
A Clustering Method for the Identification of Convex Disconnected
Multiple Input Multiple Output Instructions

Carlo Galuzzi, Dimitris Theodoropoulos and Koen Bertels
Computer Engineering, EEMCS

Delft University of Technology, The Netherlands
email: {C.Galuzzi,D.Theodoropoulos,K.Bertels}@ewi.tudelft.nl

Abstract—The Instruction-Set Extensions problem has been
one of the topics which has became popular over the last years
and it entails the addition of a set of new complex instructions
to a given Instruction-Set. In this paper, we present an efficient
algorithm for the automatic generation of convex Multiple Input
Multiple Output instructions (MIMOs). The proposed algorithm
is based on a two-step method which generates a coverage
of the application with single output clusters of instructions
and subsequently generates an optimal set of complex MIMO
instructions to implement in hardware through an Integer Linear
Programming (ILP) formulation of the instruction selection
problem. The proposed approach can be applied directly to large
kernels and does not impose limitations neither on the number
of inputs and/or outputs, nor on the number of new instructions
generated. Our results on four well known kernels show that
the extended Instruction-set allows to execute applications more
efficiently and needing fewer cycles. On average between 50%
and 70% of the initial execution cycles can be saved depending
on the kernel and the reconfigurable platform addressed.

I. INTRODUCTION

In the past decade we have witnessed a general shifting
from the use of general-purpose computing systems to systems
able to perform only a limited number of tasks but more
efficiently. Although general-purpose systems can execute a
broad range of applications making them extremely flexible,
the power consumption is relatively high. A good trade-off
between flexibility and power consumption is introduced by
reconfigurable systems. A simple reconfigurable system can
be realized, for instance, by coupling a General Purpose
Processor (GPP) and reconfigurable hardware like an FPGA.
When an application is executed on a general system, a certain
number of instructions are executed in hardware, namely
the ones that belong to the Instruction-Set, whereas the rest
of the instructions are executed in software. If the same
application is executed on a reconfigurable system, we can
use the reconfigurable hardware to implement and execute
additional, more complex, application-dependent instructions,
so as to extend the Instruction-Set and speedup the execution
of the application on the system. The identification of those
instructions suitable for hardware implementation represents
the so-called Instruction-Set Extension (ISE) problem.

The ISE problem can be compared to the hardware-software
codesign (or partitioning) problem which consists of concur-
rently balancing at design time, the allocation of hardware
and software resources. Taking into account the data-flow or
control-flow graph of an application, it is easy to understand
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Figure 1. The main parts of the ISE creation process: a) application to analyze, b)
extension identification c) extension selection and d) hardware implementation of the
selected new instructions.

that the parts of the application suitable for hardware imple-
mentations correspond to subgraphs of the graph representing
the application. The subgraph enumeration problem is a well-
known problem which is computationally complex and re-
quires exponential time to provide an exhaustive enumeration
of all the subgraphs. Since not all subgraphs are suitable for a
hardware implementation1, the problem becomes the design of
efficient algorithms for the identification of those instructions
suitable for a hardware implementation.

Figure 1 depicts a general flow for ISE identification:
once the application is selected (Figure 1a), it is analyzed
to discover a certain number of candidate instructions for
hardware implementation (Figure 1b), the identified instruc-
tions pass through a selection process which identifies the
most suitable ones to hardwire, usually based on hardware
limitations (Figure 1c) and, finally, the selected instructions
are implemented in hardware (Figure 1d).

In this context, targeting the Molen organization [22], [1]
which allows for a virtually unlimited number of new instruc-
tions without limiting the number of input/output values of
the function to be executed on the reconfigurable hardware, we
present a method for the identification of convex2 Multiple In-
put Multiple Output instruction-set extensions. The elementary
building blocks of our approach are single-output clusters of
operations known as SUBMAXMISOs (SMMs) [13]. At first,
the application is partitioned in maximal Multiple Input Single
Output (called MAXMISO or MM) [2] and successively
in SMMs which, using efficient LP solvers and synthesis
results, are optimally combined per level and clustered as
new application-specific instructions. The result is a cluster of
operations with Multiple Inputs and Multiple Outputs, called
MIMO, which is executed on the reconfigurable hardware and

1Depending on the target architecture, the new instructions can have limitations on
the total number of inputs and/or outputs, or on the area they occupy when implemented
on the reconfigurable hardware, etc.

