
Vector Processor
Customization for FFT

Bogdan Spinean, Georgi Kuzmanov, Georgi Gaydadjiev
Computer Engineering Laboratory, Faculty EEMCS,

Delft University of Technology, The Netherlands
{b.spinean, g.k.kuzmanov, g.n.gaydadjiev}@tudelft.nl

Abstract—Processors and memory systems suffer from a grow-
ing performance gap between them. Each technology generation
increases the on-chip performance capabilities however, memory
bandwidth increases at a much slower pace. Therefore, overall
performance improvements are constrained by the available
memory bandwidth. In this paper, we address the memory
bandwidth problem of vector processors by introducing hardware
customizations which drastically reduce the memory transfers
required by the FFT computation. We show that an FFT
transform of length equal to the machine size Z can be performed
using only O(Z) memory accesses, hence we reduce the memory
bandwidth requirement by an order of O(log(Z)) compared to
a conventional vector machine. We achieve bandwidth reduction
by extending a classic IBM S/370 vector architecture for better
register re-use. Our hardware extension completely eliminates
the input bit reversal phase of the Cooley-Tukey FFT algorithm.
Synthesis results suggest that our extension does not impact the
machine cycle time and has a small hardware area overhead of
the vector register file of under 4.5% while potentially improving
vector performance by a factor of 7.5 for Z = 256.

I. INTRODUCTION

The Discrete Fourier Transform (DFT) is widely used in
science and engineering ranging from spectral analysis to
data compression and partial differential equations. A real
breakthrough in the use of the DFT has been brought by the
Cooley-Tukey FFT algorithm [6] that reduces the computation
complexity from O(n2) to O(n× log(n)).

In this paper, we address FFT implementations of the
six step algorithm [3] characterized by increased parallelism
and improved locality on three platforms: vector processors,
superscalar processors with SIMD support and GPGPUs. We
compare the three platforms in terms of their FFT performance
theoretical limits: number of memory accesses, the number of
overhead instructions executed and the instruction bandwidth.

Our analysis suggests that, of the three considered archi-
tectures, vector processors are the most suitable for FFT
computation. The main disadvantage of vector processors is
the very high memory bandwidth requirements. Therefore,
we propose an architectural extension to vector processors
that reduces the required memory bandwidth required for
FFT computation. We compute the entire FFT transform of
number of points equal to the machine vector register length
Z avoiding storage of intermediate results in memory. We
are thus able to perform the FFT transform using O(log(Z))
times less memory bandwidth compared to traditional vector
processor implementations.

Since contemporary designs are more constrained by the
memory bandwidth rather than by the computational resources,
we argue that for a given bandwidth we can potentially
improve the overall system performance by allocating more
computational resources to utilize the saved bandwidth.

We compare our architectural extension to a baseline vector
machine using two methods. Using analytical modeling, we
estimate the execution time, the number of memory accesses,
the number of address calculation instructions and the number
of loop overhead instructions in terms of the machine vector
length Z for both cases. We show that asymptotic behavior of
both designs is the same and discuss the results for practical
values of Z. Through hardware synthesis we show that our
extension does not increase the processor’s cycle time and
that the area overhead is at most 4.5% of the vector register
file area. The specific contributions of this paper are:

• an architectural extension of vector processors that allows
more efficient register re-use for FFT;

• a micro-architectural implementation of the proposed
architectural extension;

• bit-reversed input ordering folded into the computation at
no additional cost;

• reduced memory bandwidth requirement by a factor of
log(Z) because of better register re-use;

The remainder of this paper is organized as follows: Section
II briefly describes the IBM System/370 Vector Architecture
highlighting vector processors’ key features. Three FFT im-
plementations are then presented and compared: on vector
processors, on susperscalar processors with SIMD support and
on GPGPUs. Section III presents our architectural extension
and describes in detail the Cooley-Tukey algorithm implemen-
tation using our approach. Section IV compares the two vector
implementation approaches and, finally, Section V presents our
conclusions.

II. BACKGROUND AND MOTIVATION

We first provide a short description of the IBM System/370
Vector Architecture [2], [5]. This is the architecture that
we, without losing generality, will use as the baseline for
our experiments. The machine has 16 vector registers, each
containing Z 32bits elements. The machine vector length Z is
implementation dependent and equals powers of 2 between 16
to 512 elements. The key insight is that typical vector registers
are an order of magnitude larger than typical SIMD registers.



