
Vectorized AES core for high-throughput secure

environments

Miquel Pericàs1,2, Ricardo Chaves4, Georgi N. Gaydadjiev3, Stamatis
Vassiliadis3, and Mateo Valero1,2

1 Computer Sciences, Barcelona Supercomputing Center
2 Computer Architecture Department, Technical University of Catalonia

Jordi Girona, 1-3, Mòdul D6 Campus Nord, 08034 Barcelona, Spain
Phone: +34 934 017 001, Fax: +34 934 017 055

mpericas@ac.upc.edu,mateo@ac.upc.edu
3 Computer Engineering, Technical University of Delft

Mekelweg 4, 2628 CD Delft, The Netherlands
Phone: +31 15 2786196, Fax: +31 15 2784898

g.n.gaydadjiev@tudelft.nl,s.vassiliadis@tudeflt.nl
4 Instituto Superior Tecnico, INESC-ID

ricardo.chaves@inesc-id.pt

Abstract. Parallelism has long been used to increase the throughput of
applications that process independent data. It has been used in a broad
range of levels, from functional units to large parallel clusters. With the
advent of multicore technology designers and programmers are increas-
ingly forced to think in parallel. In this paper we present the evaluation
of an encryption core capable of handling multiple data streams. The de-
sign is oriented towards future scenarios for internet, where throughput
capacity requirements together with privacy and integrity will be critical
for both personal and corporate users. To power such scenarios we present
a technique that increases the efficiency of memory bandwidth utiliza-
tion of cryptographic cores. We propose to feed cryptographic engines
with multiple streams to better exploit the available bandwidth. Several
specific cases in which such a cryptographic engine can be successfully
implemented are described. We also show how multiple interfaces – such
as vector or hardware scheduling – can be used to control such engines.
To validate our claims, we have developed an AES core capable of en-
crypting two streams in parallel using either ECB or CBC modes. Our
AES core implementation consumes trivial amount of resources when a
Virtex-II Pro FPGA device is targeted.

Keywords: Parallel and Distributed Computing, Encryption

1 Introduction

Advances in semiconductor technology have enabled industry to manufacture
cores with hundreds of millions of transistors. Industry is exploiting this feature
to implement chip-level parallelism in the form of multi-core on chip architec-
tures. While 2-8 multicore chips are now common in the market it is expected



that this trend will continue with even larger amounts of cores. Programmers
and designers will find themselves forced into thinking concurrently in order to
efficiently exploit such platforms.

Parallelism is, of course, not a new concept and has been implemented ex-
tensively in the past. Since the earliest machines this technique has been used
to improve throughput. Parallelism can be found on all levels, from the small-
est circuits to parallel clusters. From the programmer point of view, there are
several ways in which to express parallel programs. One class are concurrent pro-
gramming models. They map directly onto multicore architectures, but have the
disadvantage that they leave the parallelization to the programmer, a task which
has been shown to be often quite complex. A different way to exploit parallelism
is by using SIMD programming techniques. Vector processors, for example, oper-
ate on entire vectors instead of scalar types. This programming model is effective
and simple, as it retains the sequential property of single-threaded programs.
However, it requires data parallelism with strict organizations in memory.

In this paper we investigate how parallelization can be used to achieve high
data transfer performance in future high-throughput networks. Personal users
and companies are placing growing demands of security on devices they use
for their daily work. Four requirements are in demand: privacy, authentication,
replay protection and message integrity. For this reason, implementations of
Virtual Private Networks (VPN) rely more and more on technologies such as
IPsec to secure the communication links.

A technology such as IPsec can work in two modes. In transport mode, the
endpoint computers perform the security processing. In tunnel mode, packet
traffic is secured by a single node for the entire computer network. In case of
large networks, high performance encryption devices are required. Such is also
the case with mobile Virtual Private Network (VPN) networks. In a mobile
VPN a device such as a handheld can have secure access to a corporate LAN to
securely perform such tasks as reading email or using remote terminal sessions.
It is expected that this type of networks will grow very fast in popularity in the
near future.

One of the most important encryption algorithms supported by many differ-
ent standards is the so-called Advanced Encryption Standard (AES). This en-
cryption algorithm encrypts/decrypts blocks of 128 bits of data in 10, 12 or 14
serial stages, using 128, 192 or 256 bit-keys, respectively. To simplify our study,
but without loss of generality, we will be focusing only on AES using a key size
of 128 bits. In this variant the algorithm performs 10 stages to encrypt/decrypt
one data block.