2The convexity of a graph, property described in Section III, guarantees a proper and
feasible scheduling of the instruction generated which respects the dependencies.
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which provides the maximum performance improvement under
reconfigurable hardware resource constraints. Our results show
that the extended Instruction-set allows to execute applications
more efficiently and needing fewer cycles (see Section IV).
More specifically the main contributions of this paper are the
following:
• construction of convex MIMO instructions based on

SMMs clustering in order to maximally exploit the SMM
level parallelism. In a similar way to [15], the applica-
tion is partitioned and selected clusters, the SMMs, are
combined in parallel to take advantage of the parallelism
inherent to the hardware execution. In this paper the
granularity of the new complex instructions generated is
finer than the granularity in [15]. The combination of
the SMMs is convexity-guaranteed by Theorem III.5 and
does not require additional checks on the clusters.

• elimination of the restrictions on the types and number
of new instructions (in contrast with most of the existing
approaches): there is no limitation on the number of
input/output values or the number of new instructions.
Additionally, the proposed approach can be applied di-
rectly to large kernels and it generates disconnected
instructions as to better exploit the hardware parallelism.

• formulation of the instruction-selection algorithm as a
global ILP problem, where the objective function is the
minimization of the application’s execution time and
the constraints represent the limited hardware resources.
Different policies for choosing the initial node in the
SMM clustering are considered when the application is
partitioned in SMMs and, for each choice, an optimal
selection of the new complex instructions to implement
in hardware is performed.

The structure of the paper is as follows. In Section II,
background information and related works are provided. In
Section III, the context is further formalized and the theoretical
contribution is presented. Section IV presents the experimental
results. Concluding remarks and an outline of the research
conducted are given in Section V.

II. BACKGROUND AND RELATED WORK

There are two types of clusters that can be identified within
a graph, based on the number of output values: Multiple Input
Single Output (MISO) and Multiple Input Multiple Output
(MIMO). Accordingly there are two types of algorithms for
achieving Instruction-Set extension.

Concerning the first category, representative examples are
presented in [2], [9], [13]. The exponential number of MISOs
within a graph turns into an exponential complexity of the
algorithm used for their enumeration. [2] reduces the com-
plexity of the analysis generating only MISO instructions
of maximal size, called MAXMISO (MM). The algorithm
exhaustively enumerates all MMs with linear complexity in
the number of processed elements. [9] reduces the complexity
with the use of a heuristic and additional area constraints. A
different approach is presented in [13] where, with an iterative
application of the MM clustering presented in [2], MISO
instructions called SUBMAXMISOs (SMMs) are generated

with linear complexity in the number of processed elements.
Only a theoretical description of the SMM clustering method is
presented and no experimental result is provided. The iterative
application of this algorithm allows the generation of MISO
instructions of smaller size at each iteration when, for instance,
tight limitations on the total number of inputs are applied.

The algorithms included in the second category are more
general and provide more significant performance improve-
ment. However they also have exponential complexity in
the general case. The approaches presented in [15], [5],
[19], [7] generate optimal convex MIMO subgraphs but the
computational complexity is exponential. In [25] the authors
address only the enumeration of all the patterns based on the
number of inputs, outputs, area and convexity. Opposite to
[5], they generate only connected patterns and they address
the enumeration of the disconnected ones in [26]. In [18], the
authors present a complete, generic processor customization
flow which uses a novel identification algorithm. It generates
custom instructions through a technique which makes use of
local registers to overcame the I/O constraints on the new
custom instructions.

In [4] and [15] the authors address the generation of convex
clusters of operations with an ILP-based methodology. Other
works impose limitations on the number of operands [3], [6],
[8] and use heuristics to generate sets of custom instructions
which therefore can not be globally optimal. Still, other works
[16], [21], [23] cluster operations considering the frequency of
execution or the occurrence of specific nodes.