Fig. 1. Scalar code requires Z times more overhead instructions than vector code.

Step 1. transpose
Step 2. N1 independent N2 point FFTs
Step 3. twiddle factor multiplication
Step 4. transpose
Step 5. N2 independent N1 point FFTs
Step 6. transpose

Fig. 2. The six step FFT algorithm.

The Z operations corresponding to the elements of a vec-
tor register are computed by a single pipelined 32bit wide
functional unit. In each cycle it receives a pair of inputs and
generates one result. The elements of the vector registers are
read sequentially and they are also written in linear order.

Another key feature of vector processors is that part of index
calculations are done implicitly by hardware and also part of
the loop control overhead is eliminated. Figure 1 a) shows
the pseudo-code of a simple loop which is then translated
into assembly instructions for b) scalar machine and c) vector
machine. The difference between Figure 1 b) and c) is the
total amount of iterations executed. The vector executes Z
times fewer index calculation and loop control instructions.

For our estimations, we assume the presence of a vector
instruction that performs the butterfly computations. This type
of instruction can be a compound instruction used by the
IBM System/370 [2]. We focus on the access patterns and
simplify our view of the data computation since it is very
well understood and documented.

In the following paragraphs we discuss FFT implemen-
tations of the six step algorithm [3] on three platforms:
vector processors, superscalar processors with SIMD support
and GPGPUs. We will perform a comparison in terms of
the number of memory accesses, the number of overhead
operations executed and the instruction bandwidth. Since the
comparison is not straight forward we use the big O notation
in our study. For each of these architectures we shall briefly
describe how the two benefits of the six step algorithm are
utilized: improved locality and additional parallelism available.

The six step algorithm sketched in Figure 2 uses a very
important property of the FFT that a long transform of length
N = N1×N2 can be computed as N1 independent transforms
of length N2, followed by the computation of N2 independent
transforms of length N1. All intermediate results are then
be combined together to form the final transform. We focus
our attention on Steps 2 and 5 of performing independent
transforms. We further assume that N1 = N2 = Z and that

for i = 0 to Z do
for j = 0 to log(Z) do

for k = 0 to Z/2 do
calculate addr of a = f1(j,k)
calculate addr of b = f2(j,k)
calculate addr of w = f3(j,k)
load a
load b
load w
(a’,b’) = butterfly(a,b,w)
calculate addr of a’ = f4(j,k)
calculate addr of b’ = f5(j,k)
store a’
store b’

end
end

end

Fig. 3. Computing Z independent FFT transforms of size Z.

we are using a radix 2 implementation (for higher radix the
same principles can be applied) resulting in the pseudo-code
shown on Figure 3.

For the original Cookey-Tukey algorithm [6] the results of
the butterfly will be stored at the same position as the inputs
and thus the algorithm can be performed in place. However
other variations, like the Stockham algorithm [16] change
the array layout at every step and thus additional storage
and index calculations are required. Also, reading the inputs
using one access pattern and writing the outputs in another
pattern can effectively combine the transposition steps (Steps
1, 3 and 5) into the computation steps (Steps 2 and 4) [1],
[12]. It is important to note that in the code of Figure 3 the
innermost loop performs the Z/2 butterflies required for step
j of processing the ith independent transform.

FFT implementations on vector processors. The first FFT
algorithms that have been implemented on vector processors
were simple radix-2 algorithms for arrays of lengths N = 2p

[11] such as the Pease [10] or the Stockham [16] algorithms.
Fixed geometry algorithms [10] can be efficiently vectorized,
and they require the same order of memory transfers as
the six step algorithm therefore we can safely focus on the
latter. The algorithms that inspired the six step algorithm
were the mixed radix FFTs [14] and then the prime-factor
algorithms. Temperton [15] reports on average 97% functional
unit utilization when processing multiple parallel transforms
on the Cray-1 vector processor.