There are several ways in which a stream of data can be encrypted. These
are referred to as Block Cypher modes of operation. Most of these modes require
an Initialization Vector, which is a fixed block of data used to trigger the en-
cryption mode. The simplest mode is the Electronic CodeBook mode (ECB). In
this mode the data stream is partitioned into blocks of equal length and all the
resulting blocks are encrypted independently. The obvious benefit of this scheme
is high data parallelism. All blocks that make up the stream can be encrypted



simultaneously. The disadvantage of this scheme are known security concerns.
More precisely, ECB does not provide good confidentiality as it does not hide
data patterns well. To come up with a more robust solution several modes have
been introduced. The most common of these is the Cypher Block Chaining mode
(CBC). In this mode, when a block is going to be encrypted, it has first to be
exclusively OR’ed with the encryption resulting from the previous block. The
first block itself is XOR’ed with the Initialization Vector. One drawback of this
scheme is the dependency between data blocks that the encryption process intro-
duces. This results in a reduced efficiency concerning the available bandwidth. In
this mode, the AES encryption engine can only output a block of data every 10
stages. This means that only 10% of the output capacity is used. Note, however,
that the network bandwidth itself is independent from the engine capacity and
may limit the throughput.

In cases where the available network bandwidth is larger than the single-
stream CBC output, we may want to search for ways to exploit the additional
bandwidth. In the domain of VPN tunnels, where a gateway is in charge of
encrypting large quantities of data, we can profit from the fact that multiple
(independent) channels are simultaneously active to improve the throughput of
the encryption.

In this paper we propose to design AES cores capable of encrypting multi-
ple streams at once. Using multiple streams enables parallelism and allows to
better exploit the available network bandwidth. This is analogous to using vec-
tor processors to better exploit memory hierarchy in supercomputers. Further,
we propose to use these cores to provide high performance file transfer between
computers in the case where a large file or multiple files are being transferred. In
this scenario, a user using a scp protocol to transfer the files, would experience
a large speed-up using our AES core together with a small modification of the
scp application. Finally, we also perform a pencil and paper evaluation of how
the proposed core can be fitted into current system architectures.

This paper makes the following contributions:

– We observe that encrypting several streams in parallel is a way to accelerate
the otherwise sequential CBC encryption.

– We implement a cryptographical unit capable of encrypting two streams in
parallel using the AES encryption algorithm.

– We analyze several applications of this scheme. In particular, we discuss how
this scheme can accelerate VPN networks and secure transfers of large files.

– We study two important issues relating to the implementation of the multiple-
stream encryption scheme: the programming model and the system archi-
tecture.

This paper is organized as follows. Section 2 presents an overview of previous
work. The design of the multiple-stream encryption unit is presented in section 3
while section 4 evaluates its design. Section 5 analyzes the system architecture,
while section 6 discusses several issues related to this design: sections 6.1 and 6.2
analyze possible applications of this work and section 6.3 analyzes the program-
ming model. Finally, section 7 concludes this discussion.



2 Related Work

Vectorization has long been an important technique to increase performance.
Vector processors handle complete vectors instead of registers as the basic type.
Because no dependencies need to be tracked among the elements of a vector
and the memory system can be optimized to efficiently cater the large data
amounts to the system, very high performance pipelines can be built. Vector
implementations have been exploited mostly by numerical codes and scientific
computing. These codes often feature large parallel loops that are well suited to
be implemented on a vector processor.

However, attempts to build parallel implementations of cryptographic en-
gines have not been very successful in the past, particularly those attempting
to exploit algorithm-level parallelism. This can be explained intuitively. In order
to provide a strong and hard-to-break encryption, algorithms rely on operations
manipulating the whole data set and imposing tight dependencies among all
data. Parallel execution would be possible in a higher level by encrypting mul-
tiple blocks in parallel, but this is in general precluded by the usage of block
cypher modes such as CBC. Therefore, the few successful attempts to have
parallel hardware accelerate an encryption procedure have relied on exploiting
parallelism within the individual operations of the algorithm.

There are some examples of this kind of optimization. For example, in [1]
the SSE2 extensions of the Pentium4 are used to accelerate long precision mod-
ular multiplication. In [2], the authors implement long precision multiplications
for the RSA algorithm using AltiVec. These two approaches are targeted at
accelarting the 1024-bit multiplications frequently appearing in cryptographic
algorithms. Another use of AltiVec it the approach introduced by Bhaskar et al.
to accelerate Galois Field arithmetics [3]. This has been used to accelerate the
AES algorithm, achieving an encryption rate of one block every 162 cycles. This
is impressive, yet far from what can be obtained with a hardware implementa-
tion like the one discussed in this paper. One final attempt at vectorization is
the one proposed by Dixon et al., where a parallel approach is used to factorize
large integers for Elliptic Curve Cryptography [4].

