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Abstract

Ad-hoc Grids are highly heterogeneous and dynamic net-
works, one of the main challenges of resource allocation in
such environments is to find mechanisms which do not rely
on the global information and are robust to the changes
in resource availability in Grid. In this paper, we present
a learning algorithm in a market-based resource alloca-
tion platform. Using this algorithm, consumer and pro-
ducer agents learn the current condition of the network
through their previous reward from the Grid and decide the
preferred prices only based on their local knowledge. In
our history-based pricing strategy, we introduce two rein-
forcement parameters using which the consumer and pro-
ducer agents employ an aggressive or a conservative bid-
ding strategy. Aggressive and conservative bidding strate-
gies reinforce adaptation to the variations of resource avail-
ability in the ad-hoc Grids. Comparing our mechanism with
a learning and a non-learning mechanism shows that our
approach besides providing adaptable prices to the dynamic
condition of the network, it also presents higher throughput.

1 Introduction

Adaptation means adjusting to the new condition. Since
human operators are costly, slow and error-prone, self-
adaptable systems are needed that are able to cope with re-
source variability, changing user needs and system faults.
When the system is known beforehand, adapting to the cur-
rent condition can be performed through the static infor-
mation about the system. In dynamic systems where the
condition of the system changes unpredictably during the
time, the static information is not enough and information
has to be updated. Ad-hoc Grids are instances of such sys-
tems. Ad-hoc Grids are highly heterogeneous and dynamic
networks in which the availability of resources and tasks
may change at any time. In ad-hoc Grids, every node in the
network can act as a consumer or a producer of resources
at any time when there is a need for resource or there is a

resource available. In such dynamic condition, there is no
global information available and decision-making process
is distributed across all users and resource owners. Where
there is no global information about the current condition
of the network available, a way to learn about the network
condition is through interaction with environment. Learn-
ing from interaction is a foundation idea underlying nearly
all theories of learning and intelligence[10].

In this paper, we introduce a learning mechanism for
the market-based resource allocation in ad-hoc Grids. This
learning algorithm enables consumer and producer agents
to adjust their prices by perceiving the current condition of
the network through the interaction with environment. We
assume that the agents decide based on their local knowl-
edge and they are not aware of the other’s decisions. They
learn the condition of the network using the reward which
they get from the environment and take a proper action to
adapt to the current condition (see Figure 1). The reward
is their utilization from the Grid and the action is setting
the new ask or bid price. Pricing algorithm proposed in this
paper introduces two reinforcement parameters which are
set dynamically as the condition of the network changes.
These parameters reinforce adaptation to the changes in the
network condition and apply an aggressive or a conserva-
tive bidding strategy accordingly. In experimental results,
we study the behavior of our learning mechanism in a dy-
namic network condition where the availability of resources
changes during the time. We compare our learning mecha-
nism with a non learning ZI (Zero Intelligence) and a learn-
ing ZIP (Zero Intelligence Plus) approach. The experimen-
tal results show that our approach provides more adaptabil-
ity to changes of network condition and presents higher
throughput compared with two others approaches.

The paper is structured as follows: In section 2, we have
an overview on related work. System architecture is pre-
sented in section 3. We describe the learning mechanism
with discussing bidding strategies and pricing algorithm in
section 4. Performance evaluation is studied in section 5
and finally we have conclusion in section 6.
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Figure 1. The agent - environment interaction
in learning mechanism

2 Related Work

There are several research efforts on Grid adaptability.
For instance, [3] and [9] assume a centralized network ar-
chitecture where a centralized server collects environment
conditions from each component to make replacement de-
cisions. Lee et al [7] present a biologically-inspired mech-
anism that allows grid services to autonomously adapt to
dynamic changes in the network. The proposed adapta-
tion mechanism, called the iNet artificial immune system,
allows each grid service to autonomously sense its local en-
vironment conditions to evaluate whether it adapts well to
the conditions, and if it does not, adaptively performs a be-
havior suitable for the conditions. [6] addresses adaptive
query processing on the Grid in order to cope with evolving
resource characteristics, such as machine load and availabil-
ity.

