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This paper presents the design, implementation and performance evaluation of a coarse-grain

dynamically reconfigurable FPGA platform for multi-service edge and access network devices. The

platform consists of two MicroBlaze RISC processors and a number of hardware co-processors used for

the processing of packet payloads (Data Encryption Standard (DES) and Lempel–Ziv Compression). The

co-processors can be connected either directly to the processors or using a shared bus. The functionality

of the co-processors is dynamically reconfigured to meet the requirements of the network workload.

The system has been implemented on the Xilinx Virtex II Pro platform and the network traces from real

passive measurements have been used for performance evaluation. The use of dynamically

reconfigurable co-processors for network applications shows that the performance speedup versus a

static version varies from 12% to 35% in the best case and from 10% to 15% on average, depending on the

network traffic fluctuation.

& 2008 Elsevier Ltd. All rights reserved.
1. Introduction

The increase of Internet traffic has created the need for more
powerful and specialized network processors (NP) to be incorpo-
rated in the access and core network devices in order to sustain
the demanding packet processing. NP are SoCs that consist of
application-specific instruction processors (specialized for packet
processing) and several memory (SRAM, DRAM) and network
(GMAC, POS) interface units. NPs are utilized in a number of
network devices such as servers, gateways, firewalls, etc. The
architectures of NP vary from multi-core multi-threaded RISC
architectures to dataflow architectures. In addition, each network
processor targets different areas of the network such as core, edge,
and/or access networks.

NP utilized at access and edge routers are used to process both
the header and the payload of network packets. In case of header
processing, hardware co-processors are used to relieve the
processor of mainstream computations such as the Cyclic
Redundancy Check and the checksum algorithm. These co-
processors are used for every packet hence it is easy to specify
beforehand the number of co-processors for a specific bandwidth.
Unfortunately, in the case of the payload processing there are no
standard processing requirements. For example, in a multi-service
ll rights reserved.
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edge router, the payload processing requirements for each packet
depends on the network flow it belongs to. Each network flow can
have its own processing requirements such as encryption,
compression, intrusion detection, intrusion prevention, etc. Since
the NP target a wide area of applications, it is very difficult to
design a network processor that meets all the network processing
demands. In many cases, the on-chip co-processors are not able to
process the required number of packets; therefore, external co-
processors (for encryption, compression, or intrusion detection)
are used which increase the cost and the power consumption of
the device, while other on-chip co-processors are not utilized
wasting valuable chip area. In addition, new protocols are certain
to be deployed in the future and the NP must be able to face the
new requirements. Hence, the use of reconfigurable platforms
able to adapt themselves to the network processing demands is
deemed necessary. Furthermore, the performance of reconfigur-
able logic-based systems in many network applications such as
encryption [1], compression [2], or network intrusion [3] can
sustain the demanding requirements of the payload processing.

The use of a dynamically reconfigurable platform for network
processing can additionally be used to reduce the power
consumption of a network device. The power consumption of
the current NP is extremely high mainly because of the vast
amount of processors running at high frequencies. The use of
hardware accelerators in reconfigurable platforms can signifi-
cantly reduce the power consumption, since only the necessary
accelerators are configured when needed. Furthermore, as the
static power of the chips starts to hold a significant portion of the
nce evaluation of an adaptive FPGA for network applications,
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overall power consumption, the use of smaller devices that can
load and un-load co-processors based on the network fluctuation
can further reduce the total power consumption.

Moreover, the behavior of network traffic over time is not
constant in terms of packet size, network protocol, and band-
width. In [4,5], research about how the network traffic changes
over time, in terms of packet size and the packet protocols is
presented. Hence, even when the NP are designed for specific
applications, it is very difficult to design a processor that will
always meet the network traffic demands. Therefore, the use of a
dynamically reconfigurable network platform that can change the
number and the type of co-processors depending on the network
traffic could improve the performance of the system. In this paper,
we present a case study for a multi-service edge/access router. The
router must be able to support Virtual Private Networks (VPNs). In
this case the packets need to be encrypted and decrypted when
they are received and transmitted, respectively. In addition, many
wireless devices that are attached to the router need packet
compression [17] to reduce the overall bandwidth. The number of
packets that need encryption and compression changes over time;
hence, a network device that could be adapted to these
requirements could boost the performance of the system.