In this paper, instead of optimizing the basic operations, we propose a vector
implementation for AES that exploits parallelism at the data level by processing
multiple streams concurrently. The proposal is based on the MOLEN polymor-
phic architecture and programming paradigm [5, 6] proposed by Vassiliadis et al.
as a way to expose hardware resources to software system designers and allow
them to modify and extend the processor functionality at will. The outcome of
this paper is a cryptographic engine that exploits multiple streams using the
vector engine paradigm. The core of the cryptographic unit is based on work by
Chaves et al. within the context of the MOLEN polymorphic processor [7].

3 Multiple-Stream AES Core

To validate our assumptions we implemented an AES core capable of processing
two streams concurrently. The AES-MultipleStream core (AES-MS) was imple-



mented using the MOLEN prototype framework [8, 5] and as such considers a
64-bit wide IO bus running at 100MHz. Although the width of the IO BUS has
been set at 64 bits, this is not a constraint and can be adjusted to accommodate
more or less data streams. The global design of the AES core with two streams
can be seen in Figure 1. It consists of two independent AES cores controlled by
a Control Unit. The unit activates the AES cores when needed and manages the
multiplexors that control BUS access.

Fig. 1. Architecture of AES core handling two streams

Each core implements an independent AES folded structure [7]. On the 64-
bit/100MHz bus, a single AES core takes two cycles to read 128 bits of input
data and two more cycles to output 128 bits of encrypted data. The processing
amounts to 10 cycles. Thus, once the core is running it moves 256 bits every 10
cycles.

Given that in 4 out of the 10 computational AES cycles the IO Bus is used
to read or write data blocks, the multiple stream version has been implemented
using two streams. This results in a bus occupation of 8 out of 10 cycles (80%). No
more streams can be added without changing the AES pipeline depth. The folded
AES cores themselves have no information on the number of active streams; this
information is handled by a small external control unit that drives the AES cores
and activates the necessary multiplexors to access the external memory system.

Assuming that the AES core and the IO bus run at the same frequency, it
is possible to accommodate a higher or lower number of streams depending on
the IO bus width. If the bus is 128 bits wide, a 128-bit data packet can be read
in a single cycle and written in another one. Given that an encryption takes 10
cycles, this would allow to encrypt up to 5 streams in parallel. Generically, the
number of streams that can be accommodated as a function of the bus width is
expressed by:

MaxNStreams = ⌊5 ·
BusWidth

128bits
⌋. (1)



Table 1. 2-stream vs single-stream AES performance comparison

Architecture AES – 1 stream [7] AES – 2 streams

Cipher Enc./Dec. Enc./Dec.

Device XC2VP30 XC2VP30

Number of Slices 1083 2162

Number of BRAM 12 24

Operating Frequency 100 MHz 100 MHz

Latency (cycles) 10 10

Throughput (Mbps) 1280 2560

Throughput/Slice (Mbps/s) 1.1819 1.1841

4 Performance and Results

The complete design of the two-stream AES unit was implemented in VHDL
targeting the Virtex-II Pro xc2vp30-7fg676 device. Synthesis and Place & Route
were both performed using Xilinx ISE 8.1. The AES core for single stream [7]
spans 12 BlockRAMs and 1083 logic slices. The two-streams AES core spans
24 BlockRAMs and 2162 logic slices. The two-streams version puts two single-
stream AES cores side-by-side and adds multiplexors that arbitrate the memory
access. Some logic is shared and in the end the number of logic slices approxi-
mately doubles. Place & Route results show that the design can run at 100MHz
which is the target frequency of the current MOLEN prototype. The two-streams
AES-MS core consumes 17% of available BlockRAMs, 15% of all logic slices, and
38% of external IOBs while reaching a throughput of 2.56 Gbps. Table 1 shows
a summary of the results and compares them against [7]. Note that the num-
bers provided for the original implementation of the AES core differ from those
provided in [7]. This is due to some different parameters that have been used in
the synthesis environment.

