algorithms are widely recognized as the
best optimal methods for local and global alignment, respectively [15].
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Regardless of the method used, sequence comparison using DP techniques
is computationally demanding. In addition, the scenario becomes more chal-
lenging when it is required to study the similarity between one sequence and
hundreds of thousands of sequences stored in a database; or when it is required
to compare complete genomes of several organisms. The computational complex-
ity of these algorithms depends on the sequences length, for example, for two
sequences of length n and m, both algorithms have a complexity of O(nm). Effi-
cient implementations of the targeted algorithms are available in the Ssearch [10]
and ClustalW [7] applications. They are widely recognized applications to per-
form sequence comparison and are representative of the field. Ssearch performs
pairwise sequence alignment using the SW algorithm while ClustalW performs
multiple sequences alignment using a slightly modified NW version. It is im-
portant to note that sequence alignment is a typical operation in many other
bioinformatics algorithms, making our analysis applicable to a wider range of
applications.

The traditional general-purpose processors do not provide a sufficient solu-
tion for bioinformatics. In addition, processor designers are lately moving away
from the old superscalar approach toward multi-core systems. This is also the
case with the Cell Broadband Engine processor [8] developed jointly by IBM,
Sony and Toshiba, whose original target was the game box market. However,
several researchers have shown that due to its characteristics, this processor is
able to achieve impressive performance in other application domains such as
signal processing, encryption, scientific applications and more [11]. The Cell BE
architecture has a PowerPC Processing Unit (PPU) connected to 8 128-bit SIMD
cores called Synergistic Processing Units (SPUs). Each SPU has a 256KB scratch
pad memory called Local Store (LS) and the nine cores are connected through
the Element Interconnect Bus (EIB). The EIB is a circular bus made of two
channels in opposite directions each. It is also connected to the L2 cache and
the memory controller.

The main contributions of this paper are:

— mapping and optimization alternatives for Ssearch and ClustalW applica-
tions while targeting Cell BE;

— qualitative analysis of the architectural limitations identified during the map-
ping process and their impact on performance;

— some architectural guidelines for future multi-core systems aiming at im-
proved performance for bioinformatics workloads.

This paper is organized as follows: Section 2 provides a brief overview of
recent works related to bioinformatics applications implementations on different
platforms. Section 3 describes our experimental methodology. Section 4 outlines
Ssearch and ClustalW applications and their implementations on the Cell BE.
Section 5 analyzes the limitations we found when porting the applications to
Cell BE. Finally, section 6 summarizes the paper and describes some future
work directions.
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2 Related Work

Various implementations of bioinformatics applications on different platforms
have been reported in the literature. Some of them are based on Single-Instruction
Multiple-Data (SIMD) augmented general purpose processors [12,14] to exploit
the fine-grained parallelism present in the sequence alignment applications. In
the past, the SIMD processing has proven its efficiency in other application
domains such as multimedia. However, due to the permanent and almost ex-
ponential growth of the amount of biological data, it becomes clear that this
solution alone does not satisfy the performance demands imposed by this field.

On the other hand, many studies about bioinformatics workloads target par-
allel machines combining the SIMD approach with multiple processing nodes.
This in order to additionally distribute the job among the different nodes. Most
of these studies focus on performance evaluation and parallelization on large
high-performance supercomputers [16]. These alternatives, however, are expen-
sive and exhibit severe limitations especially in terms of power consumption.

The use of heterogeneous multi-core architectures on a single chip, e.g. the
Cell BE, combines the parallelism benefits of multiprocessor systems, with the
lower power consumption and higher speed interconnects of the systems on a
chip. However, these alternatives have not been completely studied as a solu-
tion for bioinformatics applications. Sachdeva et. al [13] present some results on
the viability of Cell BE for bioinformatics applications (ClustalW, Ssearch and
Hmmer), all performing sequence alignment. In the case of Ssearch, a prelimi-
nary evaluation is reported that uses the SPUs for a pairwise alignment of only
8 sequence pairs that fit entirely in the LS memories. We believe that in or-
der to get valid conclusions and given the different programming strategies and
models that Cell BE offers, it is important to analyze the architecture behavior
under the most demanding conditions, such as using large, realistic databases
containing many sequences with various sizes.