The main contributions of this paper are:
�
 The design of a reconfigurable platform for network applica-
tions and the mapping to a Virtex II Pro device.

�
 The investigation of dynamic reconfiguration to improve the

throughput of a network platform using co-processors con-
nected either directly to the processors or using a shared bus.

�
 The performance evaluation in an application scenario with

three flows (IP forward, encryption, and compression) for
variable network traffic loads and several reconfiguration rates
using real network traces.

�
 The configuration manager that controls the device based on

the network stability and the packet distribution.

The paper is organized as follows. Section 2 presents the related
research in the area of reconfigurable network platforms. Section
3 presents the system architecture of the network platform and
Section 4 describes the implementation on a Virtex II Pro device.
The analysis and the results of this design are presented in Section
5. Finally, Section 6 presents the conclusions of this work.
2. Related work

In literature, several schemes have been proposed to face the
network processing requirements utilizing reconfigurable logic.
This section presents the research in dynamically reconfigurable
systems in the domain of network applications. In [7,8], a
reconfigurable programmable router has been introduced that is
mainly used in active networks. Active networks are networks in
which the packets are processed by emerging protocols that are
either included into the packet or can be downloaded dynamically
into the router. The system consists of general-purpose CPUs and
hardware plug-ins. Each plug-in has an SRAM and an SDRAM
interface to communicate with the memory and a custom
interface to a 32-bit wide ring in order to communicate with
the CPUs and the other plug-ins. These plug-ins are dynamically
configured kernel modules used to process the active packets, that
can be downloaded by a trusted server. The system has been
implemented onto two FPGAs, one used as the network interface
device and the other used as the host of the hardware plug-ins.

In [9], a reconfigurable system called Programmable Protocol
Processing Pipeline has been introduced. In this case, a set of
FPGAs is used in a pipeline manner in order to accelerate packet
Please cite this article as: C. Kachris, et al., Design and perform
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processing. Each device has a FIFO buffer associated with it that is
used to load and store the processed packets. The devices are
connected using a switching array that can include or exclude
processing elements. As an example, Forward Error Correction is
used as a protocol processing function. Although FPGAs can be
reconfigured dynamically, in this paper only the performance
evaluation of a static design (and not of a dynamically reconfigur-
able device) is presented.

In [10], a reconfigurable network co-processor platform is
presented called DynaCore. In this paper an FPGA-based platform
is presented that can accommodate hardware accelerator units.
The platform includes a dispatcher that is used to forward the
incoming packets to the hardware acceleration units. The system
consists only of hardware acceleration units without presenting a
connection of the hardware units with the general-purpose
processing elements used for the remaining header processing.

In [11], a secured adaptive network processor is presented. The
use of the secured adaptive network processor both as a secure
network edge device and as a user-adaptable network gateway is
presented. The main characteristic of this system is that a secured
mechanism is used to load the new configuration of the system, to
face a possible attack on the device. The designed system was able
to resist several attacks such as bus monitoring, power analysis,
and timing analysis. The whole system consists of three district
devices: the first device is used to perform basic packet
processing, the second used for the authentication support and
the configuration control, and the last used as the run-time
reconfigurable device that can be used by the user to load the
required functions.

In [12,13], a reconfigurable platform is introduced targeting
mainly active networks. This system consists of software and
hardware parts. The software part is a set of kernel and user
space modules running on a Linux PC. The hardware part consists
of an FPGA device that is used to load the required processing
modules. When a packet is received, it is checked whether it is a
passive or an active packet. For active packets the system checks
whether the required hardware for this application is already
present in the device. Otherwise, it can request the bitstream for
the specific active packet. When a new bitstream is received for an
active packet, the bitstream is authenticated, decrypted and
checked for integrity and then is used for the configuration of
the device.

