

PLEASE SCROLL DOWN FOR ARTICLE

This article was downloaded by: [UT University of Technology Delft]
On: 18 October 2008
Access details: Access Details: [subscription number 789189301]
Publisher Taylor & Francis
Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House,
37-41 Mortimer Street, London W1T 3JH, UK

International Journal of Electronics
Publication details, including instructions for authors and subscription information:
http://www.informaworld.com/smpp/title~content=t713599654

Partially reconfigurable point-to-point FPGA interconnects
Jae Young Hur a; Stephan Wong a; Stamatis Vassiliadis a

a Computer Engineering Lab, TU Delft, The Netherlands

Online Publication Date: 01 July 2008

To cite this Article Young Hur, Jae, Wong, Stephan and Vassiliadis, Stamatis(2008)'Partially reconfigurable point-to-point FPGA
interconnects',International Journal of Electronics,95:7,725 — 742

To link to this Article: DOI: 10.1080/00207210801924586

URL: http://dx.doi.org/10.1080/00207210801924586

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or
systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or
distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents
will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses
should be independently verified with primary sources. The publisher shall not be liable for any loss,
actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly
or indirectly in connection with or arising out of the use of this material.

http://www.informaworld.com/smpp/title~content=t713599654
http://dx.doi.org/10.1080/00207210801924586
http://www.informaworld.com/terms-and-conditions-of-access.pdf

International Journal of Electronics
Vol. 95, No. 7, July 2008, 725–742

Partially reconfigurable point-to-point FPGA interconnects

Jae Young Hur*, Stephan Wong and Stamatis Vassiliadis†

Computer Engineering Lab., TU Delft, The Netherlands

(Received 14 September 2007; final version received 28 November 2007)

We present a novel use of wiring flexibility in modern FPGA technology in order
to implement an on-demand network topology. Conventional rigid router-based
networks on chip incur certain overheads due to huge logic resources occupation
and topology embedding. In this work, we implement partially reconfigurable
point-to-point (�-P2P) interconnects to alleviate such overheads. In our
implementation, arbitrary topologies can be realised by updating a partial
bitstream for the �-P2P interconnects. We consider parallel merge sort, Cannon’s
matrix multiplication, and wavelet applications to generate network traffic.
Furthermore, we implement a packet switched network to serve as a reference.
The experiments show that the utilisation of our P2P interconnects performs 2
times better and occupies 70% less area when compared to the reference network.
Furthermore, the topology reconfiguration latency is significantly reduced using
the Xilinx module-based partial reconfiguration technique. Finally, our
experiments suggest that higher performance gains can be achieved as the
problem size increases.

Keywords: FPGA; interconnects; networks on chip; topology; partial reconfi-
guration

1. Introduction

In modern on-chip multi-core systems, the communication latency of the network
interconnects is increasingly becoming a significant factor hampering performance.
Consequently, network-on-chips (NoCs) as a design paradigm has been introduced to
deal with such latencies and related issues. At the same time, NoCs provide improved
scalability and an increased modularity (Dally and Brian 2001). However, these multi-core
systems still incorporate rigid interconnection networks, i.e., mostly utilising a 2D-mesh as
the underlying physical network topology combined with packet routers. More specifi-
cally, it is necessary for the designer to either (i) modify algorithms to suit the underlying
fixed topology or (ii) embed the logical topology (intended by the algorithm) onto the
physical topology, as depicted in Figure 1(a). In both cases, reduced performance is the
result. The topology embedding techniques are well-studied (Leighton 1992) and usually
require the introduction of a router module to handle network dilations and congestions.
Furthermore, worm-hole flow control for the packet switched network (PSN) is widely
used due to its insensitivity to multi-hop delays. As a result, these systems that still utilise

*Corresponding author. Email: J.Y.Hur@ewi.tudelft.nl

ISSN 0020–7217 print/ISSN 1362–3060 online
2008 Taylor & Francis
DOI: 10.1080/00207210801924586
http://www.informaworld.com

D
o
w
n
l
o
a
d
e
d

B
y
:

[
U
T

U
n
i
v
e
r
s
i
t
y

o
f

T
e
c
h
n
o
l
o
g
y

D
e
l
f
t
]

A
t
:

1
6
:
4
5

1
8

O
c
t
o
b
e
r

2
0
0
8

rigid network interconnects have the following limitations. First, the programmer must

have intricate knowledge of the underlying physical network in order to fully exploit it.

Second, performance is deteriorated due to topology embedding that is likely to increase

communication delays and/or create traffic congestions. Third, a router (usually with

virtual channels) occupies significant on-chip resources. Therefore, we aim to design and

implement a (dynamically) adaptive and scalable interconnection network to alleviate

these problems. Figure 1(b) depicts our general approach. Our system adaptively changes

the interconnection network to better suit different traffic patterns traffic patterns. The

ability to ‘construct’ topologies on-demand (at application start time or even during run-

time) is likely to improve performance.
In this work, we implement an arbitrary topology by updating small-sized partial

bitstreams for the point-to-point (P2P) interconnects. Our work is motivated by several

key observations. First, different applications generate different traffic patterns that

require different topologies to handle them in the best possible manner. Second, the

topology that practical applications require is in many cases simple (Bertozzi et al. 2005),

which implies that the area of the reconfigurable network can be relatively small. Third,

a parallel application is actually specified by a point-to-point data flow (or task) graph.

Fourth, direct P2P network connections eliminate the aforementioned overheads of

utilising packet switched networks. Fifth, modern reconfigurable hardware fabrics

contain rich intra-chip wiring resources and additionally provide a capability to

change the interconnections (possibly) in run-time. More than 70% of the area of

current state-of-the art FPGAs is occupied by the millions of wiring segments, such as

long, hex, double, and direct lines.
In order to realise the reconfigurable point-to-point (�-P2P) networks, we utilise Xilinx

partial reconfiguration techniques (Xilinx 2004). As a comparative study, we implement

Application(s)

(a) Conventional design flow. (b) Our design flow.

Fixed
underlying

interconnection
network

On-demand
Interconnection

Network
t

Application(s) Underlying
network

On-demand
network
topology

On-demand
network
topology

t t

Logical
process/ communication

mapping

Physical
processor/ interconnects

mapping (embedding)

(modification)

Logical
process/ communication

mapping

Physical
processor/ interconnects

(re)configuration

Process

Processor Processor Processor

Processor

Processor

ProcessorProcessorProcessor

Process Process Process

ProcessProcessProcessProcess

Figure 1. Running application(s) on static (a) and on-demand (b) interconnection networks.

726 J.Y. Hur et al.

D
o
w
n
l
o
a
d
e
d

B
y
:

[
U
T

U
n
i
v
e
r
s
i
t
y

o
f

T
e
c
h
n
o
l
o
g
y

D
e
l
f
t
]

A
t
:

1
6
:
4
5

1
8

O
c
t
o
b
e
r

2
0
0
8

PSNs to re-examine the performance gain and the area reduction of our P2P network over

the PSN in an FPGA platform. The main contributions of this work are as follows.

. The experiments show that our P2P network performs 2� better and occupies 70%
less area compared to a mesh-based PSN for the considered applications. The actual
system performance gain increases as the problem size increases.

. The proof-of-concept implementation provides the feasibility of the �-P2P inter-
connects. Experiments show that topology can be reconfigured in hundreds of
microseconds for small sized network.