The additional parallelism of the six step algorithm is



for j = 0 to log(Z) do
for k = 0 to Z/2 do

calculate addr of a = f1(j,k)
calculate addr of b = f2(j,k)
calculate addr of w = f3(j,k)
calculate addr of a’ = f4(j,k)
calculate addr of b’ = f5(j,k)
load w
for i = 0 to Z do
load a
load b
(a’,b’) = butterfly(a,b,w)
store a’
store b’

end
end

end

Fig. 4. Adaptation of the compuitation of Z independent FFT transforms of
size Z for vector processors

utilized by interchanging the inner most loop with the outer
loop [15]. All details of the FFT indexing are thus transferred
to outer loops and have no impact on vectorization (see
Figure 4). Figure 5 shows how the innermost loop in Figure
4 computes butterfly k of step j for all the Z independent
transforms. All these butterflies require the same twiddle factor
thus, its loading can be done outside the inner loop. Note that
elements of a from consecutive iterations will be at constant
offsets and thus strided memory accesses can be used for both
loading and storing the data. The inner loop in fact loads
columns of the x(N1, N2) array and computes the butterflies
between columns.

Because we have chosen the transform size equal to the
machine vector length Z the inner loop can be completely
vectorized. It will not require any loop instructions and
therefore the address generation is moved from software to
the vector implicit address generation. Thus, the loop control
and index calculation must be performed only for the outer
loops. The total number of such instructions is in the order of
O(Z× log(Z)). Since the inner loop is completely vectorized,
the total number of dynamic instructions is in the same order of
O(Z × log(Z)). The loading and storing of the data elements
is performed inside the inner loop and thus the number of
memory operations is in the order of O(Z2 × log(Z)).

SIMD implementations of FFT on cache based ma-
chines: Takahashi [12] implemented an FFT algorithm on
Intel Xeon processors using SSE3 instructions. The 128bit
SSE3 registers are used to store one complex number in
double precision floating point. The SIMD capabilities are
used for the complex arithmetic rather than butterfly par-
allelism. The authors use the six step FFT algorithm [3]
and exploit the shorter FFT size by using a block size that
would fit in the L1 cache. The additional parallelism is used
by performing the FFT transforms on multiple cores. From
the code snipped described in [12] we observe that for the
inner loop of the algorithm 7 out of the 14 operations are
used for address calculation. By analyzing the algorithm that
the authors have used we can determine that the number of
memory transfers, the amount of computation required, the
number of address calculation (overhead) instructions and the

total number of executed instructions are together in the order
of O(Z2 × log(Z)). This confirms the findings of [9] who
reports that after including prefetching, performance of SIMD
applications is limited by issue and fetch bandwidth.

Not using the six step algorithm but still relevant for our
discussion is the work of Nadehara [7] that implemented a
radix-4 decimation in frequency FFT algorithm using 64bit
SIMD registers, with the data size being 16bit. The SIMD
registers are used to compute 4 butterflies in parallel. While the
used data structure allows for easy loading of the data arrays
in the SIMD registers, the twiddle factors require additional
packing and permutation instructions to place them in the
correct positions of the SIMD registers. The authors report
using 19 instructions per butterfly, more than 40% of those
are used for index and address calculation, SIMD packing,
unpacking and are basically overhead instructions.

Talla reported in [4] that in case of SIMD acceleration
of Multimedia Applications, the supporting/overhead related
instructions dominate media instruction streams accounting for
75-85% of the dynamic instructions.

FFT implementations on GPGPUs. In [1] the authors
have implemented a 3D FFT on Nvidia GPGPUs and they
report speedups of up to 2.3x compared to state of the
art quad core processors. Two of the three dimensions are
decomposed using a variation of the same six step algorithm
described in [3]. The intermediate data structure is a 5D
array 256x(16x16)x(16x16) that maps naturally to machine
parameters (16=half warp). This array is transposed 4 times
using efficient memory accesses that can be coalesced for
minimum latency. Even though there are other approaches with
fewer memory accesses, the one chosen by the authors maps
better on the hardware and improves overall performance.