In [14], the design and analysis of a network processor using
accelerators in reconfigurable logic is presented. In this paper, two
different approaches are presented. In the first case, each task is
mapped to a general-purpose accelerator. In the second case,
different accelerators are used for different tasks that can be
dynamically reconfigured on the device. The paper showed that
the use of reconfigurable modules can improve the execution time
by about 20 times. The system has been evaluated in three
applications: tree lookup, pattern matching, and network intru-
sion detection. In [24], the PLATO platform is presented. PLATO is
a reconfigurable active network platform which provides four
physical connections for ATM networks. Two applications were
ported to this platform: an Active 4� 4 ATM Switch and Worm-
hole IP over ATM routing filter.

The system that we present is a single-chip adaptive platform
for network applications using mainstream interfaces to connect
the processor with the configurable hardware acceleration units.
The main characteristic is that each hardware acceleration unit is
connected either to a common bus or to a direct link with the
processor. Furthermore, the units can be partially dynamically
reconfigured without affecting the operation of the remaining
system using a configuration manager that takes into account the
reconfiguration overhead. Finally, the performance of the system
using real traffic traces with variable stability is presented.
ance evaluation of an adaptive FPGA for network applications,
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3. System organization

This section presents the organization of the system that is
targeting the Xilinx FPGA platform. As depicted in Fig. 1, the
system consists of two 32-bit MicroBlaze soft-core RISC proces-
sors and a number of hardware acceleration units. The hardware
acceleration units can be connected either directly to the
processors using the Fast Simplex Link (FSL) or using a shared
bus called On-Chip Peripheral Bus (OPB) that is part of the IBM
Core-Connect bus [15]. The FSL is a 32-bit uni-directional point-
to-point communication channel bus used to perform fast
communication between the MicroBlaze and an acceleration unit.
OPB is a 32-bit shared-access bus that is used to interconnect up
to 16 units and supports several features such as burst modes,
priorities, etc. The MicroBlaze uses one of the FSL link to
communicate with a simple packet dispatcher. The MicroBlaze
sends a simple command to the dispatcher and the dispatcher
sends the header of the packet to the MicroBlaze. The MicroBlaze
processes these headers and depending on the network flow that
it belongs to, it can either simply forward it, or send it for
encryption or compression before it is forwarded, as is depicted in
Fig. 2. Attached to the OPB bus there is a 64 KB memory block that
is used as an IP LookUp that stores the information for forwarding
and classification. The algorithm that is used for finding the
Fig. 1. System organization.

Fig. 2. Network traffic flows.

Please cite this article as: C. Kachris, et al., Design and performa
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longest prefix match in the LookUp is the Patricia-trie algorithm
used in the MiBench benchmark [16]. Patricia trie is a special form
of a tree data structure that is used to store a set of strings. In
contrast with a regular trie, the edges of a Patricia trie are labeled
with sequences of characters rather than with single characters.

In the current design, two types of hardware acceleration units
are used. The first one is the Data Encryption Standard (DES) unit
for encryption that is used by the IPSec standard [17] typically in
VPNs [6] and the second one is the Lempel–Ziv Compression unit
that is widely used for communication with wireless devices in
order to reduce the size of the transmitted packets. The DES unit is
based on the OpenCores [18] modified to be attached to the OPB
and the FSL interface, while the LZ compression unit is a
proprietary unit. The system is divided into two parts: the static
part and the reconfigurable part. The static part contains the
MicroBlaze, the network interface units, the packet dispatcher,
the block RAMs, one Direct Memory Access (DMA) unit, one
compression unit, and one encryption unit. The reconfigurable
part comprises two spare hardware units attached to the OPB bus
and two hardware units attached to the FSL link (one for each
MicroBlaze).

