
Exploiting Parallelism of Deblocking Filter
of H.264 on DTA architecture

Roberto Giorgi, Zdravko Popovic, Nikola Puzovic1 Arnaldo Azevedo, Ben Juurlink2
 HiPEAC members HiPEAC members

 Dept of Information Engineering, University of Delft University of Technology
 Siena, Via Roma 56, 53100 Siena, Italy Delft, the Netherlands

ABSTRACT
In this paper we present possibilities to parallelize Deblocking Filter (DF) of H.264 video
codec and results on Decoupled Threaded Architecture (DTA). We exploited all the
available parallelism in the code in order to make it suitable for DTA architecture.
Experimental results show that significant speedup can be achieved and that DTA
architecture can efficiently exploit available parallelism.

KEYWORDS: H.264, deblocking filter, TLP, many-core, scalability, DTA

1 Introduction
Today’s multimedia systems demand more and more computational power since the
quality of content that they provide is improving. In particular, users show constant
demand for videos with higher resolution even on mobile devices. H.264, also known as
MPEG4 part 10 or MPEG-4 AVC (Advanced Video Coding) is a video coding standard
aimed at providing high video quality even at lower bitrates.
Many-core architectures have become widely used. Therefore, parallelization of programs
that are used for providing multimedia content, such as video codecs, and running them
on many-core processors is a promising way to improve the performance. In our work, we
have focused on parallelizing Deblocking Filter (DF) of the H.264 codec, and on utilizing
the advantages that DTA [1] offers to exploit available Thread Level Parallelism (TLP).
The rest of the paper is organized as follows. Section 2 provides a high-level overview of
H.264 deblocking filter, its parallelization possibilities and DTA implementation. Section 3
presents results on the DTA architecture. Conclusions are shown in Section 4. Because of
the space limits, we cannot give the description of DTA architecture (there is appropriate
reference).

2 H.264 Deblocking Filter
Deblocking filter is one of the steps in encoding and decoding process in H.264
audio/video codec. By profiling of H.264 it can be seen that deblocking filter consumes
about 7% of total decoder processing time. Obviously, deblocking filter consumes a
significant portion of the decoder and therefore it is important to execute it as efficiently as
possible. Steps in H.264 operate on macroblocks (MBs), which are blocks of 16x16 pixels.
Because decoding process is block-based, sharp edges may appear between the blocks

1 http://www.dii.unisi.it/~{giorgi,popovic,puzovic} 2 {azeved, benj} @ ce.et.tudlft.nl

after discrete cosine transformation (DCT) is applied. This is known as “blocking”. The
purpose of having a deblocking filter is to try to eliminate these artifacts by smoothing the
edges of adjacent blocks.

Here we will give just a rough idea of a deblocking filter process, for more information
refer to [2]. In Figure 1 there is a code fragment that shows the main function of sequential
filtering process of a single MB (this function is called for every MB). Deblocking filter
basically modifies pixels at the edges of macroblocks in cases when they meet certain
conditions. Filtering process is done on both vertical and horizontal edges of blocks (first
for loop of filter_mb function). It starts at the left vertical edge and proceeds at all internal
edges. After filtering is done for vertical edges, it is repeated for horizontal edges starting
from the top. Filtering is done for all three color components independently (calls to
filter_mb_edgev/h and filter_mb_edgecv/h functions). There are several possibilities to exploit
thread level parallelism in the deblocking filter [3]:

• MB level – all MBs that don’t have dependencies between them can be processed at
the same time. One MB can’t be processed before MBs on its left and above it have
already been processed (other steps in H.264 introduce additional dependencies,
but here we analyze just DF). For example, a frame in CIF resolution of 320x240
pixels, which has 300 MBs, can be processed in total of 34 time slots. Maximal
number of MBs that can be processed in parallel is 15 and it lasts for 6 time slots. In
higher resolution the number of independent MBs increases (FHD 1920x1080
maximal number is 68, available for 57 out of 187 time slots).