Considering Market-based resource allocation, although
there has been considerable attention given to the eco-
nomic based resource allocation in the Grid [2, 11], but
very few researches have addressed the problem of learn-
ing and adaptation. Preist et al [8] demonstrate the simple
adaptive agents inspired by the ZIP agent work of Cliff &
Bruten [4], which consist of a small number of heuristics
and a simple learning rule. These agents learn to trade at
an equilibrium price in a form of periodic double auction
marketplace. [1] proposes an adaptation of two learning
mechanisms (Zero Intelligence Plus & Gjerstad-Dickhaut)
for single sellers in first price and second price auctions.
Non of these researches have addressed the adaptation in
ad-hoc Grid to support simultaneous participation of mul-
tiple sellers and buyers and accommodate the variations in
availability of resources. In the most of economic based re-
searches for the resource allocation in Grid, resource are as-
sumed to be dedicated with a fixed number of servers which
provide resources. In ad-hoc Grid, resources are not dedi-
cated and their availability fluctuates during the time. In
this work, we present an economic-based approach to per-
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Figure 2. System Components

form adaptability to changes in the resource availability in
ad-hoc Grids. We consider producer and consumer of re-
sources as the selfish agents which can spontaneously rise
and submit an offer or a request whenever a node has some
idle resources or needs some extra resources. We use a con-
tinuous double auction protocol for matchmaking between
these competitive consumers and producers. In our model,
no global and single equilibrium price is computed. We pro-
pose a learning mechanism using which the producer and
consumer agents compute the ask or bid prices and transac-
tion price between each matched consumer and producer is
calculated as the average of two corresponding prices.

3 System Architecture

The system is composed of three agents Consumer
(buyer), Producer (seller) and Auctioneer (see figure 2).
There is one consumer and one producer agent per node.
The consumer/producer agent controls the process of buy-
ing/selling resources by estimating the execution time of the
job or availability of the resource. This agent also calcu-
lates the price and submits a request/offer for correspond-
ing task/resource to the auctioneer. The consumer/producer
agent is also receiving the response for the submitted re-
quest/offer from the auctioneer. The auctioneer agent con-
trols the market using a Continuous Double Auction Proto-
col.

For resource allocation in ad-hoc Grids, we need a
mechanism that supports simultaneous participation of pro-
ducer/consumer, observes resource/request deadlines and
can accommodate the variations in resource availability. Se-
quential and open-cry auctions are not a proper choice. As
tin these type of auctions, each bid has to be broadcasted
to all participants. This becomes a considerable communi-
cation overhead in the context of ad-hoc Grids. Moreover,
their inability to observe time deadlines and no support for
the simultaneous participation of producer/consumer are the



reasons that make them unsuitable for resource allocation
in ad hoc Grid. We employ a Continuous Double Auc-
tion (CDA) as the platform for matchmaking between con-
sumers and producers. CDA is a many-to-many auction that
provides a suitable resource allocation platform for mul-
tiple sellers and buyers in ad-hoc Grid. We adopt a dis-
criminatory pricing policy to set the transaction prices. In
discriminatory policy, there is no global equilibrium price
and the prices are set individually for each matched buyer-
seller pair. The transaction price for each matched pair is
considered as the average of two prices. The market works
in the following simple manner: the buyers and sellers an-
nounce their desire to buy or sell resources to the market.
The auctioneer finds the matches between buyers and sellers
by matching offers (starting with lowest price and moving
up) with requests (starting with highest price and moving
down). When a task query arrives at the market place, the
protocol searches all available resource offers and returns
the best match which satisfies the tasks constraints which
are resource quantity, time frame and price. If no match
is found, the task query object is stored in a queue. The
queries are kept in the queue till the time to live (TTL) for
them is expired or a match is found. When a resource be-
comes available and several tasks are waiting, the one with
the highest price bid is processed first.

4 Learning Mechanism

In ad hoc Grid where the resource availability and the
workloads are variable, the condition of supply and demand
may change at any time. We introduce a learning mecha-
nism by which the agents perceive the supply and demand in
the system through their previous utilization from the Grid.
In our learning mechanism, we define two aggressive and a
conservative bidding strategies. Using these strategies, con-
sumer and producer agents change their prices in a compet-
itive way according to the condition of supply and demand.

4.1 Aggressive Bidding

Aggressive bidding is defined as a strategy using which
agents increase or decrease their prices in a high rate. Ag-
gressive bidding strategy is adopted by consumers when
there is a high competition between consumers due to the
high demand for resources in the network. The produc-
ers adopt aggressive bidding strategy when due to the high
supply in the system, there is a high competition between
producers. With adopting aggressive bidding, consumers
and producers respectively speed up increasing or decreas-
ing their prices to outbid their competitors.