In this paper, we present a clustering-selection method for
the identification of optimal sets of new complex instructions
which combines concepts from both categories: at first, the
application is partitioned in MMs and SMMs following differ-
ent strategies for the SMMs clustering. After that, the SMMs
are combined in disconnected convex MIMOs. This allows
exploitation of the available parallelism provided by the hard-
ware platform. The approach presented in [15], similar to the
one presented here, differs at the granularity level of the new
complex instructions selected for hardware implementation:
in this paper the granularity of the new complex generated
instructions is finer. This becomes essential when hardware
resources are limited and the generated clusters of instructions
are area-consuming and cannot be selected for hardware
implementation due to their huge size. A refinement in the
granularity of generated instructions, from MMs to SMMs,
increases the number of convex MIMOs that is possible to
generate [13]. This, in turn, allows a better selection of the
generated instructions that properly fit the available hardware
resources, as remarked by the results proposed in Section
IV. In this paper, the target architecture is the Molen recon-
figurable architecture [22], [1] which allows for a virtually
unlimited number of new instructions without limiting the
number of input/output values of the function to be executed
on the reconfigurable hardware. When the approach presented
in this paper is applied to different architectures than Molen,
limitations on inputs and outputs are introduced. In [20] the
authors proposed a solution to the limitation of actual register-
file ports by serializing the register-file accesses and therefore
addressing multi-cycle read and write. The technique combines
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register file access serialization with pipelining in order to
obtain the best global solution.

III. THEORETICAL BACKGROUND

In this section, we begin by introducing a motivational ex-
ample to informally outline the main concept of the proposed
algorithm and then we present the theoretical foundation of
our approach. Last but not least, we present in detail the steps
of the MIMO clustering algorithm.

A. Motivational example

In Figure 2, we present the dataflow subgraph of the
ADPCM Decoder from the ADPCM application as imple-
mented in the MediaBench benchmark suite [17]. We selected
this example to show the differences between the approach
presented in this paper and the one presented in [15]. In
the first step, our algorithm identifies the MAXMISOs which
cover the input DFG (see Figure 2(a)) as in [15]. In [15] each
MAXMISO is then collapsed as a single node in the reduced
graph presented in Figure 2(b). In this paper, each MAXMISO
is partitioned in SMMs and then each SMM is collapsed as a
single node in the reduced graph as presented in Figure 2(c).
The number of clusters which is possible to select and the
number of levels in the reduced graph increase.

Loosely stated, the main idea of our clustering algorithm
is to combine SMMs available at the same level in the
reduced graph, in a convex MIMO that is executed as a
single instruction in hardware. For example, let assume the
hardware latencies for two SMMs at the same level SMMi

and SMMj to be li and lj , respectively. By clustering SMMi

and SMMj in a new instruction, the latency of this instruction
will be max(li, lj). If SMMi and SMMj are implemented
as separate instructions, the execution time for that part of the
code is equal to li + lj . Thus, the proposed clustering will
provide a significant performance gain, that can be roughly
estimated as li + lj−max(li, lj). For the general case, when n
SMMs are clustered, the execution time of the new instruction
is maxi(li), where i = 1, ...n. The performance gain in this
case becomes

∑
i maxi(li), for i = 1, ...n.

The SMMs clustering is limited by the size of the reconfig-
urable hardware. In order to choose the best clustering which
provides the maximal performance gain and still satisfying
the resource constraints, we formulate the SMMs clustering
selection as an ILP problem and use an efficient solver for
finding the optimal solution.

B. Instruction Generation

We assume that the input dataflow graph is a Directed
Acyclic Graph (DAG) G = (V, E), where V is the set of
nodes and E is the set of edges. The nodes represent primitive
operations, more specifically assembler-like operations, and
the edges represent the data dependencies. The nodes can have
two inputs at most and their single output can be input to
multiple nodes.

Basically, there are two types of subgraphs that can be
identified in a graph: MISOs and MIMOs.

Definition III.1 Let G∗ ⊆ G be a subgraph of G with V ∗ ⊆
V set of nodes and E∗ ⊆ E set of edges. G∗ is a MISO of
root r ∈ V ∗ provided that ∀ vi ∈ V ∗ there exists a path3

[vi → r], and every path [vi → r] is entirely contained in G∗.

By Definition III.1, A MISO is a connected graph. A
MIMO, defined as the union of m ≥ 1 MISOs can be either
connected or disconnected.