The organisation of this paper is as follows: in § 2, related work is described. Hardware
implementations of the reference network and the �-P2P network are described in § 3
and 4, respectively. Finally, conclusions are drawn in § 5.

2. Related work

Vassiliadis and Sourdis (2006) introduced a general concept of on-demand reconfigurable
interconnects, in which the interconnections of a parallel system are established on
demand before or during program execution. In this paper, our �-P2P network is
presented to realise on-demand interconnects as an viable implementation methodology
using modern FPGA technology.

A number of ASIC (SoC)-targeted NoCs have been proposed, as surveyed by

Bjerregaard and Mahadevan (2006). Typically, packet routers constitute tiled NoC

architectures. These ASIC-targeted NoCs employ rigid underlying networks, in which

the network parameters are fixed at fabrication time. Subsequently, the main drawback of

these ASIC-targeted NoCs is limited adaptivity. In addition, a shared bus is still a typical

network infrastructure, even though the sequential nature of communications is not

desirable.
A number of FPGA-based systems employ packet switched networks (Zeferino and

Susin 2003, Moraes et al. 2004, Marescaux et al. 2004, Bartic et al. 2005). Subsequently, we

consider a packet switched network as a reference to compare with our approach.

These NoCs are usually specified in technology-independent synthesisable HDL (or

SystemC) and targets reconfigurable logic. Consequently, the NoCs constitute an overlay

network on top of pre-fabricated fine-grained reconfigurable fabrics in FPGAs.

Marescaux et al. (2004) designed a network for partially reconfigurable modules supported

by an operating system. Bartic (2005) presented a topology adaptive parameterised

router network, in which an on-demand physical topology is constructed between

packet routers. Our topology construction method differs from the method of Bartic

et al. (2005), in that the topology of our work is defined by the direct interconnection

between processors. Kapre et al. (2006) presents time-multiplexed switches, which con-

stitute overlay networks with a butterfly fat tree topology. Our work is similar to the work

of Kapre et al. (2006) in that we discuss overheads of on-chip packet switched networks.

While Kapre et al. (2006) do not discuss topology embedding, our work presents a

network implementation to avoid packet processing overheads together with topology

embedding.
A crossbar switch or point-to-point network are currently widely utilised for FPGA

interconnects. Nikolov et al. (2006) developed a multiprocessor system that accommodates

an overlay crossbar network, where crossbar interconnects or P2P network can be

International Journal of Electronics 727

D
o
w
n
l
o
a
d
e
d

B
y
:

[
U
T

U
n
i
v
e
r
s
i
t
y

o
f

T
e
c
h
n
o
l
o
g
y

D
e
l
f
t
]

A
t
:

1
6
:
4
5

1
8

O
c
t
o
b
e
r

2
0
0
8

systematically constructed. A full crossbar fabric provides a dynamic topology reconfi-

guration feature, because all-to-all topologies are accommodated in a crossbar. However,
we do not consider these all-to-all crossbars in this work, since number of wires increases

in a quadratic manner as number of ports increases. Patel et al. (2006) and Chang et al.

(2005), presented P2P networks in high performance FPGA-based multiprocessor systems.
In these systems, a direct point-to-point link (for intra-FPGA using Fast Simplex Link),

fully connected all-to-all networks (for inter-FPGA using Rocket IO), and commercial

ethernet switch (for inter-board) are utilised. Our �-P2P network is different from these
traditional point-to-point networks in that the physical interconnects of our work are

partially reconfigurable.
Brebner and Levi (2003) and Huebner et al. (2004) implemented networks, utilising

a modern partial and dynamic reconfiguration technology. Brebner and Levi (2003)

developed a large-sized (928�928 bits) all-to-all crossbar network utilising native pro-

grammable interconnect switches and look-up tables (LUTs). Huebner et al. (2004) first
presented a LUT-based bus macro implementation. Our work is similar to the work of

Huebner et al. (2004) in that the LUT-based bus macro is utilised. However, the utilisation

of these LUTs is moderately different from ours. In Huebner et al. (2004), the buses are
static and these LUTs are operated as a network itself. In other words, these bus macros

interconnect computation components. On the other hand, LUTs in our work operate as

anchor points to decouple computation components and communication networks. In
addition, we use only necessary wiring resources to implement on-demand topologies. Our

work is also close to the work of Raaijmakers and Wong (2007), Braun et al. (2007) in that
partial reconfiguration of P2P wires is presented. Raaijmakers and Wong (2007) presented

a dynamic wiring without using bus macros and also presents an in-house tool to realise

on-line routing. While a bitstream manipulation tool by Raaijmakers and Wong (2007)
targets only Virtex-II Pro xc2vp30 device, we utilise bus macros and a mainstream tool

chain. Subsequently, our approach can be utilised in state-of-the-art Xilinx devices,

such as Virtex-4 and 5. Braun et al. (2007) presents wire reconfiguration for newly
placed modules and crossbar interconnects controlled by LUTs. Our approach differs

from the work of Braun et al. (2007), in that we establish only necessary interconnects.

3. Design and implementation

In this section, we present a comparative study between the reference network and the
proposed �-P2P interconnects. A hardware implementation of the reference 2D-mesh
packet switched network (PSN) is presented in § 3.1. The proposed �-P2P interconnects are
presented in § 3.2. In § 3.3, a performance analysis is presented for the considered network
traffic.

3.1 Packet switched networks

We consider the PSN as a reference network as depicted in Figure 2(a). The PSN
system consists of processing nodes which are interconnected in a rigid topology. Each
node comprises a processing element (PE), a dual-ported memory, a network interface,
and a router. Each node communicates utilising a handshaking protocol. Each packet
is composed of 3 control flits and a variable amount of data flits, as depicted in
Figure 2(b). The first flit is a header containing the target node address. The second flit
is the physical memory address of the remote node to store the transmitted data.

728 J.Y. Hur et al.

D
o
w
n
l
o
a
d
e
d

B
y
:

[
U
T

U
n
i
v
e
r
s
i
t
y

o
f

T
e
c
h
n
o
l
o
g
y

D
e
l
f
t
]

A
t
:

1
6
:
4
5

1
8

O
c
t
o
b
e
r

2
0
0
8

The trailer indicates the last flit of a packet. Figure 2(c) depicts how a packet is
processed in the router. A flit-based worm-hole flow control is adopted for more
efficient buffer utilisation. When a packet arrives, the switch controller checks the
packet header in the buffer. If the current node address and a target node address are
different, the switch controller forwards the packet to the appropriate port. If the
current node address and a target node address are identical, the switch controller
checks how many local memory ports are idle and forwards the packet to the memory
of a local PE.