Through the use of the six step algorithm the authors obtain
shorter transforms with data fitting into the registers. Thus,
there is no need to store intermediate results in memory
(improved locality). Also, the execution of many small FFT
transforms provides the opportunity to have the very large
number of independent threads that a GPGPGU requires
to execute efficiently (improved parallelism). From the data
available it is hard to estimate the precise number of memory
accesses that this implementation performs. The lower bound
on the memory accesses is the number of elements of the
FFT transform that is O(Z2) (in order to be able to compare
to the other two architectures, in our evaluation we assume as
if the authors would compute a single FFT transform of size
N = N1 ×N2 = Z × Z).

When comparing in terms of overhead instructions, we have
to look at address calculation and loop control instructions.
One complete FFT transform is performed without any loop
so basically, it is as if the inner loop in Figure 3 didn’t have
any loop control instructions. There is no implicit address
calculation, addresses are based on thread ID but to obtain
the complete address, actual instructions must be executed.
However, since all the data for the inner loop is inside registers,
there is no need for address generation within the inner
most loop. Another thing to note is that registers cannot be



Fig. 5. The inner loop of a general vector processor implementation of the six step algorithm. Columns of the matrix are loaded in vector registers. The ith

butterfly is computed using the elements of vector registers on position i.

TABLE I
COMPARING THE THREE ANALYZED PLATFORMS IN TERMS OF VARIOUS

FFT METRICS.
memory accesses dynamic instruction count overhead instructions

Vector processors O(Z2 × log(Z)) O(Z × log(Z)) O(Z × log(Z))

SIMD machines O(Z2 × log(Z)) O(Z2 × log(Z)) O(Z2 × log(Z))

GPGPUs O(Z2) O(Z × log(Z)) O(Z × log(Z))

accessed indirectly and thus register indexes are encoded in
the assembly instructions and, as such, the number of dynamic
instructions is equal to the number of static instructions. We
estimate that the total number of overhead instructions is in the
order of O(Z2). GPGPUs are large SIMD machines and every
instruction executes a number of operations depending on the
implementation (ie. NVIDIA Fermi executes 32 operations in
one instruction) and thus the total number of executed instruc-
tions ranges between O(Z2×log(Z)) and O(Z×log(Z)). We
shall use their best case of O(Z × log(Z)).

Table I summarizes our estimations for the compared ar-
chitectures (the amount of computation required by all ar-
chitectures is the same, O(Z2 × log(Z)) since all of them
implement the same underlying FFT algorithm of complexity
O(n × log(n)) with an input size of n = Z × Z). The
SIMD machines are the least efficient, they require memory
instructions, overhead and total dynamic instructions of the
same order as the computation. Vector processors have lower
overhead and execute fewer instructions than the number of
computations performed. Finally, the GPGPUs improve over
the SIMD on the number of memory accesses and number of
overhead instructions.

In the following section we will propose a simple archi-
tectural extension to vector processors that will enable an
FFT implementation of Z independent transforms of length
Z with memory accesses in the order of O(Z×Z), a number
of overhead instructions in the order of O(Z × log(Z))
and a number of total executed instructions in the order of
O(Z× log(Z)). Our proposal combines the benefits of all the
studied architectures.

A method of generating the addressing sequence required
by the FFT algorithms was presented in the US patent by
Takano [13] but only applied to scalar general purpose pro-
cessors. The proposed address generator produces a sequence
of consecutive data locations. These consecutive addresses go
through an address converter that rotates lower bits of the

address according to a configuration register. Huang in [8]
extends the SIMD register file with the possibility to perform
element permutation with zero overhead. For SIMD register
widths of up to 8, 32bit elements is assumed. To the best of our
knowledge the permutation approach has not been previously
applied to vector processors with long vectors support.

III. THE PROPOSED ARCHITECTURAL EXTENSION

In this section, we introduce the concept of a Permutation
applied to a vector register and we shall then restate the
Cooley-Tukey algorithm by using Permutations. An example
for Z = 8 is shown and we shall discuss how to implement
any transform size on a fixed machine vector length Z.

Consider Figure 3 and a vector processor implementation
where the inner most loop executes step j of the ith FFT
transform.. If the block size of the six step algorithm is equal
to the machine vector length Z, then after step j all the data
needed for step j + 1 are already in the vector registers but
not in the required order.