• Color component level – Y, Cb and Cr can be processed in parallel
• 4x4 – at each step in both vertical and horizontal pass, 4 of these blocks are

processed. This data level parallelism can be transformed in thread level by
processing each of 4 blocks in a separate thread. This is done by unrolling
appropriate loops in the code (inside filter_mb_edgev/h and filter_mb_edgecv/h
functions).

We have implemented two versions of deblocking filter for DTA architecture. One is
sequential, where MBs are executed one by one and no parallelism is exploited. This code

void filter_mb(uint8_t *img_y, uint8_t *img_cb, uint8_t *img_cr, unsigned int linesize, unsigned int uvlinesize, int edges[2], int bS[2][4][4], int
qp[2][4], int chroma_qp[2][4], int start[2]) {
 int dir;
/* dir : 0 -> vertical edge, 1 -> horizontal edge */
for(dir = 0; dir < 2; dir++) {
 int edge;
 for(edge = start[dir]; edge < edges[dir]; edge++) {
 if(bS[dir][edge][0]+bS[dir][edge][1]+bS[dir][edge][2]+bS[dir][edge][3] != 0) {
 if(dir == 0) {
 filter_mb_edgev(&img_y[4*edge], linesize, bS[dir][edge], qp[dir][edge]);
 if((edge&1) == 0) {
 filter_mb_edgecv(&img_cb[2*edge], uvlinesize, bS[dir][edge], chroma_qp[dir][edge]);
 filter_mb_edgecv(&img_cr[2*edge], uvlinesize, bS[dir][edge], chroma_qp[dir][edge]);
 }
 } else {
 filter_mb_edgeh(&img_y[4*edge*linesize], linesize, bS[dir][edge], qp[dir][edge]);
 if((edge&1) == 0) {
 filter_mb_edgech(&img_cb[2*edge*uvlinesize], uvlinesize, bS[dir][edge], chroma_qp[dir][edge]);
 filter_mb_edgech(&img_cr[2*edge*uvlinesize], uvlinesize, bS[dir][edge], chroma_qp[dir][edge]);
 }
 }
 }
 }
 }
}

Figure 1 - Main function of deblocking filter.

is for running on a single core only. The other code is parallel and it exploits all three
levels of parallelism: independent MBs are processed in parallel, color components are
processed in parallel and independent blocks of 4x4 pixels in vertical and horizontal
passes are processed in parallel. We have to mention that, depending on input parameters,
it is not always possible to exploit all these three levels of parallelism at the same time.
Both versions of the code are handwritten. As a reference code, we have used a scalar
implementation extracted from [4].

3 Results on DTA architecture
For our tests, we used first eight frames of Lake Wave video sequence. Frame resolution
was 320x240 pixels – CIF resolution.
We measured the execution time reduction of each of the first eight frames of Lake Wave
example by simply adding more processors in the system (all in a single node). Results are
presented in Figure 2 (left side). The speedup was measured using execution time on one
processor as a baseline, for both sequential and parallel code. Execution time overhead of
parallel code with respect to sequential is very low (Figure 2, right side). For this reason,
speedup is very similar in both cases. As it is mentioned in section 2, the number of
independent MBs in CIF resolution is at maximum 15 and little less than 9 on average, but
it is increasing for higher resolutions. Therefore, from these results, we expect that even
better speedups can be achieved for higher resolutions. As stated earlier, not all three
levels of parallelism are always available at the same time. That is why scalability is less
than it could be expected theoretically.

1

2

4

8

16

1 2 4 8 16

speedup
[# of cycles]

of processors

Scalability of parallel DTA code vs. ideal scalability for
H.264 DF

ideal speedup

speedup of parallel code
(baseline parallel code)

speedup of parallel code wrt.
sequential (baseline
sequential code)

0.00%

0.50%

1.00%

1.50%

2.00%

2.50%

3.00%

3.50%

4.00%

0 1 2 3 4 5 6 7 AVG

overhead [%]

frame

Execution time overhead of parallel DTA H.264 DF code
vs. sequential code

Figure 2 – On the left, speedup of H.264 deblocking filter; DTA parallel code with a different number of

processors in a single node vs. ideal case; on the right parallelization overhead.