The switch controller permits up to two packets to simultaneously access the local
dual-ported memory. This feature is useful, since two-operand computations are common
in many applications. Figure 2(d) depicts how each node is organised. The network
interface deals with packet generation, assembly, and memory management. The memory
is private to the PE and the packet size is determined by the PE using a trailer signal.
In this way, direct memory access (DMA) of burst data transfers can be supported. Each
port incorporates full-duplex bidirectional links. A buffer is located at each input port and
the XY routing algorithm is utilised for its simplicity. A buffer accommodates 8 flits, while
the individual flit width is 16 bits. The packets are arbitrated based on the round robin
scheduling policy. The PEs are wrapped inside a router in order for the dual-ported
memory to simultaneously store 2 incoming packet payloads. Our implementation is
similar to the network of Moraes et al. (2004) in that the same flow control
and routing scheme are used. However, our PSN differs in the following ways. First,
variable length burst packets are directly communicated between distributed memories.
Second, dual-ported embedded memories are utilised to simultaneously accommodate
two incoming packets. Third, a topology embedding (e.g., binary tree traffic embedding
using a mapping algorithm of Lee and Chi (1996)) has been implemented. A single

Switch controller
Arbiter

B
uffer

B
uffer

Buffer

Buffer

Router

PE

Memory

Network interface

Worm-hole router
Processing node
(PE, memory, network interface)P

(a) PSN implementation

Buffer

Switch controller

1 52

3
4

1 Header arrives
2 Routing request
3 Routing request for

arbitrated packet
4 Output port is free
5 Packet flows

Arbiter

Router

(c) Packet processing

(b) Packet organization

Target
core

address

Memory
address

Data Data Data Trailer

P1 P2 P3 P4

P5 P6 P7 P8

P9 P10 P11 P12

P13 P14 P15 P16

(d) 2D-mesh node organization

Figure 2. The 2D-mesh PSN system organisation.

International Journal of Electronics 729

D
o
w
n
l
o
a
d
e
d

B
y
:

[
U
T

U
n
i
v
e
r
s
i
t
y

o
f

T
e
c
h
n
o
l
o
g
y

D
e
l
f
t
]

A
t
:

1
6
:
4
5

1
8

O
c
t
o
b
e
r

2
0
0
8

packet containing Nl elements requires the following amount of cycles to conduct a source-
to-destination communication:

Ll ¼ Poverhead þ #hop � Lh þ Nl , ð1Þ

where Ll refers to the communication latency in number of cycles to transfer Nl elements.
Lh denotes the header latency per router. The Poverhead refers to the packetization
overhead. #hop refers to the number of intermediate routers.

Similarly, we can implement PSNs with different topologies. Table 1 shows a router
implementation for the PSN with different topologies. Different topologies require
different routing schemes. Horowitz’ routing algorithm (Horowitz and Zorat 1981) is
used to implement binary tree topology. Dimension-ordered routing algorithm is used for
other topologies. When these overlay networks are mapped onto a target FPGA tech-
nology, the physical network performance is determined by the design itself as well as the
quality of mapping/placement/routing methodology. The main drawback of these NoCs is
increased cost. As shown in Table 1, single router occupies 2%�7% of xc2vp30 Virtex-II
Pro device. The area overhead is significantly increased when virtual channels are
implemented to maintain a quality-of-service. As an example, 16 routers with 4 virtual
channels in Mello et al. (2005) occupy 25481 slices, while a common device such as the
xc2vp30 Virtex-II Pro contains only 13696 slices in total. Furthermore, these networks
route packets over (mostly) multi-hop routers, which increase a communication latency.
In order to alleviate these problems, �-P2P network is presented in next section.

3.2 q-P2P network

Overview: Dynamically changing the network topology is often beneficial. These
dynamic (re)wiring can be utilised in the following two cases. First, when new function-
alities are plugged in the device, it is required to interconnect to (or between) these new
modules. Some application scenarios that utilise the dynamic module replacement are
presented in the work of Braun et al. (2007). Second, the dynamic wiring can be beneficial
for an application that contains multiple subroutines, in which communication patterns of
these subroutines are temporally local. As an example, Linpack benchmark application
mainly consists of two routines, namely dgefa (factorisation of matrix) and dgesl (solving
linear equation with back-substitution). Main subroutines in dgefa routine are idamax
(finding maximum) and dgemm (matrix multiplication). Additionally, dgemm is a main

Table 1. Router implementations for different topologies (DOR: dimension ordered routing).

Switch # ports Algorithm Area(slices) Freq. (MHz) Peak BW(Gbps)

Binary tree 4 Horowitz 389 136.4 4.36
2D-mesh 5 DOR 626 137.6 5.5
3D Hypercube 4 DOR 472 162.6 5.2
4D Hypercube 5 DOR 674 142.3 5.69
5D Hypercube 6 DOR 826 137 6.58
6D Hypercube 7 DOR 973 133.9 7.5
Linear array 3 DOR 318 178.2 4.28
Ring 3 DOR 318 178.2 4.28
2D Torus 5 DOR 630 136.6 5.46

730 J.Y. Hur et al.

D
o
w
n
l
o
a
d
e
d

B
y
:

[
U
T

U
n
i
v
e
r
s
i
t
y

o
f

T
e
c
h
n
o
l
o
g
y

D
e
l
f
t
]

A
t
:

1
6
:
4
5

1
8

O
c
t
o
b
e
r

2
0
0
8

subroutine in dgesl routine. In this case, possible topologies for these subroutines can be a
binary tree (for idamax) and a 2D-torus (for dgemm), as depicted in Figure 3(a). Another
case can be found in telecommunications (or multimedia) applications. As an example,
wireless LAN receiver (such as 802.11) application contains compute-intensive subroutines
such as FFT and equalisation. In this case, possible topologies for these subroutines can be
a butterfly (for FFT) and a 2D-mesh with diagonal (for equalisation), as depicted in
Figure 3(b).

The proposed �-P2P network directly interconnects PEs. The network topology is
implemented as a partially and dynamically reconfigurable component of the system. PEs
are located in a static region and interconnects are located in the reconfigurable region. We
utilise pre-fabricated native wire segments to construct the topology. The topology
component is modular and can be replaced by other topologies. Anchor points, depicted
in Figure 4(a), reserve wires to interconnect the reconfigurable components and the static
components. Figure 4(b) depicts the exemplified reconfiguration steps where the PEs are
initially interconnected in a 2D-mesh. Subsequently, the on-demand topology is reconfi-
gured by updating the partial bitstreams only for the reconfigurable topology component
during the respective times t2 � t1, t3 � t2. When the required communication patterns
change, the physical interconnects can be quickly adapted. The reconfiguration latencies
are directly proportional to corresponding partial bitstream sizes. The bitstream size is

dgefa

idamax

dgemm

P2 P3

P1

P4 P5 P6 P7

P1 P2 P3

P4 P5 P6

P7 P8 P9

t

Application

Topology configuration

(a) LinPack

FFT

t

Application

Topology configuration

(b) WLAN

Equalizer P1 P2 P3

P4 P5 P6

P7 P8 P9

P1 P2 P3 P4 P5 P6 P7 P8

P1 P2 P3 P4 P5 P6 P7 P8

P1 P2 P3 P4 P5 P6 P7 P8

P1 P2 P3 P4 P5 P6 P7 P8

Figure 3. Applications and topologies.

partial
bitstream

partial
bitstream

full
bitstream

1

2

3

4

5

6

7

8

9

1

2

3

4

5

6

7

8

9

1

2

3

4

5

6

7

8

9

Binary tree Linear array 2D-mesh
t = t1 t = t3

PE

PE

PE

PE

(a) network

− P2P

− P2P − P2P

Interconnects
(topology

component)

(b) Topology reconfiguration in system

Anchor points

t = t2

Figure 4. The �-P2P interconnects.