4.2 Conservative Bidding

A bidding is conservative when agents change their
prices in a low rate. Conservative bidding strategy is em-
ployed by consumers where the supply in the system is high.
In this case, consumers decrease their prices to reduce their
spending. They decrease the price in a low rate conserva-
tively to not loose the competition. In the same way, when
the demand is high, producers increase their prices to in-
crease their credit. They increase the price by a conservative
strategy in a low rate not to be surpassed by other producers.

The aggressive and conservative bidding strategies are
taken in the networks where there is not a balance between
the supply and the demand. In such condition, when one
of the consumers or producers parties employ the aggres-
sive or conservative bidding, the other party employs the
conservative or aggressive bidding respectively. In follow-
ing section, we present a pricing algorithm using which the
agents can take a proper bidding strategy according to avail-
ability of resources and tasks in the network.

4.3 Pricing Algorithm

Consumers and producers determine their bid and ask
prices using a learning pricing strategy. The pricing strategy
presented simulates human intelligence to define a logical
price by local analysis of the previous trade cases. The price
is defined as the price of each unit of resource that consumer
and producer agents are willing to buy or sell. There is an
upper limit for consumer prices (bid prices) which is defined
by the node’s budget, as bidPrice∗resourceQuantity <=
Budget. Where resourceQuantity is the quantity of the
resource needed. For instance, it is job execution time when
CPU time is considered as the resource. We also consider a
minimum price for producers below which they do not sell
their resources. Using the learning algorithm, the agents
update the price considering their previous utilization from
the Grid. If they have not been successful in buying or sell-
ing the resources , they need to update the price in a way
to get more utilization in future. On the other side, if they
have been successful, they conservatively continue the way
of their bidding. Consumer and producer agents start in the
market with their private values which is limited by mini-
mum and maximum prices and update it over the time us-
ing the following learning pricing algorithm. Based on this
algorithm, the ask and bid price are defined respectively for
producers and consumers as follows:

pa(t) = max{pmin, pa(t − 1) + ∆pa} (1)

and
pb(t) = min{pmax, pb(t − 1) + ∆pb} (2)

where p(t) is the new price and p(t−1)is the previous price.
pmin is the minimum price for producers and pmax is the



maximum price affordable for consumers which is calcu-
lated as:

pmax = Budget/resourceQuantity (3)

∆p for seller and buyer is defined respectively as below:

∆pa = α.pa(t − 1) (4)

and
∆pb = β.pb(t − 1) (5)

where α and β are coefficients which determine the rate
at which the price is increasing or decreasing. We name
them as reinforcement parameters, as they reinforce the
learning and apply two aggressive and conservative bid-
ding strategies. These parameters are set according to vari-
ations in task or resource utilization during the time at each
individual node. For each individual node, task utilization
is defined as the ratio of allocated tasks to all submitted re-
quests and resource utilization is defined as the ratio of allo-
cated resources to all submitted offers. We define task and
resource utilization in the time period [t1, t] as:

ResUtil(t − t1) =
t∑

i=t1

S(i)/
t∑

i=t1

Noffers(i) (6)

TaskUtil(t − t1) =
t∑

i=t1

P (i)/
t∑

i=t1

Nrequests(i) (7)

where
∑t

i=t1
S(i) and

∑t
i=t1

P (i) are respectively the
total numbers of sold and purchased resources and,∑t

i=t1
Noffers(i) and

∑t
i=t1

Nrequests(i) are respectively
the total numbers of offered and requested resources at
the time period [t1, t] in each individual node. The vari-
ation in resource and resource utilization is presented by
the terms ∆ResUtil and ∆TaskUtil which are defined be-
tween time periods [t2, t1] and [t1, t], where t is the current
time:

∆ResUtil = ResUtil(t − t1)−ResUtil(t1 − t2) (8)

∆TaskUtil = TaskUtil(t−t1)−TaskUtil(t1−t2) (9)

Now, we define reinforcement parameters α and β as fol-
lows:

α =

{
−(K − (ResUtil(t − t1))2)2 if ∆ResUtil <= 0

L ∗ (ResUtil(t − t1))2 if ∆ResUtil > 0
(10)