Each spare unit can be configured either as an encryption/
decryption unit or as a compression/decompression unit, depend-
ing on the network traffic. If the majority of the packets belong to
secured connections then the spare units can be configured as
encryption units. If the majority of the packets belong to wireless
connections that need compression, then the spare units can be
configured as compression units. Each MicroBlaze processes the
header of the incoming packet and depending on the network flow
that it belongs to, it tries to allocate a resource to process the
payload of the packet. The status of the configuration (which spare
area contains what co-processor) is stored in a special address in a
shared memory attached to the OPB bus; hence it is accessible
from the MicroBlazes. Each hardware unit has a specific register
used to store its status. This register is set to one when the core is
busy and to zero when idle. When a processor tries to allocate the
unit, it first reads this register and if it is clear then the register is
set by the acceleration unit on the same access (test and set) in
order to achieve an atomic operation. Subsequently, using the DMA
unit, it sends the payload of the data from the Block RAM buffer to
the hardware unit. The DMA unit needs 4 registers to be set for
every transaction: the source address, the destination address, the
length of the transfer, and the control register which also initializes
the transfer. After the processing of the packet by the acceleration
unit, the status register is cleared by the same unit.
3.1. Partial reconfiguration

The partial reconfiguration of the device can be controlled
either by one MicroBlaze or by a configuration manager. Each time
a packet header is processed, the MicroBlaze updates a counter
that is used for each network flow. When the total number of
processed packets reaches a certain number, then the MicroBlaze
checks which counter is exceeding a specific percentage of the
total processed packets. In order to find the optimum sample rate
(number of packets sampled) and the optimum threshold that
trigger the reconfiguration, a design space exploration tool has
been developed [26]. Utilizing analytical equations based on the
implementation results (e.g., processing time for encrypting a
packet), we can find the optimum values for sample rate and
configuration threshold. This threshold is common for both of the
processors and these counters are stored in a special address in
the shared RAM attached to the OPB bus. Hence, the MicroBlaze
that controls the configuration checks the number of processed
packets belonging to each network flow for both processors.
nce evaluation of an adaptive FPGA for network applications,
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Table 1
System’s constraints

Constraint Limit

Number of OPB units p16

Number of FSL units (per uB) p8

Bandwidth of OPB Bus p500 MB/s

Cycles for processing (per uB) p100 million

Area p13 696 slices
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In case that a hardware configuration manager is used, the
processor can be offloaded from configuring the system. The com-
plexity of the reconfiguration manager depends on the require-
ments and the fluctuation of the network traffic. A simple
algorithm would be to select the configuration that is optimized
for the majority of the network packets as in the case of the
software configuration manager. A more advanced algorithm can
also be used as depicted in Fig. 3. In this case, a Look-Up table is
used in which the performance of each configuration Pij is stored
for several network distributions (the best configuration for each
distribution is shown in the circle). The table also stores the
performance of the system during the reconfiguration in which
some of the co-processors are not used. At the time of the
sampling, the configuration manager examines the distribution of
the packets and checks if the optimum configuration for this
distribution is used. In case that the network distribution has
changed (hence, another configuration must be used), the
configuration manager should decide if it will perform a new
configuration depending on the network stability. The network
stability represents the time that the distribution remains the
same (within some fluctuation, e.g. 710%). The configuration
manager should perform the reconfiguration only if the new
configuration will perform better than the current configuration
taking into account the reconfiguration overhead, as shown in
Eq. (1). Therefore, the configuration manager will schedule a new
configuration only if it will increase the overall speedup of the
system. For example, Fig. 3 depicts a case in which the current
configuration is C3 that is optimized for the 20/20/60 distribution
(IPForward/Encryption/Compression). As the network traffic
changes to 20/60/20, the configuration manager calculates
whether the new configuration (C2) will speedup the system
taking into account the performance degradation during the
reconfiguration (Cr) and the network stability

Pnewtnet_stab-reconfig þ PreconfigtreconfigXPcurrtnet_stab. (1)

3.2. Organization

In order to determine the number of processors and the
number of hardware acceleration units for each traffic distribu-
tion, a thorough study of the requirements and the constraints of
the system has to be taken into account. The constraints of the
current platforms are shown in Table 1.