We propose an extension to the state of vector registers that
allows reading and writing them in various orders. For each
vector register the programmer has access to a new configu-
ration register called the Permutation Register, containing the
Vector Permutation. The instruction set is extended with an
instruction that writes the contents of the Permutation Register
from one of the scalar registers. The instruction mnemonic is:

set perm sreg no, vreg no
where sreg no is the source scalar register and the vreg no
is the vector register to which the permutation is applied.

The vector register contains Z elements, Z = 2k. To access
those Z elements we require k bits: xk−1, xk−2, ..., x1, x0. We
define a Vector Permutation as a sequence of k numbers as
follows: (pk−1, pk−2, ..., p1, p0). For i = 0 to k−1, bit pi can
take any of the following values: a) either of the input bits
xk−1, xk−2, ..., x1, x0; b) ’T’; c) ’F’;

We introduce two permutations that we will use to formulate
the Cooley-Tukey algorithm in terms of permutations: the
shift(i) and twiddle(i) permutations (Figure 6 a)). The
shift(i) permutation is defined as:

for j = 1 to k-1 do
if j > i

pj = xj

else if j==i
pj = p0

else
pj = xj+1



Fig. 6. a) The ’shift’ and ’twiddle’ permutations; b) The structure of a vector register extended with the permutation unit; c) The Permutation Unit is
implemented using multiplexers.

If Z = 8, k = 3, shift(1) becomes Permutation (2,0,1):
• the 3rd output bit becomes the 3rd input bit (index 2);
• the 2nd output bit becomes the 1st input bit (index 0);
• the 1st output bit becomes the 2nd input bit (index 1);
By applying the (2,0,1) permutation, when reading the

vector register, the sequence of elements is:

before permutation: 000, 001, 010, 011, 100, 101, 110, 111

after permutation: 000, 010, 001, 011, 100, 110, 101, 111

Another permutation we will use is twiddle(i) defined as:
threshold = k-1-i
p0 = x0

for j = 1 to k-1 do
if j > threshold

pj = xj−threshold

else
pj = ’F’

The Cooley-Tukey algorithm with Permutations. In the
following paragraphs, we explain in detail how an FFT trans-
form of length Z is executed on a vector processor with
register permutation capabilities. The required Z/2 twiddle
factors are precomputed and loaded in a vector register before
the computation starts. All FFT transforms use the same
twiddle factors and therefore during computation no memory
bandwidth is wasted for twiddle factor transfers. Data for an
FFT transform are loaded in vector registers before the com-
putation begins and are stored back in memory after the entire
transform has completed. All computations are performed on
data in registers that do not spill into memory and thus, the
implementation requires very low memory bandwidth.

The butterfly computation requires 3 complex inputs: the
two data elements (a and b) and the twiddle factor w. It
produces 2 complex outputs a+ (b ∗ w) and a− (b ∗ w). We
propose grouping the 3 pairs of inputs into 3 vector registers
as follows (Figure 7): One register containing the real part of
the data array, a second register containing the imaginary part
of the data array while the third register contains alternating
real and imaginary parts of the twiddle factors. The number of
twiddle factors is equal to the butterfly computations required
which in our case is equal to Z/2.

Fig. 7. Storing the data array and twiddle factors in three vector registers.

Fig. 8. The twiddle factors and the butterfly operations required by the 8
point FFT using the Cooley-Tukey algorithm.

Our goal is to read these registers in a suitable order
such that at the functional units data will arrive grouped per
butterfly: the first two cycles the FU will receive the two data
elements and the twiddle factor required for the first butterfly,
the following two cycles the data elements and twiddle factor
for the second butterfly and so on.

We can now express the Cooley-Tukey FFT algorithm in
terms of the Permutations we introduced in the previous
paragraphs that are applied to the input array and to the twiddle
factors (see Figure 9). The bit reversal phase consists of log(Z)
consecutive permutations. Since mathematically, any number
of consecutive permutations can be compressed into a single
permutation, then all these permutations can be folded into the
first data permutation for the computation phase. Through the



load input data and twiddle factors
//bit reversal
for i = 0 to log(Z) do

set_perm shift(i) to data vector registers;

//computation
for i = 0 to log(Z) do

set_perm shift(i) to data vector registers;
set_perm twiddle(i) to coefficients vector register;
compute the butterflies;

store results

Fig. 9. The Cooley-Tukey algorithm expressed in terms of permutations.

use of vector permutations, we obtain the bit-reversed input at
zero cycles cost.