International Journal of Electronics 731

D
o
w
n
l
o
a
d
e
d

B
y
:

[
U
T

U
n
i
v
e
r
s
i
t
y

o
f

T
e
c
h
n
o
l
o
g
y

D
e
l
f
t
]

A
t
:

1
6
:
4
5

1
8

O
c
t
o
b
e
r

2
0
0
8

determined by the required on-chip resources. We exploit the partial reconfiguration

technique in modern FPGAs, using which we can implement our topology reconfiguration

approach as a prototype of concept. Our approach can be applied to modern LUT-based

reconfigurable hardware, such as partially reconfigurable Xilinx Virtex series devices.

The layout of the static region can be identical for each system configuration and

remains unchanged during the interconnects reconfiguration. The small sized topology

components can be reconfigured while PEs are in operation within the static region.

The design flow allows the PEs in the static region to be reconfigured in the same way as

the reconfigurable region is configured. These static region can be composed of either

application-specific PEs or general-purpose processors. It can be noted that the design

flow allows the reconfiguration of these processors. In other words, possibly new

functionality can be dynamically placed onto these PEs, though we consider these PEs

are static in this work. In order to conduct a source-to-destination communication,

Nl elements require approximately Nl cycles. Faster communication can be achieved

compared to the PSN. This is due to the fact that the data is communicated in a point-

to-point fashion without packetisation and multi-hop routing overheads. Compared to the

PSN, the area is also significantly reduced. This is due to the fact that the interconnection

network can be realised only with firm bus-macros and native on-chip wires.

Topology implementations: We target the Virtex-II Pro device, in which the configuration
frame spans full vertical height. We use bus macro to implement the anchor points in
Figure 4(a). The bus macro can be implemented using symmetrical tri-state buffer arrays,
as presented in Hur et al. (2007). Figure 5 depicts the topology implementation using
TBUF-based bus macro as an example. Two tri-state buffers constitute a single-bit wire
line. The reconfigurable region and bus macros constitute the topology component. In this
work, we implement LUT arrays to construct the topologies. The reconfigurable region
and bus macro array constitute the modular topology component, similarly to the TBUF-
based implementation. The interconnects are enabled or disabled by controlling the LUT
input signals. Different network topologies are implemented between the bus macros.
Figure 6 depicts the design of a topology component using bus macros as an example. The
interconnects do not require logic resources such as slices, except the power and ground
signals. The LUT-based bus macro is advantageous over traditional TBUFs in the
following ways. First, a LUT-based implementation provides higher density. Second,
the TBUF is connected to native long lines, which obviously incur higher capacitance

(a) 3-node binary tree (b) 4-node 2D-mesh

boundary

bus macros

interconnects processors

binary tree

1

2

3

42D-mesh

1

2 3

1 2

3 4

1

2

3
vcc

gnd

open

4 vcc

gnd

Figure 5. The topology implementation using TBUF-based bus macro array.

732 J.Y. Hur et al.

D
o
w
n
l
o
a
d
e
d

B
y
:

[
U
T

U
n
i
v
e
r
s
i
t
y

o
f

T
e
c
h
n
o
l
o
g
y

D
e
l
f
t
]

A
t
:

1
6
:
4
5

1
8

O
c
t
o
b
e
r

2
0
0
8

compared to short wires, such as double, hex, direct lines. Third, these long lines can be

driven by multiple locations, which often incur unstable behaviour of TBUFs.

Limitations and scalability issue: Modern FPGA interconnects can be viewed as elec-

trically programmable physical circuit switched networks. These pre-fabricated intercon-

nects inherently constitute reconfigurable point-to-point networks. LUTs and wires are

regularly structured in an island style. Even though the wire reconfigurability is a valuable

asset, FPGA interconnects have following limitations. First, underlying fabric is still bit-

level. Subsequently, a designer finds difficulty to meet the timing requirements due the net

delay skew. Second, logical topology and physical geographic topology are in most cases

different. As an example, when coarse-grained logical direct link is mapped onto FPGAs,

physical wires are spaghetti-like bit-level wires after the routing stage. Subsequently,

increased wire length and delays incur reduced performance, due to the discrepancy

between logical and physical networks. Third, the frame-based configuration scheme is

inefficient, in that the configuration frames contain mingled bitstream for unnecessary

intra-module interconnects, inter-module interconnects and logic.
In fact, a P2P network potentially has drawback in terms of wire delay, as the network

size increases. However, this scalability problem also occurs for other logical networks,

such as router-based network or shared bus. Though the implemented physical network

behaves as a router-based network, physical wires are again bit-level wires which

interconnect fine-grained LUTs. In FPGA, a logical network must be mapped onto a

physical one. Based on the fact that inter-module communications are mostly coarse-

grained, the degradation of the wire clock length (for both P2P network and router-based

network) is inevitable. Though PSN provides a pipelined communication, a packet stays in

each router for typically 3 � 6 cycles throughout the communication. In order to alleviate

these wire delay problems in the P2P networks, register(s) can be instantiated between

long-distance routing points. By inserting register(s), the communication clock length can

be reduced. In our experiment, the clock frequency of P2P network is comparable to the

router-based network, as described in § 4.

3.3 Configuration examples

In order to compare the presented network and the reference network, we consider

three workloads. Parallel merge sort (burst traffic), Cannon’s matrix multiplication

(element-wise traffic), and wavelet transform (burst traffic) have been chosen as

(a) 3-node binary tree (b) 4-node 2D-mesh

1

2

3

4

1

2

3

4

binary tree

1

2 3

2D-mesh

1 2

3 4

interconnects PEs

bus
macro
array

vcc

vcc

vcc

vcc

Reserved port Reserved wire LUT

Figure 6. The topology implementation LUT-based using bus macro array.

International Journal of Electronics 733

D
o
w
n
l
o
a
d
e
d

B
y
:

[
U
T

U
n
i
v
e
r
s
i
t
y

o
f

T
e
c
h
n
o
l
o
g
y

D
e
l
f
t
]

A
t
:

1
6
:
4
5

1
8

O
c
t
o
b
e
r

2
0
0
8

network traffic. Those algorithms are common and the implemented PEs are small in area

such that larger networks can be realised in a single chip.

Parallel merge sort: The logical traffic pattern of the parallel merge sort is as follows.

First, sequential sort is performed at the bottom-most nodes. Second, the parent nodes

sort elements taken from child nodes until the root node finishes the task. Sequential

and parallel computation require Oðn lognÞ, O(n) steps. Communication requires O(n)

steps for the problem size n. Sequential PEs are identical for �-P2P and PSN systems.