β =

{
(K − (TaskUtil(t − t1))2)2 if ∆TaskUtil <= 0
−L ∗ (TaskUtil(t − t1))2 if ∆taskUtil > 0

(11)
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Figure 3. Reinforcement parameters (α and β)
and task/resource utilization.

where K and L respectively define the maximum rate of
aggressive and conservative bidding. In Our experiments,
we have considered K = 1 and L = 0.1. It means that
in an aggressive bidding, the maximum rate of increasing
price by consumers or decreasing price by producers is 1.
In the same way in a conservative bidding, the maximum
rate of increasing price by producers or decreasing price by
consumers is 0.1. These values can be changed individu-
ally by nodes based on the user preferences such as budget
consumption, urgent tasks and etc. For instance, if a node
has very limited budget, it has to choose lower level for ag-
gressive bidding and avoid very high bid prices. On the
other hand, in case of very urgent tasks, nodes can always
increase level of their aggressive bidding or decrease level
of their conservative bidding.

We show the theoretical analysis of these parameters us-
ing the figure 3. In this figure, the aggressive and conserva-
tive bidding strategies are presented with depicting param-
eters α and β together with the variation in task or resource
utilization.

• Conservative Bidding: producer or consumer agents
bid with conservative strategy when the resource or
task utilization is increasing (see figure 3). In a conser-
vative bidding, the rate of increasing price by produc-
ers (α) and the rate of decreasing price by consumers
(β) are proportional to the value of recent task/resource
utilization (equations 10 and 11). From figure 3, we
can observe lower rate for low utilizations and higher
rate for higher utilizations. The maximum rate of in-
creasing or decreasing price is 0.1 (L = 0.1) where
the task or resource utilization has its maximum value
(Util = 1).



• Aggressive Bidding: when the resource or task utiliza-
tion is decreasing, producer or consumer agents em-
ploy an aggressive bidding strategy (see figure 3). In
an aggressive bidding, the rate of increasing price by
consumers (β) and the rate of decreasing price by pro-
ducers (α) depends on the value of recent task/resource
utilization (equations 10 and 11). As seen from the
figure, the lower rate are observed for high utilizations
and higher rate for lower utilizations. The maximum
rate of increasing or decreasing the price is 1 (K = 1)
where the task/resource utilization has its minimum
value (Util = 0).

5 Performance Evaluation

In this section, we study the performance of our learn-
ing algorithm in an ad hoc Grid within a dynamic condition.
Our application test-bed is developed using J2EE and Enter-
prise Java Beans. Auctioneer is deployed on JBoss applica-
tion server. Consumer and producer of resources are buyers
and sellers in the market. Whenever a node needs compu-
tational service for running its tasks, it sends a request to
the auctioneer through the consumer agent and whenever
a node has some computational service available, it sends
an offer through the producer agent. We assume the tasks
are atomic and can not be divided, therefore each request is
matched with only one offer. Each request or offer submit-
ted by consumers or producers has the following specifica-
tions:

• Request={ resource type, resource quantity, ttl (time to
live for request validity), bid price , budget}

• Offer={ resource type, resource quantity, ttl (time to
live for offer validity), ask price }

The experiments are performed in a local ad-hoc Grid with
60 nodes. So, there are 60 consumer agents and 60 producer
agents participating in the market. The number of created
requests and offers in the network varies during the time
(see section 5.1). Each request contains: resource require-
ment in the term of cpu time, a ttl (time to live) to determine
the time during which the task has to be executed, a price
that consumer is able to pay for each unit of resource, and
the total amount of the budget that consumer has. An of-
fer includes: a ttl which is the time during which the cpu is
available, the type of cpu and a price below which the pro-
ducer does not sell the resource. In matchmaking between
consumers and producers, auctioneer considers not only the
price but also the quantity of the resource and ttl constraints.
TTLs and task execution times are generated randomly for
each request and offer. All nodes are assigned equal budgets
when joining the grid. The limited budget defined for each
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Figure 4. The generation rate of tasks and re-
sources.

node can be used to trade for required resources. The nodes
earn credits by devoting the idle computational resources
for demanding consumers.