It should be noted that the initialization of the AES core, which includes
the transmission of the key, the transmission of the initialization vector and the
processor↔co-processor communication overhead, has a cost on performance. If
only one data block is ciphered, the cost of initializing the AES core is two orders
of magnitude higher than the cost of processing the data itself. When the input
data is sufficiently large, the initialization cost becomes negligible. The ciphering
throughput varies from 60 Mbps for a single data block packet (128 bits) to 1.28
Gbps for a 16 kbyte packet.

5 Analysis of System Architecture

We will now present an evaluation of different system environments in which
the AES core may be implemented together with performance estimations. The
following cases of IO communication have been considered: the current MOLEN
prototype, HyperTransport eXpansion (HTX), PCI-X, and PCI-Express (PCIe).



As mentioned earlier, the AES core has been developed and tested within
the MOLEN environment. In this platform, the two-stream AES core runs at
100MHz and can encrypt and decrypt at a rate of 2.56Gbps. Considering input
and output this amounts to a total traffic of 5.12Gbps, which corresponds to 80%
of the total memory bandwidth in this scenario. In the following study we will
assume an AES-MS core running at 100MHz, even though the busses themselves
are operated at different frequencies. We assume some sort of hardware performs
the interfacing without loss of capacity.

Recently, a protocol that has emerged with good support for reconfigurable
devices as coprocessors is the point-to-point HyperTransport protocol [9, 10].
HyperTransport defines an extension protocol for coprocessors called the Hyper-
Transport eXpansion (HTX). In the current incarnation, this standard defines a
protocol that is 16 bits wide and runs at 800MHz. The bandwidth provided by a
single link in single-data rate (SDR) is thus 12.8Gbps. Using two links at double-
data rate (DDR) yields the maximum aggregate bandwidth of 51.8 Gbps. The
single link SDR bandwidth is exactly twice that which is available in the current
MOLEN prototype. Without changing the frequency of the AES core (100MHz)
one could double the amount of streams (4 streams, 10.24Gbps). The remaining
2.56 Gbps are exactly the bandwidth required for one additional stream so it is
possible to add a 5th stream and thus run a 5-stream AES-MS core attached
to a HTX interface. Using the two HTX links with DDR would enable to ac-
commodate up to 20 streams. Note that in this analysis we are assuming that
the AES core works at a fixed 100 MHz. Thus we must calculate the number of
streams based on available bandwidth rather than using the formula presented
in section 3.

PCI-X [11] is a popular multidrop bus interconnect standard. PCI-X 1.0
features a maximum bandwidth of 8.48 Gbps at speed grade PCI-X 133, which
would allow up to three streams using the AES-MS engine. A newer revision
of this standard, called PCI-X 2.0, has a maximum speed grade of PCI-X 533
resulting in a bandwidth of 34.4 Gbps. This can accommodate up to 13 streams
in parallel.

PCI Express (PCIe) [12] is yet another bus designed to subsitute the ancient
PCI bus. Like HTX, it is a point-to-point bus, but designed to manage a wider
range of devices. As a downside, it operates with slightly larger latencies. At
64 Gbps capacity (using 16 links) PCIe 1.0 would allow to interleave up to 25
streams. PCIe 2.0 runs twice as fast and would be able to accommodate up to
50 streams at maximum throughput.

All these numbers may seem quite high. However, if the network capacity is
not as large, the AES-MS output capacity will be underutilized. In addition, as
already pointed out at the end of section 4, if keys are not static and the amount
of data is not sufficiently large, throughputs of Gbit/s cannot be reached as the
encryption processes will be limited by the initialization phase. The previous
results are summarized in Table 2. Note that in this table, Max Bandwidth refers
to the maximum bandwidth of the interconnect, not the maximum bandwidth
of the multiple stream encryption unit. Although we have not mentioned access



Table 2. Maximum Number of Streams using 100MHz AES-MS cores

Interconnect Type Max Bandwidth Max Number of Streams

MOLEN Prototype 6.4 Gbps 2

HTX @ 1 Link (SDR) 12.8 Gbps 5

HTX @ 2 Links (DDR) 51.2 Gbps 20

PCI-X 133 (v1.0) 8.48 Gbps 3

PCI-X 533 (v2.0) 34.4 Gbps 13

PCIe 1.0 64 Gbps 25

PCIe 2.0 128 Gbps 50

latencies for these technologies, we assume that in stationary mode the effects
of these latencies are negligible.

6 Discussion

In this section we discuss various issues related to AES-MS. So far we have
implemented a core capable of exploiting multiple streams. We now will present
some scenarios that can profit from the implementation and a programming
model to exploit the multiple-streams feature.