Vandierendonck et al. [18], describe their ClustalW parallelization experi-
ence for the Cell BE. Their work is mainly focused on various programming
optimizations while our interest is on discovering architectural limitations for a
wider range of bioinformatics applications.

3 Experimental Methodology

As starting point of our study, we selected Altivec-SIMD implementations of
Ssearch [2] and ClustalW [1]. We ported them to the Cell BE ISA and used an
IBM BladeCenter featuring two 3.2 GHz SMT-enabled Cell BE processors each
with 512 MB of RAM to gain realistic performance results.

For the Ssearch inputs we use several protein query sequences against the
SwissProt database [3]. These queries represent a range of well characterized pro-
tein families used in other works to evaluate different alignment approaches [12].
The SwissProt database contains 333,445 sequence entries. We used the blo-
sum62 amino-acid substitution score matrix [6]. For ClustalW, the default appli-
cation parameters were used and the inputs are taken from BioPerf benchmark
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suite [5]. Here we show results for data set C, which is the most challenging
case containing 318 sequences of average length 1043. The applications are im-
plemented in C. The code segments running on the PPU were compiled with
ppu-gce 4.1.1 with -O3 -maltivec options. The code in the SPU side was com-
piled using spu-gcc with -O3 option.

4 Applications Description and Implementation on Cell
BE

This section introduces Ssearch and ClustalW workloads and discusses specific
issues related with their Cell BE implementations. It is important to recall that
our intention is not the development of highly optimized Cell BE specific versions
of the targeted applications. Our main focus is on the analysis of the limitations
that Cell BE presents at several levels in order to guide the architecture design
of future multi-core systems for bioinformatics applications.

4.1 Ssearch

The Ssearch execution scenario is as follows: a query sequence is compared
against all sequences of the SwissProt database. Each comparison uses the SW
algorithm to compute the similarity score between sequences. During this pro-
cess, scores or weights are assigned to each character-to-character comparison:
positive for exact matches/substitutions, negative for insertions/deletions. As de-
scribed in the SW algorithm [17], the optimal score is computed recursively. This
recursion has data dependencies as shown in figure 1, where computation of the
matrix cell (i, j) depends on previous results (¢ —1,7), (i,5—1) and (i —1,j —1).
Note that the computation of cells across the anti-diagonals are independent and
the final score is reached when all the symbols have been compared.

4.2 SIMD and Cell BE Implementation of the Ssearch

As previously mentioned, the SW algorithm is the main kernel of Ssearch. It
takes about 90% of the execution time of the entire application, making it the
target for optimizations. For our study, we use the following implementations:

* Ssearch Altivec SIMD wversion:
This version uses the Altivec SIMD extension of PowerPC architecture with
128-bit wide registers to extract data-level parallelism by calculating temporal
vector of scores of cells parallel to the anti-diagonals, as it is shown in figure 2.
The process starts at the upper left moving from left to right and from top to
bottom. Every time a vector anti-diagonal is computed, some temporal results
have to be stored in memory because they will be used in the computation of
a vector in the next row. In previous works [14], advantages and limitations of
this approach were discussed extensively. In this work, we concentrate on the
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analysis of Cell BE implementations.

* Ssearch version using one SPU:

Porting the SW implementation of Ssearch to Cell BE ISA has relevant details
that impact the performance. They are described in section 5. In this implemen-
tation, we perform the same methodology that was commented in the previous
paragraph for the Altivec SIMD version. In this case, the processing sometimes
requires that temporal computations of a row (the border between rows) have to
be stored back in memory instead of the SPUs LS. This is because the amount
of computed temporal data of a row (that depends on the sequence sizes) does
not always fit entirely into the LS. As a result of this, not only the traffic gets
increased between memory and the LS, but also the processing of data has to
wait for the DMA transfers completion. However, the impact of this limitation
can be diminished by using multi-buffering to overlap the SPU processing with
DMA transfers of the next data. The important decision here is the choice of
appropriate block sizes of data to be computed and transferred using DMA.
Figure 2 shows an example where the block size equals to 4.