Definition III.2 A subgraph G∗ ( G is convex if there exists
no path between two nodes of G∗ which involves a node of
G\G∗4.

Convexity guarantees a proper and feasible scheduling of
the new instructions which respects the dependencies. Defini-
tions III.1 and III.2 imply that every MISO is a connected and
convex graph. MIMOs can be convex or not. As described in
[14], every convex MIMO is the union of a certain number of
MISOs. An exhaustive enumeration of the MISOs contained
in G gives all the necessary building blocks to generate all
possible convex MIMOs. This deals with the exponential num-
ber of MISOs, and therefore MIMOs, contained in G whose
enumeration requires a solution of exponential complexity in
the number of processed elements. A reduction of the number
of the building blocks reduces the total number of convex
MIMOs which it is possible to generate. Anyhow, it reduces
the overall complexity of the generation process as well. A
trade-off between complexity and quality of the solution can
be achieved considering MISO graphs of maximal size, the
MAXMISOs (MMs).

Definition III.3 A MISO G∗(V ∗, E∗) ⊂ G(V, E) is a MM if
∀vi ∈ V \V ∗, G+(V ∗ ∪ {vi}, E+) is not a MISO.

[2] observed two properties related to MMs: first, every MISO
is either a MM or there exists a MM containing it. Second, if
A,B are two MMs then A ∩ B = ∅. The empty intersection
of MMs implies that the MMs of a graph can be enumerated
with linear complexity in the number of its nodes and the set
of all MMs represents a minimal cover5.

Let v ∈ V be a node of G and let LEV : V → N be the
integer function which associates a level to each node, defined
as follows:
• LEV(v) = 0, if v is an input node of G;
• LEV(v) = α > 0, if there are α nodes on the longest

path from v and the level 0 of the input nodes.
Clearly LEV(·) ∈ [0, +∞) and the maximum level d ∈ N of
its nodes is called the depth of the graph.

Definition III.4 The level of a MM MMi ∈ G is defined as
follows:

LEV(MMi) = LEV(f(MMi)). (1)

where f : G → Ĝ is the collapsing function, the function
which collapses the MMs of G in nodes of the graph Ĝ (see
[11], [13])6.

3A path is a sequence of nodes and edges, where the vertices are all distinct.
4G∗ has to be a proper subgraph of G. A graph itself is always convex.
5We remind that a minimal cover is a cover for which removal of one member destroys

the covering property of the graph, http://mathworld.wolfram.com/Cover.html.
6In general, f collapses a cluster of nodes of G in a node of Ĝ.
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Figure 2. Motivational example: dataflow subgraph from ADPCM Decoder with a) MM identification, b) reduced graph and MM selection for HW implementation as in [15] and
c) reduced graph and SMM selection for HW implementation as described in this paper. In this example, the SMMs are generated removing the output node of each MAXMISO.

Let us consider a MM MMi. Each node vj ∈ MMi belongs
to level LEV(vj). Let v ∈ MMi, with 0 ≤ LEV(v) ≤ d. If we
apply the MM algorithm to MMi\{v}, each MM identified in
the graph is called a SUBMAXMISO (SMM) of MMi \ {v}
(or, shortly, of MMi). The set of the SMMs tightly depends
on the choice of v. For example v can be either an exit node,
or an inner node randomly chosen, or a node with specific
properties like area or power consumption below or above a
certain threshold previously defined.

The definition of level of a SMM is the obvious extension
to SMM of the definition of level of a MM. The target of this
paper is the generation of MIMO instruction-set extensions to
implement in hardware. Since MIMO instructions are combi-
nations of MISO instructions and the combination of convex
instructions is not always convex, we have to provide a way
to combine convex instructions guaranteeing the convexity
property of the final MIMO instruction generated. In [15],
[14] we presented the following results (Theorem III.5 and
Corollary III.6):

Theorem III.5 Let G be a DAG and A,B ⊂ G two MMs.
Let LEV(A) ≥ LEV(B) be the levels of A and B respectively.
Let C = A ∪B. If

LEV(A)− LEV(B) ∈ {0, 1} (2)

then C is a convex MIMO. Moreover C is disconnected if the

difference is 0.

Corollary III.6 Any combination of MAXMISOs at the same
level or at two consecutive levels is a convex MIMO.