During the computation phase, only the permutation applied
to the vector registers changes. The simple permutation logic
ensures that for all the log(Z) steps the Z/2 butterflies arrive
at the functional units in the correct order and with the correct
twiddle factors.

Let us have a close look at an example of an 8-point FFT
transform, illustrated in Figure 8 and the permutations and
address sequence they produce as shown in Table II. For the
data array, the butterflies are computed in the 1st step between
elements at consecutive locations, for the 2nd step elements
that are two positions apart and for the 3rd step elements
that are 4 positions apart and so on. This is why the data
permutation of step i, the ith LSB alternates first. About the
twiddle factors, the 1st step computes 4 2point FFT transforms
and requires a single twiddle factor: the 1st order root of unity
that is replicated for all 4 butterflies. The 2nd step computes
2 4point transforms that require two twiddle factors: the 2nd

order roots of unity. The 3rd step computes a single 8 point
transform that requires 4 twiddle factors: the 4th order roots of
unity. Since the set of 4th order roots of unity includes the sets
of 2nd and 1st order roots of unity, the problem of assigning
the correct twiddle factor at the correct butterfly and at the
correct step is a matter of index generation. This is handled
by the twiddle(i) permutation. Assuming that we have the 4th

order roots of unity in a vector register (Figure 7,8) then by
applying permutation twiddle(0) at the output we obtain only
the 1st order roots of unity replicated 4 times, for permutation
twiddle(1) we obtain the 2nd order roots of unity replicated
twice and for permutation twiddle(3) we obtain the 4th order
roots of unity appearing only once each.

This approach can be extended for any machine dependent
Z = 2k. Any transform size N can be segmented using the
six step algorithm into N = Z ×N1.

Micro-architectural implementation. Figure 6 b) depicts
a possible implementation of a vector register that is mirrored
for reading or writing the register. When the register starts
being read, the read counter is reset to zero and each cycle it
is incremented until it reaches the value Z − 1. The value of
the counter is used as selection bits for a MUX with Z inputs.
Therefore, in Z consecutive cycles, the output of the MUX will
correspond to all the elements of the vector register. A similar
mechanism can be used for writing the vector register, we
have chosen to show the DMUX implementation for symmetry

TABLE II
THE ADDRESS SEQUENCES REQUIRED BY THE 8 POINT FFT USING THE

COOLEY-TUKEY ALGORITHM.
000 001 010 011 100 101 110 111

Permutation B0 B1 B2 B3

Step 1 data 0 1 2 3 4 5 6 7
(2,1,0) 000 001 010 011 100 101 110 111

twiddle 0 1 0 1 0 1 0 1
(F,F,0) 000 001 000 001 000 001 000 001
Step 2 data 0 2 1 3 4 6 5 7
(2,0,1) 000 010 001 011 100 110 101 111

twiddle 0 1 4 5 0 1 4 5
(1,F,0) 000 001 100 101 000 001 100 101
Step 3 data 0 4 1 5 2 6 3 7
(0,2,1) 000 100 001 101 010 110 011 111

twiddle 0 1 2 3 4 5 6 7
(2,1,0) 000 001 010 011 100 101 110 111

reasons.
The micro-architectural extension we propose (marked by

the dashed square in Figure 6 b)) consists of a Permutation unit
that is added in between the counter and the selection bits of
the MUX. Every bit in the output can be either of the input bits
or ’T’ or ’F’. Figure 6 c) presents a possible implementation
of the Permutation Unit. The Permutation Register is set by
software by copying the contents of a scalar register using the
set perm instruction.

IV. DESIGN EVALUATION

In this section, we compare the Cooley-Tukey FFT im-
plementation on a vector processor with permutation support
against a vector processor without. We start our evaluation
by analytically determining the amount of cycles required to
compute the FFT transforms in the two cases discussed so
far. For simplicity, we only look at the combine phase of the
algorithm, namely, the computation of the butterflies.