Consider p PEs performing the parallel merge sort of N integers. System cycles are derived

using Equations (2a), (2b), where MS_PSN and MS_P2P refer to the number of cycles

when the application is operated in the PSN and P2P, respectively. In PSN, the system

cycles are calculated by adding (computation cycles) þ (communication cycles). Consider

a complete binary tree with p PEs, �qð2N=ðpþ 1ÞÞlogð2N=ðpþ 1ÞÞ cycles are required for

a sequential sort.
In P2P, �pN cycles are required for the parallel computation for N total elements. For

each element, �p cycles are required to perform load, compare, forward operations. Also,

�pN are required for communications, for each element. In case �p and �p are the same, all

the communication cycles �pN are hidden by the computation, since communication and

computation are overlapped.
The PSN is operated as follows. When the sequential PE points to a remote memory

address and commands a packet transfer, the network interface in each bottom node

generates a packet containing 2N=ðpþ 1Þ elements. Subsequently, each packet requires

(�sð2N=ðpþ 1ÞÞ þ #hop � Lh þ Poverhead) cycles to move up to the upper nodes. When each

packet arrives in the upper nodes, the network interface assembles the packets and stores

the elements in local memory. Upper nodes perform a parallel sort, in which each element

requires �s cycle(s) for the parallel computation. In Equation (2a), ðlog2ðpþ 1Þ � 1Þ

corresponds to the level of binary tree.
Figure 7 depicts the required steps and corresponding cycles for a 7-node 2D-mesh

PSN. The sequential PE requires �qðN=4ÞlogðN=4Þ cycles in bottom-most nodes 4� 7. For

the sequential computation, each element requires �q cycles. When the sequential PE

points to a remote address and commands a packet transfer, the network interface

generates a packet containing N=4 elements. After that, each packet requires

(�sðN=4Þ þ #hop � Lh þ Poverhead) cycles to move up to upper node 2 and node 3. When

each packet arrives at node 2 and node 3, the network interface assembles the packets and

Comp.

Comm.

Comp.

Comm.

Comp.

Comp.

Comm.

Comp.

Comm.

Comp.

log
4 4

q

N N

t

p

p

...

p N

...

...

...
wt

wt

t

1

6 74

32

5

#
4

s h overhead

N
hop L P+ ⋅ +

2
s

N

#
2

s h overhead

N
hop L P+ ⋅ +

s N

log
4 4

q

N N

(a) Application (c) 2D-mesh PSN (d) Binary tree P2P

4 2 5

8 1 9

6 3 7

(b) Topology
embedding on PSN

Figure 7. Way of computation and communication for parallel merge sort.

734 J.Y. Hur et al.

D
o
w
n
l
o
a
d
e
d

B
y
:

[
U
T

U
n
i
v
e
r
s
i
t
y

o
f

T
e
c
h
n
o
l
o
g
y

D
e
l
f
t
]

A
t
:

1
6
:
4
5

1
8

O
c
t
o
b
e
r

2
0
0
8

stores the elements in each local memory. Nodes 2 and 3 perform parallel sort for �pðN=2Þ
cycles. For the parallel computation, each element requires �p cycle(s). These steps are
repeated until the root node finishes the task. It can be noted that a waiting latency tw in
P2P can be negligible, since it is only 5 cycles in our implementation

MS PSN ¼ �q
2N

pþ 1
log

2N

pþ 1
þ 2�sN 1�

2

pþ 1

� �

þ �sN 1�
2

pþ 1

� �
þ ðlog2ðpþ 1Þ � 1Þð#hop � Lh þ PoverheadÞ ð2aÞ

MS P2P ¼ �q
2N

pþ 1
log

2N

pþ 1
þ �p N ð2bÞ

Cannon’s matrix multiplication: The logical 2D-torus traffic pattern of the Cannon’s
matrix multiplication is as follows. First, a scalar multiplication is performed at each node.
Second, the intermediate result is transferred to the left/downward node. These two steps
are repeated until the task is finished. A sequential computation requires Oðm3Þ steps for
the matrix of size m�m. For the parallel computation, each PE is assumed to contain a
single multiplier and an adder. Consider

ffiffiffi
p
p
�

ffiffiffi
p
p

PEs and 2 symmetric matrices with size
M�M. System cycles are derived using Equations (3a) and (3b), where MM_PSN,
MM_P2P refer to the number of cycles when the matrix multiplication is operated in the
PSN and �-P2P, respectively.

Figure 8 depicts the required number of cycles for the P2P and the PSN. In P2P, PEs
require �p cycles to perform multiply, add, and transfer operations for each element. There
are

ffiffiffi
p
p

phases of computations and M3=p
ffiffiffi
p
p

computation cycles are required for each
phase. The communication is performed between directly connected neighboring PEs, i.e.,
#hop is 1. In total, �pðM

3=pÞ cycles are required for the system cycles.
In PSN, each phase requires a packet transmission for M2=p elements with the

overheads of Lh, Poverhead. Additionally, the communication is directly performed between
distributed memories

MM PSN ¼ �q
M3

p
þ

ffiffiffi
p
p

�s
M2

p
þ #hop � Lh þ Poverhead

� �
ð3aÞ

MM P2P ¼ �p
M3

p
ð3bÞ

Comp.

Comm.

Comp.

Comm.

Comp.

Comp.

Comm.

Comp.

Comm.

Comp.

t

3

q

M

p p

2

#s h overhead

M
hop L P

p
+ ⋅ +

(a) Application (c) 2D-mesh PSN (d) 2D-torus P2P

1 2 3

4 5 6

7 8 9

3

q

M

p p

2

#s h overhead

M
hop L P

p
+ ⋅ +

3

q

M

p p

3

p

M

p p

3

p

M

p p

3

p

M

p p

t

1 2 3

4 5 6

7 8 9

(b) Topology
embedding on PSN

wt

wt

Figure 8. Way of computation and communication for Cannon’s matrix multiplication.

International Journal of Electronics 735

D
o
w
n
l
o
a
d
e
d

B
y
:

[
U
T

U
n
i
v
e
r
s
i
t
y

o
f

T
e
c
h
n
o
l
o
g
y

D
e
l
f
t
]

A
t
:

1
6
:
4
5

1
8

O
c
t
o
b
e
r

2
0
0
8

Wavelet transform: We consider lifting-based 2D discrete wavelet transform (DWT)
application, using the (5,3) filter bank. The lifting operation consists of two stages, namely
prediction stage (for high pass filter) and update stage (for low pass filter). The logical
traffic pattern of the wavelet application is depicted in Figure 9(a) for 8 PEs. First, high
pass filter coefficients d0 are calculated by (di � bðsi þ siþ1Þ=2c) in nodes 1 � 4 depicted in
Figure 9(a). Second, low pass filter coefficients s0 are calculated by (si þ bð2þ d0i�1 þ d0iÞ=4c)
in nodes 5 � 8 depicted in Figure 9(a). These two steps are repeated until the task is
finished. A sequential computation requires O(n) steps for the image size of n pixels.
Consider p PEs and problem size N. System cycles are derived using Equations (4a), (4b),
where MV_PSN, MV_P2P refer to the number of cycles when the application is operated
in the PSN, P2P, respectively.

In P2P, each PE requires �r cycles to perform shifting and addition / substraction
operations. The communication is performed between directly connected neighboring PEs.
As a result, N=p pixels are concurrently computed and communicated in a pipelined
manner. A waiting latency tw in P2P can be also negligible, since it is only 4 cycles in our
implementation.

In PSN, there are three phases of operations. First, d0 is computed for N=p elements in
bottom PEs. Second, burst communication of 2N=p elements (for d0 and s) is concurrently
conducted. Finally, s0 is computed for N=p elements in upper PEs. In addition the
communication is directly performed between distributed memories.

WV PSN ¼ 2�r
N

p
þ �r

2N

p
þ #hop � Lh þ Poverhead

� �
ð4aÞ

WV P2P ¼ �r
N

p
ð4bÞ

4. Experimental results

In this work, 4 experiments were conducted. First, the system cycles are analytically
derived from Equations (2), (3), (4) to measure the performance gain of �-P2P over PSN in
the FPGA. The coefficients are obtained from the customised hardware implementations.
For the parallel merge sort, �q ¼ 2:6, �s ¼ 2:3, �s ¼ 1 Lh¼ 6, �p ¼ 2, �p ¼ 2 were
obtained. For the matrix multiplication, �q ¼ 2, �p ¼ 1, �s ¼ 1 were obtained. The �q is
2, since the PE requires 2 cycles to access a local memory, while �p is 1, since the data is

Comp.