5.1 Experimental Condition

The results shown in this paper are from the experiments
performed during four time periods with different distribu-
tion of tasks and resources. Resources and tasks are gener-
ated with the ratios 20%, 50%, and 80% in different time pe-
riods. Figure 4 depicts the system status evolving over time.
In period [0,t1] a balanced condition with more or less equal
number of tasks and resources is generated. From the time
t1 to t2 the number of tasks are increasing, it could simu-
late the busy hours during the working days (a task intensive
condition). From time t2 onward, the tasks start decreasing
and again we have a balanced condition. The resources start
to increase from the time t3 onward and a resource intensive
condition is generated which could simulate the situations
with low workloads and high idle resources during the night
or weekend.

In following sections, we study behavior of system in
different conditions.

5.2 Reinforcement Parameters

We analyzed the parameters α and β theoretically in sec-
tion 4.3. In this section, we study these two parameters
practically when running experiments in the dynamic con-
dition described in the previous section. Figure 5 shows
reinforcement parameters evolving during the dynamic con-
dition of the network. As seen from the figure, in the time
periods [0, t1] and [t2,t3], where there is a balance situ-
ation between tasks and resources, the consumer and pro-
ducer agents do not take any aggressive bidding. However,
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Figure 6. Transaction price evolution (a)our learning approach, (b)ZIP, (c)ZI.
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tions during the experiment.

they increase or decrease their prices more conservatively in
this condition. In time period [t1, t2], where there is a task
intensive condition, the consumer agents take an aggressive
bidding strategy (aggressive β)and on the other side produc-
ers employ a conservative bidding (conservative α). As In
such network condition, consumers are abundant and they
have to increase their prices aggressively to win the com-
petition. In task intensive network, producers increase their
prices conservatively to increase their credit. When a re-
source intensive condition is created in the time period t3
onward, resources become abundant. Therefore, produc-
ers take an aggressive strategy (aggressive α) for decreasing
their prices. In such condition, consumers take a conserva-
tive strategy (conservative β) to decrease their prices.

As discussed before(section 4.3), the maximum rate for
aggressive and conservative bidding can be set by each
agent individually. This is feasible by modifying the con-
stant coefficients K and L provided in equations 10 and
11. These values can be modified according to con-

sumer/producer preferences. For example, a node for which
there is no worry about the budget consumption and it can
afford high transaction prices, the level of aggressive bid-
ding can be increased and vise versa. Our mechanism pro-
vides autonomy for consumer and producer agents to decide
about the level of their aggressive or conservative bidding.

5.3 Price Adaptation

Consumer and producer agents adapt to the new condi-
tion of the network by learning from their previous trades.
They accordingly adopt a proper bidding strategy and mod-
ify their ask and bid prices. The adaptation can be observed
with studying the evolution of transaction prices as the con-
dition of the network changes. Transaction price is the price
paid by consumer to producer for each unit of resource. The
transaction price is considered as the average of bid and ask
prices.

In this section, we study the transaction price evolution
in a dynamic network and compare our mechanism with a
learning and a non-learning mechanism. We consider ZIP
(Zero Intelligence Plus) approach as learning and ZI (Zero
Intelligence) as a non learning approach to compare with. In
ZIP (Zero Intelligence Plus) approach [1], the agents learn
a bidding strategy based on information provided by the re-
sults of their previous shout and their private value. A ZIP
agent adopts a linear bid function given by:

b(t) = x ∗ (1− µ(t)) (12)

Where µ represents the fraction above or below its value
at which the agent bids and x is the private value. In this
approach, the problem of learning an optimal strategy is re-
duced to learning the optimal margins. The margin µ(t) is
adjusted to µ(t + 1) using the rule:

µ(t + 1) = µ(t) + ∆(t) (13)

Where ∆(t) is calculated based on the previous bid. For a
detailed presentation of this approach, please refer to [1].



In [1], ZIP has been used to compute bid prices for the sin-
gle seller auctions. We compute ask prices with the same
strategy using this approach. As a non-learning algorithm,
we consider ZI (Zero Intelligence) approach [5]. In this
strategy, agents generate random order prices, ignoring the
state of the market. We consider a ZI-C (Zero Intelligence-
Constraint) model in which traders are subject to a budget
constraint and consumer bids and producer offers are lim-
ited between a maximum and a minimum price.