* Parallel Ssearch version 1 using multiple SPUs:

In addition to the SIMD version above, a multi-SPU implementation was devel-
oped. The main idea was to use all available SPUs to perform the comparison
between a query against the database sequences. This approach is shown in fig-
ure 3a, where every SPU is responsible for the comparison between the query
and a group of database sequences, using the same scheme as in the previous
paragraph. There are two important issues to consider: the efficiency of data
transfers between the main memory and the LSs and the scalability. The former
is related to the cases when all SPUs are communicating to the PPU simulta-
neously and saturating the Element Interconnect Bus. The latter is important
when a higher number of SPUs are used for the parallelization.

* Parallel Ssearch version 2 using multiple SPUs:
Another parallel alternative is shown in figure 3b. In this case the available SPUs
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perform the comparison between the query and a single database sequence. In
this case, the computation of each matrix is distributed between the SPUs, that
is, each SPU is responsible for computing several rows of the matrix. For example,
when 8 SPUs are used, SPUO computes row 0, row 8, row 16, etc; SPU1L com-
putes row 1, row 9, row 17, and so on. There are some possible advantages of this
alternative and the following issues are important: better bandwidth utilization
and scalability than the previous approach. Improved bandwidth utilization can
be achieved since not all the temporal results are written to main memory (the
SPUs exchange data in a streaming fashion). This approach seems more scal-
able with increasing sequence sizes because each SPU is holding smaller pieces
of data in its LS as compared to version 1 above. This alternative, however,
requires additional synchronization between SPUs that can potentially degrade
the performance.

4.3 ClustalW

Unlike pairwise sequence alignment, multiple sequence alignment (MSA) appli-
cations like ClustalW, align a set of sequences altogether, that are expected to
have some evolutionary relationships. While for pairwise alignments it is still
computationally feasible to produce optimal alignments with DP algorithms, for
MSA is prohibitive and heuristics must be applied to avoid time and space com-
plexity explosion. In particular, the time complexity of ClustalW is O(n* + 12),
where n is the number of sequences and [ their length. Using a technique called
progressive alignment [7], ClustalW performs the multiple alignment in three
main steps: 1) All-to-all pairwise alignment, 2) Creation of a phylogenetic tree,
3) Use of the phylogenetic tree to carry out a multiple alignment.

According to profiling results of the original code, the function that performs
the alignments in the first step, i.e. forward_pass, consumes about 70% of the
total execution time. This function calculates a similarity score among two se-
quences implementing a modified version of NW, following an approach similar
to the one shown in figure 1. It is called n(n-1)/2 times to perform the multi-



Cell BE Limitations for Sequence Alignment Applications 7

ple alignment of n sequences (all-to-all). As opposed to the first step, the final
alignment step performs only n-1 alignments.

It is important to mention that forward_pass iterations are data independent
making parallelization very appealing. Furthermore, the interior of the function
can be at least partially vectorized to explore data-level parallelism.

4.4 Cell BE Implementation of the ClustalW

We ported forward_pass function to the SPU ISA and implemented a number of
optimizations. DMA transfers are used to exchange data between main memory
and the SPUs LS. Saturated addition and maximum instructions were emulated
with 9 and 2 SPU instructions respectively. The first optimization uses 16-bit
vector elements instead of 32-bit. This theoretically allows doubling the through-
put but requires the implementation of an overflow check in software.

Inside the inner loop of the kernel there are instructions responsible for load-
ing the sequence elements to be compared and using them to index a matrix that
provides the comparison score. This is a random scalar memory access that is
performed within a loop also containing a complex branch for checking bound-
ary conditions. This type of operations are very inefficient in the SPUs. We have
unrolled this loop and manually evaluated the boundary conditions outside the
inner loop. Section 5 discusses the impact of these optimizations.