Comm.

Comp.

Comp.

Comm.

Comp.

r

N

p

2
#r h overhead

N
hop L P

p
+ ⋅ +

(a) Application (c) 2D-mesh PSN

1 2 3 4

5 6 7 8
r

N

p

t

p

p

...
...

wt

wt

(d) P2P

...
r

N

p
s0 d0 s1 d1 s2 d2 s3 d3

d'0 d’1 d’2 d’3

s’0 s’1 s’2 s’3

s0 s1 s2 s3

6 2 9

1 7 4

5 3 8

(b) Topology
embedding on PSN

t

Figure 9. Way of computation and communication for lifting-based wavelet.

736 J.Y. Hur et al.

D
o
w
n
l
o
a
d
e
d

B
y
:

[
U
T

U
n
i
v
e
r
s
i
t
y

o
f

T
e
c
h
n
o
l
o
g
y

D
e
l
f
t
]

A
t
:

1
6
:
4
5

1
8

O
c
t
o
b
e
r

2
0
0
8

communicated directly between PEs. For the wavelet transform, �r ¼ 3:7, �p ¼ 1, �r ¼ 1,
�p ¼ 1 were obtained. We can fairly compare P2P and PSN, since the computational
latency is the same for both cases. Figure 10 depicts the system execution time for a fixed
network size and different problem sizes. The clock frequencies were obtained from the
experiments. As can be observed, the P2P network performs on average 2� better (Note:
graphs have a log scale). In our experiment, the clock period of P2P is comparable to the
clock period of the PSN. This is due to the fact that the 2D-mesh based network occupies
more area than the P2P based network, by more than factor of 3. Figure 10 also shows the
performance gain of P2P over PSN in terms of the execution time. The performance gain is
obtained by (PSN2 system cycles - P2P system cycles)�(clock period). For a given network
size, the performance gain also increases, as the problem size increases. As Figure 10
depicts, the performance gain that can grow up to 120 ms (for parallel merge sort), 334 ms
(for matrix multiplication), and 27 ms (for wavelet). It can be noted that the Virtex-II Pro
xc2vp30 device requires 29ms as an entire chip reconfiguration time. Consequently, we can
note that for large problem sizes in absolute time the performance gain can grow larger
than the actual reconfiguration time. This means that it can be beneficial to dynamically
switch networks on demand.

Second, PSN and P2P were implemented in VHDL, placed and routed using the Xilinx
ISE tool, in order to evaluate the system cycle models in Equations (2), (3). The systems
have been implemented for N¼ 512 (for parallel merge sort), M¼ 16 (for matrix multi-
plication), and N¼ 512 (for wavelet transform). Each PE has been implemented in an
application-specific finite state machine, occupying 1% of area. Virtex-II Pro xc2vp100-6
has been used as a target device in order to experiment on larger networks. The
implementation results for the merge sort are presented in Figure 11(a), in which network
size, type of network, topology, number of nodes, system cycles, system area, clock
frequency and system execution time are shown. The sequential merge sort requires 11981
(�2:6� 512� log2512) cycles in the implementation. To implement the 2D-mesh PSN, the
binary tree is embedded in a 2D-mesh using the algorithm of Lee and Choi (1996). The
binary tree P2P reduces on average 67% area and 37% of execution time compared to
PSN. In Figure 11(a), PSN and P2P for the same network size can be fairly compared,
since an actual number of PEs that perform the computations is the same. Figure 11(b)
shows the comparison of PSN and �-P2P for the matrix multiplication.
The sequential matrix multiplication requires 12546 (�3� 163) cycles. An embedded

(a) Parallel merge sort
(p=64)

(b) Cannon’s matrix multiplication
(p=256)

(3)Wavelet
(p=8)

Merge sort

0.001

0.010

0.100

1.000

10.000

100.000

1000.000

25
6

10
24

40
96

16
38

4

65
53

6

26
21

44

10
48

57
6

41
94

30
4

25
6

10
24

40
96

16
38

4

65
53

6

26
21

44

10
48

57
6

41
94

30
4

25
6

10
24

40
96

16
38

4

65
53

6

26
21

44

10
48

57
6

41
94

30
4

Problem Size (N)

E
xe

cu
tio

n
tim

e
(m

s)

0.001

0.010

0.100

1.000

10.000

100.000

1000.000

E
xe

cu
tio

n
tim

e
(m

s)

0.001

0.010

0.100

1.000

10.000

100.000

1000.000

E
xe

cu
tio

n
tim

e
(m

s)PSN
P2P
Gain

PSN
P2P
Gain

PSN
P2P
Gain

Cannon's matrix multiplication

Problem Size (M2)

Wavelet

Problem Size (N)

Figure 10. Execution time and performance gains of �-P2P and PSN.

International Journal of Electronics 737

D
o
w
n
l
o
a
d
e
d

B
y
:

[
U
T

U
n
i
v
e
r
s
i
t
y

o
f

T
e
c
h
n
o
l
o
g
y

D
e
l
f
t
]

A
t
:

1
6
:
4
5

1
8

O
c
t
o
b
e
r

2
0
0
8

hardwired 18� 18 bit multiplier, an adder, and a simple control unit are implemented for

each PE. These PEs are identical for �-P2P and 2D-mesh PSN systems. In P2P, each PE

performs an integer multiplication in a single cycle. In �-P2P, 94.6% of an execution time

is reduced, when compared to 2D-mesh PSN. This is due to the fact that the number of
communication hops in P2P are significantly less than the number of hops in PSN. In PSN

with 16�16 PEs, 16 hops are required for each packet, while P2P requires only a single

hop. Additionally, 82% of area is reduced, since complex router modules are eliminated.

Figure 11(c) shows the comparison of PSN and P2P for the wavelet transform. The

sequential PE requires 1921(�3:75� 512) cycles. Each PE is implemented with simple
shifter/adder units, which is identical for �-P2P and PSN. The P2P with on-demand

topology in Figure 9(a) performs the operation with a single-hop communication, in a

pipelined manner. In P2P, 60% of an execution time is reduced, when compared to

2D-mesh PSN. In 3� 3 2D-mesh PSN, 2 hops are required to transfer each packet.
Third, we experimented on mapping the parallel merge sort traffic onto the PSN

with on-demand topology, which is a similar approach to Bartic et al. (2005). Figure 12

depicts the experimental results for fixed problem size and different network sizes. As

expected, the PSN with the application-specific topology performs better than the

2D-mesh PSN. The PSN with the binary tree topology performs on average 6% better,
compared to the 2D-mesh PSN. The performance improvement is relatively small,

since the binary tree topology can be mapped onto 2D-mesh without congestions

(a) Merge sort (N=512)

Max.
#slices reduction(%) Freq. (MHz) [us] reduction(%)

