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ABSTRACT

Loops are an important source of optimization. In this paper, we show how traditional loop trans-
formations such as loop unrolling and loop shifting can be applied in the context or reconfigurable
computing. By applying unrolling and shifting to a loop containing a hardware kernel, we relo-
cate the function calls contained in the loop body such that in every iteration of the transformed
loop, software functions (running on GPP) execute in parallel with multiple instances of the ker-
nel (running on FPGA). We illustrate the transformations and present experimental results for a
loop extracted from MPEG2 encoder containing the DCT kernel. The maximum speedup that can
be achieved is 19.65x over the software execution, using the combination of unrolling and shifting.
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1 Introduction

In many real life applications, loops represent an important source of optimization. A num-
ber of loop transformations (such as loop unrolling, software pipelining, loop shifting, loop
distribution, loop merging, or loop tiling) can be used successfully to maximize the paral-
lelism inside the loop and improve the performance. The applications we target in our work
have loops that contain kernels inside them. One challenge we address is to improve the
performance for such loops, by applying standard loop transformations such as the ones
mentioned above. We also keep in mind that there are loop transformations that are not
beneficial in most compilers because of the large overhead that they introduce when ap-
plied at instruction level, but at a coarse-level (i.e., function), they show a great potential for
improving the performance.

Loop unrolling is traditionally used to eliminate loop overhead, improving cache hit
rate and reducing branching by replicating the loop body. We use unrolling to expose the
loop parallelism, allowing us to execute concurrently multiple kernels on the reconfigurable
hardware.

Loop shifting is a transformation that moves operations from one iteration of the loop
body to the previous iteration. The operations are shifted from the beginning of the loop
body to the end of the loop body and a copy of these operations is also placed in the loop
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Table 1: General and Molen-specific assumptions

Loop nest
* no data dependencies between different iterations;
* loop bounds are known at compile time;
* loops are perfectly nested;

Memory accesses
* memory reads in the beginning, memory writes in the end;
* on-chip memory shared by the GPP and the CCUs is used for program data;
* all necessary data are available in the shared memory;
x all transactions on shared memory are performed sequentially;
* kernel’s local data are stored in the FPGA’s local memory, not in the shared memory;

Area & placement
* shape of design is not considered;
* placement is decided by a scheduling algorithm such that the configuration latency is hidden;
* interconnection area needed for CCUs grows linearly with the number of kernels.

prologue. In our research, loop shifting means moving a function from the beginning of the
loop body to the end and we use it to eliminate the data dependencies between software
and hardware functions, allowing concurrent execution on the GPP and FPGA.

2 Study case

We study the effect on performance of applying loop unrolling and loop shifting to a loop
nest containing the DCT kernel. Our target architecture is Molen [VWG™04], which allows
running multiple kernels/applications at the same time on the reconfigurable hardware. The
unroll factor is computed (at compile time) taking into consideration profiling information
about memory transfers, execution times for the kernel in hardware and in software (in
GPP cycles), area requirements for the kernel, and memory bandwidth. Our assumptions
regarding the application and the framework are summarized in Table

The original loop. The loop in Fig. [Th) has been extracted from the MPEG2 encoder mul-
timedia benchmark. It consists of two functions: CPar — which is executed always on the
GPP —and DCT, which is the application’s kernel and will be executed on the reconfigurable
hardware in order to speed up the application.

In each iteration, data dependencies between CPar and DCT exist. In this case, CPar is
the code that computes the parameters for the kernel instance to be executed in the same
iteration.

Transforming the loop with loop unrolling (IDMPBWO08]). The loop in Fig.[Ta) contains
no data dependencies between DCT (¢) and DCT (j), for any iterations i and j, i # j, there-
fore loop unrolling can be applied. Figure [Ib) presents a simplified case of applying the
unrolling method, when N mod v = 0. Each iteration consists of u sequential executions
of the function CPar () followed by the parallel execution of u kernel instances (there is an
implicit synchronization point at the end of the parallel region).



for (i=0; i<N; i++) {
/* Function that executes

always on the GPP */
Cpar (blocks, i, ...);

/* Kernel function */
DCT (blocks, i, ...):;

a) Original loop

for (i=0; i<N; i+=u) {
/* u instances of do_SW(),
sequentially */
CPar (blocks, i+0, ...);
Cééé (blocks, i+u-1, ...);
/* u instances of K()

in parallel */
#pragma parallel
DCT (blocks, i+0, ...);

DCT (blocks, i+u-1, ...);
#end parallel
}

Cpar (blocks, 0, ...);

CbPar (blocks, u-1, ...);
for (i=u; 1i<N; i+=u) {
/* u instances of K()

in parallel with the software */
#fipragma parallel
DCT (blocks, i-u, ...);

DCT (blocks, i-1, ...);

/* sequential execution in software */

{

Cpar (blocks, i+0, ...):

Cpar (blocks, i+u-1, ...);
}
#end parallel
}

#fpragma parallel
DCT (blocks, N-u, ...);

DCT (blocks, N-1, ...);
#end parallel

b) Loop unrolled with a factor u

¢) Loop unrolled and shifted with a factor u

Figure 1: Loop containing a kernel call

Transforming the loop with loop unrolling and shifting ((IDSB08]). In order to perform
loop shifting, one more constraint needs to be satisfied: there should be no data dependen-
cies between CPar (i) and DCT (j), for any iterations i and j, ¢ # j. This condition is satisfied
by the loop in Fig. [Th).

The loop unrolling is extended in Fig. [Tc) by shifting the software part of the loop to the
end of the loop body, such that in each iteration u sequential executions of the function CPar
are executed in parallel with v identical kernel instances. The loop body has one iteration
less than in the previous case (when applying only unrolling), as the first v calls of CPar are
executed before the loop d the last u kernel instances are executed after the loop body.

Experimental results. The loop nest presented in Example [Tj) containing the DCT kernel
(2-D integer implementation) was extracted from MPEG2 encoder multimedia benchmark
and executed on the Virtex II Pro board. The VHDL code for DCT was automatically gener-
ated with DWARYV [YKB*07] tool. The experiment was performed with one instance of the
kernel running on the FPGA and the execution times have been measured using the Pow-
erPC timer registers. The results for the execution time of the loop for higher unroll factors
were computed based on the profiling information.

Figure[2] presents the speedup obtained for different unroll factors, for both unrolling and
unrolling plus shifting. The maximum speedup is achieved for loop unrolling and shifting
with unroll factor u = 8. As it can be seen from the graph, the theoretical performance
for the maximum unroll factor tends to be the same for both techniques, as Sloop(u) is a
monotonously increasing function and Sgp,;4; (1) oscillates within 10% of the maximum value
(19.65x) for u > 8.
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Figure 2: Speedup with loop unrolling and shifting vs. loop unrolling

3 Conclusion

The results achieved for a loop nest extracted from a real-life application (e.g., the MPEG2
encoder) show that loop unrolling and loop shifting are suitable for reconfigurable archi-
tectures. Our method that transforms loops automatically with loop unrolling and/or loop
shifting (if constraints are met) decreases the time for design-space exploration and exploits
the architectural capabilities more efficiently. The input data consists of profiling information
about area utilization, memory transfers and execution times in software and in hardware
for the kernel implementation. An advantage of this method is that it can be applied to any
kernel hardware implementation, from automatically-generated to aggressively-optimized
VHDL code.
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