Table 1 shows that the system must be carefully designed to be
balanced without wasting the available area. Each unit that is
attached to the FSL interface of the MicroBlaze can enhance
the execution of an algorithm, but many cycles are wasted for the
transfer of data to and from the FSL unit, especially when the
required data are loaded and stored from a RAM module attached
Fig. 3. Configurat

Please cite this article as: C. Kachris, et al., Design and perform
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to the OPB Bus. On the other hand, the OPB units using DMA
transfers can offload the processor from demanding processing
requirements, but the communication between the processor and
the co-processor is slower (higher latency). In addition, the
number of MicroBlaze processors is crucial to the performance
of the system. An unbalanced system with many processors and
reduced number of acceleration units will result in decreased
performance of the system when payload processing is required
and many available processor cycles will be wasted. On the other
hand, the use of only one processor will result in a system with
limited processing capabilities and this processor will be incap-
able of processing the packets and exploiting the available
hardware units. In the current design, an integer non-linear
programming system has been developed based on the con-
straints of Table 1 in order to find a balanced design [19].
Moreover, it must be noted that the MicroBlaze is a soft-core
processor, in which many features such as hardware multipliers,
dividers, etc. are optional. In the case of the IP forward code that is
used in the current benchmark, the use of the hardware barrel
shifter and the string matching unit has reduced significantly the
execution time. This is due to the fact that the network functions
usually include many bit-wise operations.

The system can also be configured to use the spare units of the
FSL interface. But the use of FSL units has not improved the overall
performance of the system. This is due to the fact that many
processor cycles are wasted to transfer the data from the OPB RAM
to the FSL units and back to the OPB RAM. Hence, the system
increases the payload processing power but the protocol proces-
sing power is decreased. On the other hand, when that data has to
be processed both by the processor and a hardware acceleration
unit (such as checksum calculation or media processing) the use
of acceleration units tightly attached to the processors, has shown
improved performance [23].
4. Implementation

The system was mapped to a Xilinx Virtex II Pro device.
Xilinx proposes two different approaches for active partial
ion manager.

ance evaluation of an adaptive FPGA for network applications,
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reconfiguration [20]. The first one, called modular design, is used
to partially reconfigure blocks of the design, while the second one,
called differential reconfiguration, is used when the changes
are applied only to a small number of reconfigurable elements
(Look Up Tables). Our system was implemented using the modular
partial reconfiguration.

According to the Xilinx design flow, in order to design a system
that can be partially reconfigured, the system must be separated
into static and reconfigurable areas. Reconfigurable areas must
comply with specific constraints. For example, the reconfigurable
module’s height is always the full height of the device; the width
must be a multiple of four slices, etc. In addition, the reconfigur-
able modules communicate with other modules by only using a
special bus macro (BM). These BMs must be locked in a specific
area of the device during floor planning. The only common signal
of the static and the reconfigurable area is the clock signal. Xilinx
provides BM that can be used to connect only adjacent
reconfigurable and static areas. In [21], the design of a proprietary
bus that uses BMs to add reconfigurable modules was presented.
The BM can cross the static and reconfigurable areas. In our
Static Area Reconfigurable AreaReconfigurable Area
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Fig. 4. System’s floorplan.

Table 2
Area allocation

Block Slices

MicroBlaze 893

DMA engine 197

OPB arbiter 180
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design, we created BMs that can be used for the widely used
Xilinx FSL and OPB interfaces. Each OPB interface uses 108 signals;
hence we need 216 signals. Each CLB row in the FPGA can be used
for 4 BM wires; hence we use 54 out of the 64 available rows.
These BMs have been integrated into the Xilinx Platform Studio
that is used for the implementation of embedded systems.