This result has been generalized to SMMs in [13] and can
be used to design clustering algorithms for the identification
of convex MIMO instruction-set extensions to implement in
hardware.

In [10], we have presented a framework for the automatic
identification of instruction-set extensions. The main idea
behind the design of such a framework is the generation
of instruction-set extensions in multiple steps of variable
granularity and complexity. Basically, the framework splits
the generation of instruction-set extensions in two steps: a
fine-grain clustering step and a coarse-grain clustering step,
based on the algorithms presented in [15], [14], [13], [12]. The
approach presented in this paper follows exactly the concepts
of the framework and generates instruction-set extensions in
two steps: first the application is partitioned in SMMs (fine
clustering) and afterwards the SMMs are combined in an op-
timal way for the generation of the convex MIMO instruction-
set extensions (coarse-clustering). In the next section we will
present the clustering method, similar to the one presented in
[15].
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C. Instruction Selection

Problem statement. Given a graph Ĝ = Ĝ(V, E) let d be
the depth. Let HW and SW represent two disjoint sets of
nodes such that V = HW ∪ SW . Each node n is identified
by two indices i, j where i is the level of the node and j is
its position at level i. Let lHWij and lSWij be the latency of a
node in HW and SW respectively. Let A and αij be the total
available area and the area that a node nij occupies. Find the
optimal subset HW ⊂ V such that minimizes

∑

nij∈SW

lSWij +
d∑

i=0

max
nij ∈ HW

lHWij , (3)

under the following constraint:
∑

nij∈HW

αij ≤ A. (4)

Formula (3) represents the minimization of the total execu-
tion time: the first term is the execution time of the SMMs that
are executed in software and have a sequential execution, while
the second term represents the latency of the SMMs that are
selected for hardware execution in parallel at each level. The
constraint expressed by (4) represents the requirement that all
new instructions should fit in the total hardware area available.

SMM-Level Clustering: The problem previously presented
can be solved as a 0 − 1 linear programming problem to
produce an optimal solution using an efficient solver.
0-1 Selection. Every node (SMM) belongs to HW or SW sets.
Consequently, we associate to any nij ∈ V a Boolean variable
xi,j such that xi,j = 1 if nij ∈ HW , 0 if nij ∈ SW , i ∈
{0, ..., d} represents the level Level(nij), and j represents the
position at level i. The search for the optimal subset HW is
then the search for the optimal 0/1 values for all xij .
Objective Function. Following the problem statement, for-
mula (3) can be translated in the following objective function

∑

nij∈V

lSWij ∗ xij +
d∑

i=0

max
nij ∈ V

lHWij ∗ xij . (5)

If xij = 1 then xij = 0 and consequently we can consider
n ∈ V given that V = HW ∩ SW and HW and SW are
disjoint sets.

The max function included in the objective function trans-
forms the problem into a non-linear problem, which is hard
to be efficiently solved. In consequence, we transform the
objective function by adding for each level a new integer
variable xmax which has the largest hardware latency of this
level. More specifically, the objective function becomes:

∑

nij∈V

lSWij
∗ xij +

d∑

i=0

xmaxi. (6)

with the additional constraints:
xmaxi ≥ lHWij

∗ xij , ∀i ∈ {0, ..., d} with nij ∈ Leveli.
Linear System of Inequalities. The original constraint given
by (4) can be expressed as follow:

∑

n∈V

αij ∗ xij ≤ A. (7)

*.c

C-to-DFG

MM Generation

SW Cost
VHDL 

Generation

Synthesis

HW Cost

Reduced Graph

LP Problem Solver

SMM Generation

SMMs groups

Figure 3. Tool Chain for the identification of instruction-set extensions.

Using an efficient solver, the optimal solution specifies
which are the HW nodes and which the SW ones minimizing
the objective function in (3) (or in (6) introducing the addi-
tional variable xmax). In summary, the steps required for the
SMM-Level Clustering are the following:
• Step 1: MAXMISO identification using an algorithm

similar to the one presented in [2].
• Step 2: SMM partitioning using an algorithm similar to

the FIX SMM algorithm presented in [13]7.
• Step 2: Construction of the reduced graph collapsing each

SMM in one node.
• Step 3: HW/SW estimation of the latency and area

estimation for each SMM.
• Step 4: ILP problem formulation with the identification

of the objective function and THE set of constraints.
• Step 5: ILP problem solution with the selection of the

SMMs which are combined into single instructions.