6.1 Virtual Private Networks

Figure 2 (a) shows the typical architecture for a virtual private network (VPN)
using unreliable connections, e.g. Internet. Such an architecture is used to se-
curely connect multiple networks. Locally, the networks can be considered secure
since the infrastructure belongs to the companies/institutions. However, on the
public infrastructure no such assumptions can be made. Privacy and authen-
tication support are required. To this end, encrypted tunnels are established.
The tunnels are authenticated when a session is established. Once established,
the session is kept mostly unmodified and the same keys are used to encrypt all
packets.

Figure 2 (b) shows the same scenario in the case of a mobile VPN. In a
mobile VPN the connection is not network-to-network but client-to-network.
Every client needs to have security software installed (e.g. its own IPsec stack).
The corporate side, however, looks fairly similar to the static VPN case. From
the point of view of the gateway, a mobile VPN will generate many more tunnels,
each of which moving a smaller quantity of data. Also, in a mobile VPN there
is much higher connect/disconnect activity.

In both cases the VPN gateways may require enormous encryption through-
put. Using AES-MS on the gateways may enable these requirements. Implemen-
tation details may vary a little for both cases of VPN. In static VPNs the keys
are mostly static. This means that a single trusted key could be used to encrypt



(a) (b)

Fig. 2. Sample Architecture for a static VPN (a) and for a mobile VPN (b). In both
cases the gateways may need to support high encryption throughput.

multiple communications inside a single gateway→gateway channel. From the
point of view of a multiple-stream encryption core this has the benefit that the
key need not be replicated. But this would imply that more ports are needed
into the key register. Adding simple circuitry, it is possible to read the register
only once and route the key segments to the corresponding encryption engine
without increasing the number of ports. For an architecture in which the en-
cryptions proceed synchronously this technique is trivial; however, in our case,
multiple encryptions are performed in parallel but in different iterations, a dif-
ferent strategy is needed in order to maintain the read only once property. There
are two ways to proceed. One option is to store each segment of the key in a
different register. Every engine reads the corresponding key segment from the
corresponding register every cycle. Alternatively, we can reduce the number of
reads by having the segments read once and then routed to the engine through
an appropriate number of latches.

These techniques are easily implemented in ASIC technology; however, when
using FPGAs there are additional constraints. For our AES-MS implementation
on the Virtex2P this optimization was not readily available due to fact that
the base implementation [7] is already optimized to store the full key register
in a single BlockRAM using both available ports. However, it may be possible
to implement this technique using multiple BlockRAMs of 128 bits. This would
then allow to store the complete key schedule and to access the portions inde-
pendently. However, this particular implementation also consumes many more
BlockRAMs, a feature which is undesirable.

In the case of a mobile VPN the technique of sharing the key register is un-
likely to result in any benefits. In this environment every client is associated to
a different tunnel and each tunnel has its own key, so the gateway cannot share
them. Nevertheless, making use of multiple streams is still effective as the aggre-
gate bandwidth of all streams may be very large and serializing the encryption
of the packets could otherwise result in network communication degradation.



6.2 Secure File Transfers

When citing VPN we commented that having multiple streams is a key condition
to enable our vectorized AES implementation. We now present a particular, but
still common, scenario in which having an AES-MS core can greatly benefit the
user.

Transferring files among computers is one of the most common tasks happen-
ing on the internet. In general, bulk file transfers can take a long time as they
may consist of very large files such as backups, movies, etc., being sent to some
remote server. To avoid serialization in this scenario we propose to implement
a specialized transfer protocol that opens several tunnels and encrypts multiple
parts simultaneously. A single file is subdivided into chunks and sent as multiple
files through different channels. This could be done, for example, on modified
versions of the scp or sftp protocols. Figure 3 shows how this would look in the
case of a parallel transfer of a single file subdivided into chunks.

Fig. 3. Parallel file transfer using multiple channels by subdivision of a file into multiple
chunks

6.3 Vector Programming Models

So far we have mentioned the application of our technique to gateways in VPN
environments but have not commented about the architecture of the gateway
itself. There are various levels in which the multiple-stream technique can be
implemented. In a pure network device implementation it would be a hardware-
only implementation. In this case the gateway just requires a peripheral board
with the encryption engine, but this comes at the cost of versatility. The gateway
can also be implemented in a higher level using a special programming interface
to the device.