In the case of the multi-SPU versions of Clustal W, the PPU distributes pairs
of sequences for each SPU to process independently. A first such a version was
implemented using a simple round-robin strategy for load distribution. This
version is not really efficient and is not further discussed. A second strategy uses
a table of flags that SPUs can raise to indicate idleness. This way the PPU can
take better decisions on where to allocate the tasks. As explained in the previous
section, the parallelization of forward_pass in multiple threads is easy so there is
no need to optimize much the load balancing nor the communication efficiency.
Section 5 shows the scalability of our strategy.

5 Analysis of Cell BE Limitations and Results

Experiments performed included a number of optimizations that increase per-
formance. We have looked mostly at parallel execution issues due to the inherent
parallelism existing in the applications and some relevant Cell BE ISA aspects
that impact the performance.

5.1 Performance results

Figure 4 shows the execution of Ssearch on different platforms. As expected,
scalar executions are less efficient than the remaining alternatives. The G5 plat-
form contains a powerful out-of-order superscalar PowerPC970 that runs scalar
code very efficiently while the PPU has limited capabilities (less functional units
and registers, in-order execution, etc). Similar observation is done for the Altivec
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G5 and AltivecPPU alternatives. The Cell1SPU version is 1.07x slower than
the AltivecPPU version. We have found two main reasons for this: 1) the non
existing support for some instructions in the SPU ISA (discussed in the next
section) and 2) the need of transferring data between LS and memory. We are
currently working on further code optimizations to reduce the data reorganiza-
tion overhead and the traffic between main memory and the LSs.

Figure 6 shows the execution time of Ssearch to compare a query sequence of
length 553 and the whole SwissProt database. Results correspond to the parallel
version 1. Each group of bars represents execution using a different number of
SPUs. And each bar of the group corresponds to a different block size (in bytes)
that is transfered between LS and memory as it was described in section 4.2.
These results show that the strategy of computing several vector anti-diagonals
of the same row before sending results to main memory is an important source
of speedup (Using 1 SPU: 2,33x faster between 32 bytes and 512 bytes bars.
Using 8 SPUs: 2,13x faster between 32 and 512 bytes bars). Other interesting
observation is related to performance scalability across the number of SPUs used.
Figure 5 shows how the performance scale almost linearly with the number of

SPUs. However, part of our current work is to investigate this trend with greater
number of SPUs.

el Speed-up < |deal Speed-up

Ex. Time (s)

scalarG5
scalarPPU
AltivecG5
AltivecPPU
cell1SPU
cell8SPUs

Number of SPUs

Fig. 4. Ssearch execution on different Fig.5. Speedup across SPUs (using
platforms 512-byte block size)

Figure 7 shows a comparison of ClustalW running on various single-core
platforms as compared to different versions using a single SPU. Since the clock
frequency of the G5 is more than twice as low as the Cell, it is clear that in
terms of cycles it outperforms any Cell 1SPU version. The fourth bar shows the
straightforward SPU implementation of Clustal W, where only thread creation,
DMA transfers and mailboxes are implemented for basic operation and no at-
tention is given to optimizing the kernel code. The fifth bar shows a significant
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speedup (1.7x) when using 16-bit data type. This double vector parallelism is
most of the time achievable but the program should always check for overflow
and go back to the 32-bit version if needed. Since the SPUs do not provide any
support for overflow check (unlike the PPU), this had to be implemented in
software and consequently affecting the performance. The next two bars show
results for unrolling a small loop located within the inner loop of the kernel al-
lowing us to achieve accumulative 2.6 x speedup. And the last two versions went
further into optimizing this small loop by removing the boundary conditions
involved in a scalar branch and handling them explicitly outside the loop. This
final (accumulative) optimization provided about 4.2x speedup with respect to

the initial version.
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Figure 8 shows the scalability of ClustalW kernel when using multiple SPUs.
The black part of the bars reveals a perfect scalability (8x for 8 SPUs). This
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is due to the relatively low amount of data transfered and the independence
between every instance of the kernel. In future experiments, it will be interesting
to see how far will this perfect scalability continue.