IV. EXPERIMENTAL RESULTS

A. Experiments setting

To evaluate the qualities of the presented clustering algo-
rithm, a dedicated tool chain has been built and the algorithm
has been applied on a set of four well known kernels. The
presented clustering algorithm is part of a larger toolchain that
aims at supporting the hardware designer in the design process.
The tool chain for the experiments is presented in Figure 3;
the shadowed blocks in the figure denote tools that have been
developed (see [15], [24] for more details). The input is C
code in which the kernel functions are marked with pragmas.
The annotated functions are transformed into dataflow graphs
(DFGs). The generated graphs are analyzed for the MM and
SMM partitioning.

7As we will see in Section IV, the SMM partitioning algorithm is imple-
mented following different policies for choosing the initial node to remove
from the MMs.
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The software execution time for each SMM is computed
as the sum of the latencies of its operations. The hardware
execution time is estimated through behavioral synthesis of
the SMM’s VHDL models using the Xilinx ISE 9.4i, and
this delay is converted into PowerPC cycles. We consider
implementation of our approach on the Molen prototype that
is built on a Xilinx Virtex-II Pro Platform FPGA. The software
execution is assumed to be performed on a PowerPC 405
operating at 300MHz. We consider different FPGA boards and
VHDL synthesis is performed for each target board to estimate
area and delay of the SMMs. Since the PowerPC processor
does not provide floating-point instructions, the floating-point
operations in the benchmark kernels are converted into the
proper integer arithmetic. The kernels have been unrolled by
a factor of 8/16 in order to increase the selection space of our
algorithm.

The tools in the toolchain do not require any manual
effort for adjusting to the target application. All the steps are
automated through shell scripts and batch files, depending on
the operating system except the ILP solver that is implemented
as Microsoft Excel add-in.

B. Analysis of the data

Given an application, it is, first partitioned in MMs. After
that, the SMM clustering selects a node in each MM and
applies the MM clustering to the MMs bereft of the selected
nodes. This makes the SMM clustering node-dependent. For
this reason, five versions of the FIX SMM clustering algorithm
have been designed and implemented depending on the node
removed in the MMs, as described in the following:
• Option 1: a random node.
• Option 2: an input node.
• Option 3: an output node.
• Option 4: a node with 1 successor and 1 predecessor.
• Option 5: a node with 1 successor and 2 predecessors.

Since the DFG of the application is a DAG, the nodes
of the graph can be topologically ordered. Successors and
predecessors of nodes mentioned before are then identified by
the topological order of the nodes. After instruction generation,
instruction selection is performed as an ILP problem where
an efficient solver has been used to identify the optimal
combination of instructions per level8.

In Table I, we report some information about the total
number of nodes, MAXMISOs, SMMs and the total number
of levels partitioning the application in MAXMISOs or in
SMMs following different strategies for choosing the node
to remove in the MAXMISOs. In Figure 4, we depict the
total execution time with and without the application of the
approach presented in this paper for different FPGA boards.
An expected observation is that the impact on performance
of the SMM-clustering algorithm increases with the size of
the available FPGA area. This is explained by the fact that
more SMMs can be combined for hardware execution on
the FPGAs. In Table II, we present the reduction in the
execution time of the kernels for different FPGA boards and

8Frontline’s XPRESS Solver, http://www. solver.com
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different strategies in the choice of the node to remove in the
MAXMISOs together with the hardware usage.

The best results are obtained with ADPCM. This reflects the
fact that the algorithm presented in this paper for MIMO in-
struction generations is more suitable for highly parallelizable
application, as ADPCM Decoder is.