In Figure 3, we present the contribution of each level of parallelization used in overall
speedup. We measured these contributions incrementally. First we analyzed speedup
when only processing color components in parallel. Then, we added parallelism at 4x4
block level (MBs processed sequentially), and finally MB level parallelization was
included. Available parallelism of color component level is limited by the fact that all three
components are not processed in each pass (sub-sampling of Cb and Cr components). On

the other hand, contribution of 4x4 block level parallelism is not at its theoretical
maximum because this parallelism is dependent on input parameters (not in every case all
blocks are processed) and also it introduces some overhead in order to be exploited.
Overall conclusion is that MB-level parallelism is most significant, and it can increase even
more with higher resolution, while the other two types of parallelism are expected to
remain at the same level.

1

2

3

4

5

6

2 p
ro
ce
sso

rs

4 p
ro
ce
sso

rs

8 p
ro
ce
sso

rs

2 p
ro
ce
sso

rs

4 p
ro
ce
sso

rs

8 p
ro
ce
sso

rs

2 p
ro
ce
sso

rs

4 p
ro
ce
sso

rs

8 p
ro
ce
sso

rs

2 p
ro
ce
sso

rs

4 p
ro
ce
sso

rs

8 p
ro
ce
sso

rs

2 p
ro
ce
sso

rs

4 p
ro
ce
sso

rs

8 p
ro
ce
sso

rs

2 p
ro
ce
sso

rs

4 p
ro
ce
sso

rs

8 p
ro
ce
sso

rs

2 p
ro
ce
sso

rs

4 p
ro
ce
sso

rs

8 p
ro
ce
sso

rs

2 p
ro
ce
sso

rs

4 p
ro
ce
sso

rs

8 p
ro
ce
sso

rs

2 p
ro
ce
sso

rs

4 p
ro
ce
sso

rs

8 p
ro
ce
sso

rs

0 1 2 3 4 5 6 7 AVG

speedup
[# of cycles]

frame

Incremental contribution of each parallelization level in
overall speedup

color component level 4x4 blocks level MB level
Figure 3 – Contribution of each level of parallelization in overall speedup

 Conclusions
In this work we have presented parallelization possibilities of H.264 deblocking filter and
its performance on DTA architecture. We have exploited three levels of thread level
parallelism: macroblock level, color component level and parallel processing of portions of
macroblocks. We wrote parallel code for DTA by hand and executed it on a cycle accurate
simulator. The results show that scalability of the architecture is very good.
As our future work, we plan to perform these tests on DTA architecture with more
realistic memory system and with higher resolution inputs as well. A paper with more
detailed results of these tests is to be published soon.
This work was supported by the European Commission in the context of the SARC
integrated project #27648 (FP6).

References
[1] R. Giorgi, Z. Popovic, and N. Puzovic, "DTA-C: A Decoupled multi-Threaded Architecture for CMP Systems," in

Proceedings of IEEE SBAC-PAD, Gramado, Brasil, 2007, pp. 263-270.
[2] P. List, A. Joch, J. Lainema, G. Bjntegaard, and M. Karczewicz, "Adaptive deblocking filter," Circuits and Systems for Video

Technology, IEEE Transactions on, vol. 13, pp. 614-619, July 2003.
[3] C. H. Meenderinck, A. Azevedo, M. Alvarez, B. H. H. Juurlink, and A. Ramirez, "Parallel Scalability of H.264," in

Proceedings of the first Workshop on Programmability Issues for Multi-Core Computers, 2008.
[4] "The FFmpeg Libavcoded," http://ffmpeg.mplayerhq.hu/.