Sequential - 1 11981 491 - 125.5 95.4 -

PSN 2D-mesh 4 6429 2821 117.3 54.8

P2P Binary tree 3 6154 1102 123.5 49.8

PSN 2D-mesh 9 4276 6828 116.4 36.7

P2P Binary tree 7 3338 2316 122.1 27.3

PSN 2D-mesh 16 3415 15533 113.3 30.1

P2P Binary tree 15 2063 4851 115.8 17.8

PSN 2D-mesh 36 3094 33915 111.1 27.8

P2P Binary tree 31 1623 9852 113.7 14.3

PSN 2D-mesh 64 2873 64057 105.5 27.2

P2P Binary tree 63 1247 19791 111.4 11.2
69.1

Area

9.0

25.6

40.9

48.7

58.9

Execution time

60.9

66.1

68.8

71.0

Size Network #nodes #cyclesTopology

1

2

3

5

4

Max.
#slices reduction(%) Freq. (MHz) [us] reduction(%)

Sequential - 1 12546 124 - 125.9 99.7 -

PSN 2D-mesh 256 300 44094 100.2 3.0

P2P 2D-torus 256 16 7837 99.4 0.2
82.2 94.6

Area Execution time
Network #nodes #cyclesTopology

(b) Matrix multiplication (M=16, p=256)

(c) Wavelet (N=512, p=8)

Max.
#slices reduction(%) Freq.(MHz) [us] reduction(%)

Sequential - 1 1921 279 - 119.0 16.1 -
PSN 2D-mesh 9 617 5320 115.0 5.4
P2P Custom 8 257 333 120.0 2.1

Area Execution time

93.7 60.1

Network Topology #nodes #cycles

Figure 11. Implementation results.

738 J.Y. Hur et al.

D
o
w
n
l
o
a
d
e
d

B
y
:

[
U
T

U
n
i
v
e
r
s
i
t
y

o
f

T
e
c
h
n
o
l
o
g
y

D
e
l
f
t
]

A
t
:

1
6
:
4
5

1
8

O
c
t
o
b
e
r

2
0
0
8

(Lee and Choi 1996). The PSN with the binary tree topology reduces 36% of area,

compared to the 2D-mesh PSN. This is due to the fact that the binary tree router is simpler

than the 2D-mesh router. On the other hand, our P2P network performs 39% better and

requires 50% less area, compared to PSN with the binary tree. This is because of the fact

that the P2P eliminates the cost as well as latency related to the router.
Fourth, intended as a proof-of-concept, the run-time reconfiguration of the

interconnects was realised in the Virtex-II Pro xc2vp30 on the Digilent XUP-V2P

prototyping board. Figure 13 demonstrates the example procedure of the partial run-time

reconfiguration. Each sub-module was implemented in VHDL using the ISE 8.2 tool.

Actual network interconnects in Figures 13(b) and 13(d) correspond to the topology

components, as depicted in Figure 4. As an example, we reconfigure the binary tree

interconnects by updating partial bitstream (Figure 13(d)). The layout of the static region

(Figure 13(a)) is identical for each system configuration and remains unchanged during the

interconnects reconfiguration. Virtex-II Pro xc2vp30 device contains 1756 frames. A

single frame contains 206 words and each word is 32-bit wide. The internal configuration

(1) Performance (2)Area

Performance (N=512)

0

20

40

60

80

100

120

Seq. 1 2 3 4

Network size

E
xe

cu
tio

n
tim

e
(u

s)
PSN - Tree
P2P
PSN - Mesh

System area

0

10000

20000

30000

40000

50000

60000

70000

1 2 3 4

Network size

#S
lic

e

PSN - Tree
P2P
PSN - Mesh

Figure 12. Mapping on different networks for parallel merge sort traffic.

Dynamically
reconfigurable interconnects

(b) 2D-mesh
interconnects

(d)Binary tree
interconnects (a) Static region (c) System with 2D-mesh (e) System with binary tree

Bus macro Bus macro Static region

Figure 13. Partial run-time reconfiguration.

International Journal of Electronics 739

D
o
w
n
l
o
a
d
e
d

B
y
:

[
U
T

U
n
i
v
e
r
s
i
t
y

o
f

T
e
c
h
n
o
l
o
g
y

D
e
l
f
t
]

A
t
:

1
6
:
4
5

1
8

O
c
t
o
b
e
r

2
0
0
8

access port (ICAP) controller configures the bitstream at a rate of 400Mbps (¼ 8-bit

interface � 50MHz). Therefore, the configuration latency for an entire chip can be derived

by (1756� 206� 32� ð1=ð8� 50MHzÞÞ þ overhead) or 29ms. The overhead includes the

initialization latency and CRC check latency. In other words, each frame requires

approximately 16.5 us of a configuration latency. The reconfiguration latency can be

derived by (number of required frames � configuration latency per frame). Figure 14

depicts the routing analysis, which shows the number of utilised nets with delays, area,

bitstream utilisation, and configuration time. The partial bitstream size in number of

frames is only 26 (for 7-node binary tree) and 48 (for 9-node mesh) out of 1756. The

required reconfiguration latencies to change topology are 670 us (for binary tree) and

1011 us (for mesh). These partial reconfiguration latencies includes overheads, such as

initialization, padding frames, and CRC checks. Therefore, the reconfiguration latency

can be significantly reduced by utilising these partial bitstream. Additionally, 97 LUTs for

binary tree and 193 LUTs for mesh (out of 27392) of logic resources were used for

reconfigurable region. When TBUFs are utilised, 79 frames (or 1.6ms, including config-

uration overheads) are required to reconfigure into the binary tree topology. Therefore,

58% of reduced reconfiguration latency is achieved compared to TBUF-based implemen-

tation. Similarly, 44% of reduced reconfiguration latency is required to reconfigure into

2D-mesh topology. We have also counted the actual set bits in the bitstream. As depicted

in Figure 14, the number of set bits is less than 2% of the entire bitstream size. In addition,

the set bits for the partial bitstream is less than 0.1%. This means the actually necessary

on-chip resources are extremely small. It can be noted that our approach can be better

applied to LUT-based modern FPGA devices. As an example, Virtex-4 devices are

configured in a reduced (16 CLBs high) height for a frame, while the Virtex-II Pro is

configured in a full-height frame by frame. Moreover, Lysaght et al. (2006) reports that

Virtex-4 supports 32-bit configuration interface with 100MHz. Therefore reduced recon-

figuration latency can be obtained in modern devices, compared to Virtex-II Pro.

5. Conclusions

In this work, we presented partially reconfigurable FPGA interconnects to implement

on-demand network topologies. Our P2P networks have been evaluated by comparing

with the 2D-mesh packet switched networks. For the considered applications, we obtained

2� better performance and 70% less area compared to the reference network (a packet

switched mesh network), by directly interconnecting processors and by avoiding the use of

complex routers. Moreover, we showed that the topology reconfiguration latency can be

significantly reduced using a partial reconfiguration technique. Therefore, systems facil-

itating processors directly interconnected with the proposed reconfigurable interconnects

can be suitable for our general approach.

Configuration
d < 1 d < 2 d < 3 d < 4 d < 5 #LUTs % #Frames % #Set bits % Time (us)

3 x 3 mesh PSN 18107 10161 2208 498 43 5850 21.4 1756 100 224064 1.9 28974
7 node Tree - P2P 713 183 16 32 16 97 0.4 26 1.5 3620 0.03 670
9 node mesh - P2P 870 170 0 16 0 193 0.7 48 2.7 6439 0.06 1011

#Nets (with LUT-LUT wire delay (ns)) Bitstream utilizationArea

Figure 14. Routing analysis.