Option 2 of the SMM clustering is the one performing
worst. This is the result of removing an input node from a
MM. It generates only two SMMs: the node removed and
the MM bereft of the selected nodes. The limited number of
SMMs available to combine compared with the number of
SMMs generated by the other version of the SMM clustering
affects the number of possible combinations. Additionally,
the generated SMMs in this case are MM bereft of a node.
This means that the building blocks to generate the convex
MIMOs are comparable, in terms of area and latency, with
the one used in [15]. On average, the best choices in the
selection of the node to remove for the generation of the
SMMs are option 4 and 5 which remove an inner node from
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3000 4,83% 12,57% 27,2% 27,23% 47,13% 48,40% 23,81% 49,73% 78,28% 64,28% 84,34% 69,06
3000 11,27% 11,27% 11,3% 18,63% 53,43% 72,77% 57,56% 41,15% 29,06% 41,60% 86,65% 88,76
3000 14,23% 14,23% 29,3% 29,33% 37,67% 74,07% 72,75% 52,02% 81,29% 66,75% 63,71% 98,43
3000 16,00% 16,00% 30,0% 30,00% 54,00% 76,53% 86,72% 62,00% 84,08% 69,04% 91,84% 98,57
3000 15,73% 19,63% 19,6% 19,63% 55,07% 73,43% 88,26% 79,99% 56,50% 46,39% 99,19% 99,76

Table II
INFORMATION ABOUT TOTAL EXECUTION TIME OF THE KERNELS BEFORE AND AFTER THE APPLICATION OF THE APPROACH PRESENTED IN THIS PAPER

AND AREA USAGE FOR DIFFERENT FPGA BOARDS.

the clusters to partition and generate bigger clusters which,
when implemented in hardware, provide higher speedup. If the
target is the generation of a big number of SMMs to allow for
a finer selection of the final cluster, the best option is option 3
which removes the output node from the cluster to partition.

The identification of the convex MIMO instructions is
performed in two steps which have different computational
complexity. Concerning the SMM clustering, as described in
[13], the algorithm has linear computational complexity with
the number of processed elements. The second step, the ILP
problem, is computationally heavy in terms of complexity and
is related to the complexity of the solver used to solve the ILP

problem, which in the general case has exponential complexity.
Regarding the execution time of the proposed algorithm in all
its versions, for all the kernels and different FPGA boards,
the HW selection takes few seconds even though the nodes
analyzed are thousands (for example, 2162 nodes for IDCT).

Additionally, as depicted by Figure 2, the comparison
between MM and SMM clustering shows not only that the
number of possible combinations increase but also that the
number of levels increases (see Table I). The higher number
of levels partitioning the application in SMMs instead of
MAXMISOs can also improve the quality of the clustering
algorithm presented in [14] which generates convex MIMO

71



instructions through a vertical clustering along with the levels
of the reduced graph and which was suffering from the limited
number of levels in the reduced graph of the applications. In
this paper, the target architecture is the Molen reconfigurable
architecture which allows for a virtually unlimited number of
new instructions without limiting the number of input/output
values of the function to be executed on the reconfigurable
hardware. When the approach presented in this paper is applied
to architectures other than Molen, limitations on inputs and
outputs are introduced. In that case a useful approach is
presented in [20].

V. CONCLUSIONS

In this paper, we have presented an efficient algorithm for
the automatic generation of MIMO instruction-set extensions.
The algorithm generates extensions in two steps. First, the
application is partitioned in SMMs following different policies
in the selection of the initial node. Second, through an ILP
formulation of the instruction-selection problem, optimal sets
of SMMs are clustered per level to generate convex discon-
nected MIMO instructions. The proposed algorithm is general:
new instructions have no limitation placed on their types and
numbers and the algorithm can be applied to large kernels.
The used SW model in the experiments is simplified by
not reflecting the available processor optimizations (pipelines,
cache hits, etc). We also do not consider the possible penalties
like branch miss-predictions, cache misses, etc. Therefore, we
consider that the proposed results prove the advantages of our
approach.

In our future work, we intend to introduce additional con-
straints in the generation of the convex MIMO instructions so
as to show the advantages of the clustering algorithm presented
in this paper to instruction generation on other architectures as
well. Additionally, we intend to introduce different clustering
algorithms for the automatic identification of instruction-set
extensions.
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Figure 4. Experimental results for different benchmarks, different selection in the node removed for the generation of the SMMs and different FPGA platforms. In each graph
the bars span from 0 up to 100% and are divided in two colors. The lower color represents the final execution time for the considered kernel while the top color represents the
saved execution time obtained applying the approach presented in this paper.
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