The floor planning of the system is depicted in Fig. 4. On the
left side of the device there are reconfigurable areas for the FSL
interface while on the right side there are the reconfigurable OPB
spare units. As depicted in the figure, the BM are the only common
wires between the static and the reconfigurable areas. Table 2
shows the allocated area for each unit of the system. The area for
the spare units stands for the allocated reserved area and not for
the actual number of slices that each module occupies.
5. Performance evaluation

This section presents the performance evaluation of the
reconfigurable system. Fig. 5 depicts the performance of the
proposed system for 3 different configurations, for several
processing packets sizes, and for three network distributions. In
the first configuration, one OPB spare unit is used for DES
encryption and one OPB spare unit is used for LZ compression. In
the second configuration both of the OPB spare units are used for
DES encryption and in the third configuration both of the OPB
spare units are used for LZ compression. In every configuration in
the static area, there is one unit for DES encryption and one unit
for LZ compression. The workload distribution shows the
distribution of the packets that need different processing; simple
forwarding (no payload processing), encryption/decryption or
compression/decompression.

As depicted in the figure, for each workload distribution there
is a different configuration that maximizes the number of
processed packets. When the majority of the packets need just
forwarding, the balanced configuration (2DES-2LZC) has the best
performance. When the majority of the packets need payload
processing then the other configurations have better performance.
The speedup of the dynamic configuration versus a static system
with equal number of encryption and compression units varies
from 12% (in the case of the 64 bytes and the 25/25/50 workload
distribution) to 35% (in the case of the 64 bytes and the 25/50/25
workload distribution).

Fig. 6 presents the utilization of the OPB shared bus. When the
average packet size is small (64 bytes), the utilization is small and
the bottleneck of the design is the protocol processing performed
by the processor (IP lookup, classification, etc.). When the average
size is 256 bytes, the bottleneck of the system is the common bus
since the utilization is from 60% to 90%. On the other hand, when
fferent configurations
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the average size of the packets increases (512 bytes and 1024
bytes), then the acceleration units become the bottleneck of the
design while the shared bus is not fully utilized.

Fig. 7 depicts the utilization of the co-processors for the three
configurations and for several workload distributions. The first
two columns show the utilization of the static co-processors while
the other two columns show the utilization of the OPB spare units.
The aggregated maximum utilization is achieved in the config-
uration that the system performs best. For example, in the 3DES-
1LZC configuration we achieve the maximum utilization of the
co-processors when the majority of the packets need encryption
(25/50/25). This figure justifies the use of additional hardware
units to meet the network workload. Using this figure, we can also
set the distribution thresholds for the dynamic reconfiguration of
the system. For example, in the second configuration (3DES-1LZC)
when the majority of the packets need encryption (25/50/25), all
of the DES units have high utilization. On the other hand, in the
third configuration (1DES-3LZC) when the majority of the packets
need compression the LZC units have lower utilization. This is
due to the fact that the encryption units are more powerful.
Hence, the distribution threshold that triggers the system to
switch to the third configuration could be higher (60% or 70% of
packets need compression).
Please cite this article as: C. Kachris, et al., Design and perform
Microelectron. J (2008), doi:10.1016/j.mejo.2008.05.011
5.1. Run-time performance evaluation

The main problem of the partial reconfiguration is that it
cannot be done instantly. Therefore, the main goal of the system is
to be able to exploit the increased performance of the different
configurations by hiding the configuration overhead. A main
factor to the performance of the system is the minimum
reconfiguration period. If the reconfiguration of the system
happens too often then the wasted time of the reconfiguration
will decrease the overall performance of the system even when
the new configuration is more efficient than the previous one.
Another major variable is the metric of the workload distribution.
The workload distribution can be measured either by counting the
number of packets that belong to each network flow or by
counting the number of bytes that belong to each network flow.
This is due to the fact that the time to process the packet that
needs only header processing is independent of the size of the
packet, while in the case that the payload needs also processing
the execution time is dependent on the packet size.