After the successful reduction of the execution time for forward_pass, signif-
icant application speedups are only possible by accelerating other parts of the
program. The progressive alignment phase is now the portion consuming most
of the time. This issue is currently being studied.

5.2 Analysis of Limitations

Here we list and discuss some limitations we found at both architecture- and
micro-architecture levels. Although experiments have given us an insight about
the individual contribution to performance degradation, an on-going quantitative
study will tell us the real impact of every limitation.

* Unaligned data accesses: The lack of hardware support for unaligned data
accesses is one of the issues that can limit the performance the most. When the
application needs to do unaligned loads or stores, the compiler must introduce
extra code that contains additional memory accesses plus some shift instructions
for data reorganization. If this sort of situation appears in critical parts of the
code (as is the case in ClustalW), the performance will be dramatically affected.

* Scalar operations: Given the SIMD-only nature of the SPUs ISA and the
lack of unaligned access support, scalar instructions may cause performance
degradation too. Since there are only vector instructions, scalar operations must
be performed employing vectors with only one useful element. Apart from power
inefficiency issues, this works well only if the scalars are in the appropriate
position within the vector. If not, the compiler has to introduce some extra
instructions to make the scalar operands aligned and perform the instruction.
This limitation is responsible for a significant efficiency reduction.

* Saturated arithmetics: These frequently executed operations are present
in Altivec but not in the SPU ISA. They are used to compute partial scores
avoiding that they are zeroed when overflow occurs with unsigned addition.
This limitation may become expensive depending on the data types. For signed
short, 9 additional SPU instructions are needed.

* Mazx instruction: One of the most important and frequent operations in
both applications is the computation of a maximum between two or more values.
The SPU ISA, unlike Altivec, does not provide such an instruction. It is then
necessary to replace it with two SPU instructions.

* Overflow flag: This flag is easily accessible in Altivec in case the application
needs a wider data type to compute. In the SPU this is not available and it has
to be implemented in software adding overhead.

* Branch prediction: The SPUs do not handle efficiently branches and the
penalty of a mispredicted branch is about 18 cycles. The SPU will always predict
branches as non-taken unless a software branch hint explicitly says the opposite.
Although some control-dependencies (branches) can be converted in data depen-
dencies (using select instruction) some others cannot and branches will remain.
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The kernel of ClustalW has several branches that, when mispredicted, reduce
the application execution speed.

* Local Store size: As was mentioned in section 4.2, the size of SPUs LS is
relevant because it is not always possible to ensure that each database sequence,
query sequence and temporal computations fit in the LS. Our SW implemen-
tation takes this into account by partitioning the work in blocks, as explained
before. Other optimizations are being currently developed to dynamically iden-
tify whether space in main memory is required or not. This will help to reduce
data transfer between LS and memory.

It is important to say that there are other commercial processors (apart
from PowerPC) that support the missing features we found in Cell BE. For
instance, TriMedia processor supports unaligned memory accesses, Intel SSE
has saturating arithmetic instructions, etc. However, not all these features can
be found on a single product.

6 Conclusions and Future Work

In this paper we described the mapping and some optimization alternatives of
two representative bioinformatics applications targeting Cell BE. We have also
presented a qualitative analysis of the architectural shortcomings identified dur-
ing this process. Our study revealed various architectural aspects that negatively
impact Cell BE performance for bioinformatics workloads. More precisely, the
missing HW support for unaligned memory accesses, the limited memory band-
width and LS sizes appear to be the most critical. However, additional experi-
ments are being performed in order to measure bandwidth usage, load balancing,
LS usage, functional units usage, stall rates and communication patterns. In ad-
dition, our future work involves the usage of architecture simulation techniques
in order to evaluate possible solutions to the identified limitations. We are using
this research as guidance for the architecture design of future multi-core systems
targeting bioinformatics. We intend to widen our study to other applications of
the same field.

This work is our first step towards future multi-core architectures incorporat-
ing domain specific bio-accelerators. We believe that heterogeneous multi-core
architectures able to exploit multiple dimensions of parallelism are a valid option
that will play an important role in the future of bioinformatics.
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