Within a completely similar condition, we perform our
experiments for the three approaches (our method, ZIP and
ZI). In all the three approaches, every node receives an
equal amount of budget when it joins the Grid. The bid and
ask prices are limited between a minimum and a maximum
price. There is a minimum price below which producers do
not submit an ask. We consider this minimum price equal
to one for all producers in the network. The maximum price
for consumers is limited by their budget. Each consumer or
producer agent has a private value. The private values are
generated with a random function in the range between min-
imum and maximum prices. Private values in our approach
are the prices with which agents start in the market and pri-
vate values in ZIP approach are used to calculate the bid and
ask prices (equation 12). We study the transaction prices for
matched consumers and producers during the time in each
approach.

Figures 6(a), 6(b) and, 6(c) show how transaction prices
are evolving as the condition of the network changes. As
seen from the figure 6(a), in our approach, the transaction
price is evolving according to the availability of resources in
the network. In the time period [t1,t2] where resources are
becoming scarce, we observe high transaction prices. Be-
cause in this condition, consumers become more competi-
tive and with an aggressive bidding strategy increase their
bid prices. Therefore, transaction prices increase. From the
time t2 onward, as resources are getting more available, the
transaction prices start to decrease. As in this condition,
producers become competitive and decrease the ask prices
and in consequence transaction prices go down. In ZIP ap-
proach (see figures 6(b)), transaction price is changing very
slightly as the condition of network change. ZI approach, in
which the bid and ask prices are generated randomly, shows
high values and high variations in transaction prices in all
conditions (figure 6(c)).

With comparing the transaction price evolution in three
approaches, we observe that in our approach the consumer
and producer agents can adapt their prices to the condition
of the network more than in two other approaches. In the
next section, we study if our approach keeps a promising
throughput for the system.

Resource Utilization Task Utilization
Learning Algorithm %61 %56

ZIP %48 %44
ZI %56 %52

Table 1. Task and resource utilization in the
three approaches.

5.4 Throughput

We measure the throughput of the system regarding task
and resource utilization and compare three methods in this
regard. Task utilization is defined as the ratio of allocated
tasks to the all submitted requests in the system. The ra-
tio of allocated resources to all submitted offers in the sys-
tem is defined as resource utilization. Table 1 shows the
task and resource utilization in three approaches with per-
forming the experiments in the dynamic network condition
described in section 5.1. Having higher resource utiliza-
tion than task utilization is due to unbalanced number of
generated tasks and resources during the simulation. Re-
sults show that our approach provides highest task/resource
utilization. The task and resource utilization in our ap-
proach is around %4 more compared to ZI approach and
%12 more compared to ZIP approach. Although, the sim-
ple and non intelligence approach ZI provides a through-
put comparable with our approach, but in the same time it
presents high and non-stable transaction prices (figure 6(c)).
ZIP approach presents lower and more stable transaction
price (figure 6(c)), but it gives a low throughput. It can be
concluded that our approach besides providing a promising
throughput, it presents adaptable transaction prices. As in
our approach, transaction prices are low and stable when
the resources are available, and are increasing when the re-
sources become scarce.

6 Conclusion

In this paper, we propose a learning algorithm to ad-
just the asks and bids prices according to availability of re-
sources in an ad-hoc Grid. In the proposed pricing algo-
rithm, we introduce two parameters that reinforce learning
and adaptation. These parameters are set dynamically ac-
cording to the network condition. Using these parameters,
the consumer and producer agents employ aggressive or
conservative bidding strategy to adapt to the dynamic avail-
ability of resources. In this strategy, nodes are also able to
control the level of aggressiveness or conservativeness indi-
vidually based on their preferences and requirements when
bidding the prices.

We study the behavior of our learning algorithm in a dy-



namic ad hoc Grid in which the supply of resources and
demand for resources is variable. We assume there is no
global information about the supply and demand of the re-
sources available and agents do not exchange any informa-
tion and just relay on their local knowledge. They learn
the condition of the network through the interaction with
the environment using their previous experiences. The con-
sumer and producer agents decide for the price and their
bidding strategy based on the their utilization rewarded by
the Grid. We compare our algorithm with a learning ap-
proach (ZIP) and a non-learning approach (ZI). Studying
transaction prices in the three approaches shows that using
our approach, the consumer and producer agents can adjust
their prices according to the availability of resources and
tasks. ZI approach shows high variations and high values in
prices in any network condition and ZIP shows very slight
changes in prices as the condition of the network changes.
Moreover, our approach provides higher throughput com-
pared to the two other approaches.
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