In order to evaluate the performance of the system with real
traces, we used the network traces from the National Laboratory
of Network Research. Specifically, we used the traces from the
passive measurements [25] for the characteristics of the packets
ance evaluation of an adaptive FPGA for network applications,
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(size, protocol, etc.) and synthetic values for the workload
distribution. We measured the performance of the system by
changing the distribution of the network traffic and by changing
the sampling rate of the packets. Fig. 8 shows a representative
instant during this simulation in which 1500 packets are
processed. Each pair of columns corresponds to 100 processed
packets. In the beginning the network distribution consists
of 50% of packets belonging to forwarding flows, 25% of
packets belonging to encryption flows and 25% of packets
belonging to compression flows. The system initialization consists
of 2 encryption units and 2 compression units. After 500 packets,
the packet distribution changes to 25/50/25 and after 500 packets
to 25/25/50. The workload distribution is checked every 100
packets. Hence, in the instance ‘‘7’’ the configuration loads one
more encryption unit and un-loads the compression unit. During
the configuration the system consists of 2 encryption units and
one compression unit, hence the time of the dynamic system
slightly increases while in the instances 8, 9 and 10 that the
system consists of 3 encryption units the time is decreased.
During the second reconfiguration (instance 12), the two OPB
spare units are reconfigured (two encryption units are un-loaded
and two compression units are loaded) hence they cannot be used.
Therefore, the time to process the packets increases. But during
the next time periods (instances 13, 14 and 15) the total time to
process the packets decreases since more compression units are
used. It is obvious that the performance gain for the dynamic
system is even higher when the network variation is higher (e.g., if
the encryption distribution reach 80% of the network packets).
Each partial reconfigurable unit uses 1280 slices and each partial
reconfiguration file comprises 135 Kbytes. The reconfiguration
time, according to [14,22], for the specific number of slices is
almost 2.1 ms.

The speedup of the system mainly depends on the fluctuation of
the network traffic. Fig. 9 depicts the speedup of the system for
several sampling rates and for several network fluctuations. When
the network traffic is unstable (e.g., the network flow distribution
change every 100 ms) the speedup ranges from �0.4% to 12%
depending on the sample rate. If the sample rate is rare (e.g., every
12 ms), then the system cannot adapt to the network traffic (most
of the time the system is being reconfigured) hence there is a
negative speedup compared to a static system. On the other hand,
when the network traffic becomes more stable (e.g., the distribu-
tion changes every 200 ms) the speedup is always positive and the
maximum speedup is performed using 5 ms sampling rate. In this
case, using lower number of sample packets (e.g., 2 ms) results in
lower speedup because of the small number of samples which
result in false recognition of the distribution. Using higher sample
rate (e.g., 12 ms) we also achieve lower speedup because of the
Please cite this article as: C. Kachris, et al., Design and performa
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inertia of the system to recognize the new distribution. In the case
that the network traffic becomes more stable, the optimum
speedup is achieved again using 5 ms sample rate. Finally, when
the network traffic becomes even more stable the speedup of the
system is almost the same for 5 and 12 ms sampling rate while
using 2 ms packets sampling rate, the speedup is low mainly due to
the false recognition of the network distribution. This figure can be
used by the network system designer or the configuration manager
to configure the sampling rate based on the network stability of the
traffic in order to achieve the maximum speedup of the system.
6. Conclusions

In this paper it is shown that the use of well-balanced
dynamically reconfigurable systems can boost the overall perfor-
mance of the system by 12–35% in the best case and by 10–15% on
average versus a static system, as long as the network traffic
changes are smooth. The configuration time, the minimum period
of the reconfiguration, and the stability of the network traffic can
greatly affect the performance of the system. Furthermore, the
performance of the system is affected by the threshold that is used
for each configuration. Therefore, the utilization of dynamically
reconfigurable platforms can speedup significantly the perfor-
mance of network processing system when the bottleneck of the
system is the payload processing.
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