Vector architectures provide a special ISA interface in which vector registers
can be manipulated as regular registers. The addition of vector loads and stores
allows the memory controller to efficiently schedule memory access instructions



and better exploit memory bandwidth. Our multiple-stream interface follows
an equivalent goal. From the programmers point of view, the AES-MS engine
may be programmed as a vector device. Sending multiple unrelated files through
input/output channels in a single system call is known as Vector I/O or scat-
ter/gather. In Figure 4 we show how multiple streams could be encrypted using
scatter/gather. The key element of scatter/gather is a data structure that holds
a vector of data buffers and a corresponding vector with the sizes of each data
buffer. The system then reads this data structure and schedules the I/O accesses
to the different data buffers in order to maximize system performance. In the
example, an AES-MS core with two streams is about to process two input data
buffers: inA and inB. The system reads the two buffers and interleaves them in
blocks of 128 bits. Once this interleaving is done the joint stream can be fed to
the AES-MS core for processing. After encryption, the procedure is inverted to
store the encrypted data in the corresponding output buffers.

Fig. 4. A simplified Scatter-Gather Interface to Multiple-Stream AES

7 Conclusions

In this paper we have described an AES unit capable of processing multiple
data streams. Like Vector Engines, our AES unit uses vectors of data to effi-
ciently exploit the external IO bandwidth. The proposed technique can be used
to improve throughput in important scenarios such as Virtual Private Networks
(VPN) or secure file transfer where large quantities of data are being trans-
ferred. We have presented characteristics of the design and proposed a possible
programming interface together with possible system architectures for using the
core as a coprocessor. The use of the Molen paradigm and the systems recon-
figurability, allows to extrapolate these results to other encryption cores. Also,



the flexible and modular structure of the used multi-stream AES core allows for
an easy integration of additional processing streams, if a higher bandwidth IO
bus is used. The bandwidth is being limited by the IO bus and its conservative
frequency value, used in the implemented prototype.

Acknowledgments

This work was supported by the HiPEAC European Network of Excellence under
contract IST-004408, by the Ministerio de Educación y Ciencia of Spain under
contract TIN–2004–07739–C02–01 and by the Portuguese FCT–Fundação para
a Ciência e Tecnologia.

References

1. Page, D., Smart, N.P.: Parallel cryptography arithmetic using a redundant mont-
gomery representation. IEEE Trans. Comput. 53 (2004) 1474–1482

2. Crandall, R., Klivington, J.: Vector implementation of multiprecision arithmetic.
Technical report, Apple Computer Inc. (1999)

3. Bhaskar, R., Dubey, P.K., Kumar, V., Rudra, A.: Efficient Glois Field Arithmetic
on SIMD Architectures. In: Proc. of the 15th Annual ACM Symp. on Parallel
Algorithms and Architectures. (June 2003) 256–257

4. Dixon, B., Lenstra, A.K.: Massively Parallel Elliptic Curve Factoring. In: Proc.
of the Workshop on the Theory and Application of of Cryptographic Techniques.
(1992) 183–193

5. Vassiliadis, S., Wong, S., Gaydadjiev, G., Bertels, K., Kuzmanov, G., Panainte,
E.M.: The MOLEN Polymorphic Processor. IEEE Trans. Comput. 53(11) (Novem-
ber 2004) 1363–1375

6. Vassiliadis, S., Gaydadjiev, G.N., Bertels, K., Panainte, E.M.: The Molen Program-
ming Paradigm. In: Proceedings of the Third International Workshop on Systems,
Architectures, Modeling, and Simulation. (July 2003) 1–10

7. Chaves, R., Kuzmanov, G., Vassiliadis, S., Sousa, L.: Reconfigurable Memory
Based AES Co-Processor. In: Proc. of the 13th Reconfigurable Architectures Work-
shop (IPDPS). (January 2006)

8. Kuzmanov, G., Gaydadjiev, G.N., Vassiliadis, S.: The MOLEN Processor Proto-
type. In: Proceedings of the IEEE Symposium on Field-Programmable Custom
Computing Machines (FCCM 2004). (April 2004) 296–299

9. : HTX Electrical and Operational Profile. Technical report, The HyperTransport
Consortium

10. : HyperTransport HTX: Extending Hypertransport Interconnect Leadership. Pre-
sentation, The HyperTransport Consortium (2007)

11. : PCI-X 2.0 Overview. Presentation, PCI SIG
12. : PCI-SIG - PCI Express Base 2.0 Specification. Technical report, PCI SIG


