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ABSTRACT 
 
The fast growth of biological databases has attracted the attention of computer 
scientists calling for greater efforts to improve computational performance. From a 
computer architecture point of view, we intend to investigate how bioinformatics 
applications can benefit from future multicore processors. Here we present a 
preliminary study of the Cell BE limitations when executing a representative 
bioinformatics application performing multiple sequence alignment (i.e. ClustalW). 
The inherent large parallelism of the core algorithm used makes it ideal for 
architectures supporting multiple dimensions of parallelism. However, in the case of 
Cell BE we identified several architectural limitations that need a careful study. 
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1 Introduction 

Bioinformatics is a rapidly growing field that requires High Performance Computing 
(HPC) systems in order to cope with the fast increase of biological databases. One of the 
most important tasks in bioinformatics is the alignment of biological sequences (DNA, 
proteins, RNA). Popular alignment algorithms like Needleman-Wunsch (NW) [1] use 
dynamic programming techniques and are in most cases extremely computationally 
intensive. ClustalW [2] is a widely used application that features NW as its main hot-spot 
kernel. The inherent multi-dimensional parallelism present in this type of applications 
makes them ideal to be mapped on a multicore platform where both thread-level and 
data-level parallelism can be exploited. We have used Cell BE processor [3] as an example 
of a modern multicore processor. 
 
With this research we aim at identifying the architectural and microarchitectural 
limitations that Cell BE exhibit when targeting a representative multiple sequence 
alignment application such as ClustalW. We present different optimization and 
parallelization strategies and analyze the factors that limit the performance. 
 
Recent publications like [4][5] have mapped bioinformatics applications on Cell BE with a 
focus on software optimization. Our work aims at identifying limitations of current 
architectures in order to guide the design of future multicore systems. 



2 ClustalW Implementation on Cell BE 

ClustalW performs the multiple alignment of a set of sequences in three main steps: 1) all-
to-all pairwise alignment, 2) creation of a phylogenetic tree, 3) final multiple alignment. 
Profiling experiments reveal that the core function of the first step (i.e. forward_pass) 
consumes about 70% of the total execution time. This function is called n(n-1)/2 times to 
calculate a similarity score among two sequences, implementing a modified version of 
NW. Not only the independence among calls makes parallelization appealing but also 
vectorization of the inner loop is possible. We ported forward_pass function to the SPU ISA 
and implemented a number of optimizations. DMA transfers are used to exchange data 
between main memory and the SPUs LS. Saturated addition and maximum instructions 
not present in the SPUs were emulated with 9 and 2 SPU instructions respectively. The 
first optimization uses 16-bit vector elements instead of 32-bit allowing a theoretical 
double throughput but requiring the implementation of an overflow check in software. 
 
The inner loop contains random scalar memory accesses and a complex branch for 
checking boundary conditions. This type of operations are very inefficient in the SPUs. We 
have unrolled this loop and manually evaluated the boundary conditions outside the 
inner loop. In the multi-SPU versions, the PPU distributes pairs of sequences for each SPU 
to be processed independently. A first such a version was implemented using a simple 
round-robin strategy but the load distribution was not efficient. A second strategy uses a 
table of flags that SPUs can raise to indicate idleness. This way the PPU can take better 
decisions on where to allocate the tasks. 

3 Results and Analysis 

Figure 1 shows a comparison of ClustalW running on various single-core platforms as 
compared to different versions using a single SPU. Since the clock frequency of the G5 is 
more than twice as low as the Cell, it is clear that in terms of cycles it outperforms any Cell 
1SPU version. The G5 platform contains a powerful out-of-order superscalar PowerPC970 
that runs scalar code very efficiently while the PPU has more limited capabilities (less 
functional units and registers, in-order execution, etc). The fourth bar shows the 
straightforward SPU implementation of ClustalW without optimizations. The fifth bar 
shows a significant speedup (1.7×) when using 16-bit data type. This double vector 
parallelism is most of the time achievable but the program should always check for 
overflow and go back to the 32-bit version if needed. Since the SPUs do not provide 
support for overflow check (unlike the PPU), this had to be implemented in software and 
consequently affecting the performance. The next two bars show results for unrolling a 
small loop located within the inner loop of the kernel, allowing us to achieve accumulative 
2.6× speedup. The last two versions removed boundary conditions involving a scalar 
branch and handled them explicitly outside the loop. This final (accumulative) 
optimization provided about 4.2× speedup with respect to the initial version. 
 
Figure 2 shows the scalability of ClustalW kernel when using multiple SPUs. The black 
part of the bars reveals a perfect scalability (8× for 8 SPUs). This is due to the relatively 
low amount of data transferred and the independence between every instance of the 



kernel. In future experiments, it will be interesting to see how far this perfect scalability 
will continue. 
 
After the successful reduction of the execution time for forward pass, significant 
application speedups are only possible by accelerating other parts of the program. The 
progressive alignment phase is now the portion consuming most of the time. This issue is 
currently being studied. 
 

 
Fig. 1. ClustalW performance for 
different platforms and optimizations 

Fig. 2. ClsutalW speedup using multiple 
SPUs 

 
The following is a list of the limitations we have found in the experiments: 
 
Unaligned data accesses: The lack of hardware support for unaligned data accesses is one of 
the issues that can limit the performance the most. When the application needs to do 
unaligned loads or stores, the compiler must introduce extra code that contains additional 
memory accesses plus instructions for data reorganization. In ClustalW, this situation 
appears in critical parts of the code and then performance is affected. 
Scalar operations: Given the SIMD-only nature of the SPUs ISA and the lack of unaligned 
access support, scalar instructions may cause performance degradation too. Since there are 
only vector instructions, scalar operations must be performed employing vectors with 
only one useful element. Apart from power inefficiency issues, this works well only if the 
scalars are in the appropriate position within the vector. If not, the compiler has to 
introduce some extra instructions to make the scalar operands aligned and perform the 
instruction. This limitation is responsible for a significant efficiency reduction. 
Saturated arithmetics: These frequently executed operations are present in Altivec but not in 
the SPU ISA. They are used to compute partial scores avoiding that they are zeroed when 
overflow occurs with unsigned addition. This limitation may become expensive 
depending on the data types. For signed short, 9 additional SPU instructions are required. 
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Max instruction: One of the most important and frequent operations in both applications is 
the computation of a maximum between two or more values. Since the SPU ISA does not 
provide such an instruction, it is necessary to use two SPU instructions. 
Overflow flag: This flag is not available in the SPUs and has to be implemented in software, 
adding overhead. 
Branch prediction: The SPUs do not handle branches efficiently and the penalty of a 
mispredicted branch is about 18 cycles. The kernel of ClustalW has several branches that, 
when mispredicted, reduce the application execution speed. 

4 Conclusions and Future Work 

We have described the mapping and some optimization alternatives of a representative 
bioinformatics application targeting Cell BE. Our study revealed various architectural 
aspects that negatively impact Cell BE performance for bioinformatics workloads. More 
precisely, the missing HW support for unaligned memory accesses and the lack of 
saturating arithmetics instructions appear to be the most critical. We are performing 
additional experiments in order to have a quantitative measure of all these aspects. 
 
Additionally, we intend to explore solutions to the issues found and validating them with 
simulations using UNISIM. We are using this research as guidance for the architecture 
design of future multicore systems incorporating domain specific accelerators for 
bioinformatics. We intend to widen our study to other applications of the same field. We 
believe that heterogeneous multicore architectures able to exploit specialization and 
multiple dimensions of parallelism will bring great performance improvements for 
bioinformatics workloads. 
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