740 J.Y. Hur et al.

D
o
w
n
l
o
a
d
e
d

B
y
:

[
U
T

U
n
i
v
e
r
s
i
t
y

o
f

T
e
c
h
n
o
l
o
g
y

D
e
l
f
t
]

A
t
:

1
6
:
4
5

1
8

O
c
t
o
b
e
r

2
0
0
8

References

Bartic, T.A., Mignolet, J.-Y., Nollet, V., Marescaux, T., Verkest, D., Vernalde, S., and
Lauwereins, R. (2005), ‘‘Topology Adaptive Network-on-chip Design and Implementation,’’ IEE
Proceedings of Computers & Digital Techniques, 152, 467–472.

Bertozzi, D., Jalabert, A., Murali, S., Tamhankar, R., Stergiou, S., Benini, L., and Micheli, G.D.
(2005), ‘‘NoC Synthesis Flow for Customized Domain Specific Multiprocessor Systems-on-Chip,’’
IEEE Transactions on Parallel and Distributed Systems, 16, 113–129

Bjerregaard, T., and Mahadevan, S. (2006), ‘‘A Survey of Research and Practices of Network-on-
chip,’’ ACM Computing Surveys, 38, 1–51.

Braun, L., Hbner, M., Becker, J., Perschke, T., Schatz, V., and Bach, S. (2007), ‘‘Circuit Switched
Run-Time Adaptive Network-on-Chip for Image Processing Applications,’’ Proceedings of 17th
International Conference on Field Programmable Logic and Applications (FPL’07), 688–691.

Brebner, G., and Levi, D. (2003), ‘‘Networking on Chip with Platform FPGAs,’’ Proceedings of the
IEEE International Conference on Field-Programmable Technology (FPT’03), 13–20.

Chang, C., Wawrzynek, J., and Brodersen, R.W. (2005), ‘‘BEE2: a High-end Reconfigurable
Computing System,’’ IEEE Design & Test of Computers, 22, 114–125.

Dally, W.J., and Brian, T. (2001), ‘‘Route Packets, Not Wires: On-Chip Interconnection Networks,’’
Proceedings of 38th International Conference on Design Automation Conference (DAC’01),
684–689.

Horowitz, E., and Zorat, A. (1981), ‘‘The Binary Tree as Interconnection Network: Applications to
Multiprocessor Systems and VLSI,’’ IEEE Transactions on Computers, 30, 247–253.

Huebner, M., Becker, T., and Becker, J. (2004), ‘‘Real-time LUT-based Network Topologies for
Dynamic and Partial FPGA Self-reconfiguration,’’ Proceedings of the 17th symposium on
Integrated Circuits and System Design (SBCCI’03), 28–32.

Hur, J.Y., Wong, S., and Vassiliadis, S. (2007), ‘‘Partially Reconfigurable Point-to-Point
Interconnects in Virtex-II Pro FPGAs,’’ Proceedings of International Workshop on Applied
Reconfigurable Computing (ARC’07), 49–60.

Kapre, N., Mehta, N., deLorimier, M., Rubin, R., Barnor, H., Wilson, M.J., Wrighton, M. and
DeHon, A. (2006), ‘‘Packet Switched vs Time Multiplexed FPGA Overlay Networks,’’ Proceedings
of IEEE Symposium on Field-Programmable Custom Computing Machines (FCCM’06), 205–216.

Lee, S.-K., and Choi, H.-A. (1996), ‘‘Embedding of Complete Binary Tree into Meshes with Row-
Column Routing,’’ IEEE Transactions on Parallel and Distributed Systems, 7, 493–497.

Leighton, F.T., (1992), Introduction to Parallel Algorithms and Architectures: Arrays–Trees–
Hypercubes. Morgan Kaufmann Publishers, Inc.

Lysaght, P., Blodget, B., Mason, J., Young, J., and Bridgeford, B. (2006), ‘‘Enhanced Architectures,
Design Methodologies and CAD Tools for Dynamic Reconfiguration on XILINX FPGAs,’’
Proceedings of 16th International Conference on Field Programmable Logic and Applications
(FPL’06), 1–6.

Marescaux, T., Nollet, V., Mignolet, J.-Y., Moffat, A.B.W., Avasare, P., Coene, P., Verkest, D.,
Vernalde, S., and Lauwereins, R. (2004), ‘‘Run-time Support for Heterogeneous Multitasking on
Reconfigurable SoCs,’’ Integration, The VLSI Journal, 38, 107–130.

Mello, A., Tedesco, L., Calazans, N., and Moraes, F. (2005), ‘‘Virtual Channels in Networks on
Chip: Implementation and Evaluation on Hermes NoC,’’ Proceedings of 18th Symposium on
Integrated Circuits and Systems Design (SBCCI’05), 178–183.

Moraes, F., Calazans, N., Mello, A., Möller, L., and Ost, L. (2004), ‘‘HERMES: an Infrastructure
for Low Area Overhead Packet-switching Netwoks on Chip,’’ Integration, the VLSI Journal, 38,
69–93.

Nikolov, H.N., Stefanov, T.P., and Deprettere, E.F. (2006), ‘‘Efficient Automated
Synthesis, Programming, and Implementation of Multi-processor Platforms on FPGA Chips,’’
Proceedings of 16th International Conference on Field Programmable Logic and Applications
(FPL’06), 323–328.

Patel, A., Madill, C.A., Saldana, M., Comis, C., Pomes, R., and Chow, P. (2006), ‘‘A Scalable
FPGA-based Multiprocessor,’’ Proceedings of IEEE Symposium on Field-Programmable Custom
Computing Machines (FCCM’06), 111–120.

Raaijmakers, S., and Wong, S. (2007), ‘‘Run-Time Partial Reconfiguration for Removal, Placement
and Routing on the Virtex-II-Pro,’’ Proceedings of 17th International Conference on Field
Programmable Logic and Applications (FPL’07), 679–683.

International Journal of Electronics 741

D
o
w
n
l
o
a
d
e
d

B
y
:

[
U
T

U
n
i
v
e
r
s
i
t
y

o
f

T
e
c
h
n
o
l
o
g
y

D
e
l
f
t
]

A
t
:

1
6
:
4
5

1
8

O
c
t
o
b
e
r

2
0
0
8

Vassiliadis, S., and Sourdis, I. (2006), ‘‘FLUX Networks: Interconnects on Demand,’’ Proceedings of
International Conference on Computer Systems Architectures Modelling and Simulation
(IC-SAMOS’06), 160–167.

Xilinx Application Note 290 (2004), ‘‘Two Flows for Partial Reconfiguration: Module Based or
Difference Based,’’ Available online at: http://www.xilinx.com (accessed 9 September 2004).

Zeferino, C., and Susin, A. (2003), ‘‘SoCIN: A Parameteric and Scalable Network-on-Chip,’’
Proceedings of 16th Symposium on Integrated Circuits and Systems Design (SBCCI’03), 169–174.

742 J.Y. Hur et al.

D
o
w
n
l
o
a
d
e
d

B
y
:

[
U
T

U
n
i
v
e
r
s
i
t
y

o
f

T
e
c
h
n
o
l
o
g
y

D
e
l
f
t
]

A
t
:

1
6
:
4
5

1
8

O
c
t
o
b
e
r

2
0
0
8