We assume the following instruction execution time (ml
stands for memory latency and bl stands for butterfly latency):

• compute and set permutation word: 2 cycles
• address calculation: 2 cycles
• load data into a vector register: (ml + Z) cycles
• load a single data element: ml cycles
• store a vector register: Z cycles
• butterfly operation: (bl + Z) cycles
We use conservative timing for load operations, we assume

that a load from linear addresses takes an equal amount of
cycles as a strided load operation. We also assume the ability
of the IBM 370 to perform two memory operations at once.

Based on the algorithm presented in Figure 4, we write
the assembly level pseudo code for the FFT transform on the
baseline vector architecture (in our case the results will be
stored in the source operands, therefore a=a’ and b=b’ from
Figure 3). This is depicted in Figure 10.

For the Temperton implementation [15] we assume that
within the inner loop all data transfers are hidden behind
the data computation. Thus, the lower bound on the amount
of cycles required to perform the inner loop (both the data
transfers and computation) is 2× Z cycles, the time required
to transfer four vector registers using two memory units. We
also assume that through careful programming, all memory
latency can be hidden behind computation. The inner loop is
executed Z times and loads the arrays, computes the butterfles



for j = 0 to log(Z) do
for k = 0 to Z/2 do

calculate addr of a = f1(j,k)
calculate addr of b = f2(j,k)
calculate addr of w = f3(j,k)
load Re(w) (one single value)
load Im(w) (one single value)
for i = 0 to Z do
load Re(a) (an array of Z values)
load Re(b) (an array of Z values)
load Im(a) (an array of Z values)
load Im(b) (an array of Z values)
(a, b) = butterfly(a, b, w)
store Re(a)
store Im(a)
store Re(b)
store Im(b)

end
end

end

Fig. 10. Assembly pseudo-code for computing Z independent transforms of
size Z on the baseline vector machine.

load twiddle factors in vector register w
for i = 0 to Z do

load Re(line i) into vector reg a
load Im(line i) into vector reg b
for j = 0 to log(Z) do

calc. and set the data perm. for step k
calc. and set the twiddle factor perm.
for k = 0 to Z do
(a, b) = butterfly(a, b, w)

end
end
store Re(line i) from reg a
store Im(line i) from reg b

end

Fig. 11. Assembly pseudo-code for computing Z independent transforms of
size Z on the vector machine with permutation support.

and stores the results. The middle loop in additoin calculates
addresses, loads twiddle factors and is executed Z/2 times.
The total number of cycles is thus (inner loop within round
brackets, middle loop within square brackets):

TCbaseline = [(2×Z) + 3 + 1]×Z/2× log(Z)[cycles] (1)

The number of memory accesses is:

TMbaseline = (8×Z+2)×(Z/2)×log(Z)[memory acceses]
(2)

The number of address calculation instructions is:

TACbaseline = 3× log(Z)× Z/2[instructions] (3)

The number of loop iterations is:

TLbaseline = Z × Z/2× log(Z)[iterations] (4)

In Figure 11, we adapt the algorithm from Figure 3 to
use our architectural extension. As for the estimation for the
baseline machine, we assume that careful programming can
hide all memory transfers behind computation. Please note
that this assumption does not put our architectural extension
at an advantage over the baseline. The inner loop is executed Z
times and computes the butterfles. In addition, the middle loop
calculates and sets the permutations and is executed log(Z)
times. The outer loop adds the loading and storing of the data

array and is executed Z times. The total number of cycles is
thus:

TCperm = {[(Z + bl) + 4]× log(Z)} × Z + Z[cycles] (5)

The number of memory accesses becomes:

TMperm = Z + Z × Z × 4[memory acceses] (6)

The number of address calculation instructions is (the compu-
tation of a permutation is comparable to address calculation):

TACperm = 2× log(Z)× Z[instrctions] (7)

The number of inner loop iterations (each loop execution
requires compare and jump overhead instructions):

TLperm = Z × Z × log(Z)[iterations] (8)

An important difference between the two approaches is that
for the permutation implementation, each vector register holds
elements for Z/2 butterflies while in the baseline case, each
vector register holds data for Z butterflies. So, compared to
the permutation, the baseline executes in the inner iteration
twice as many butterflies but executes the outer iterations half
as many times (Equation 1 and Equation 5). Because of this
constant, the permutation is slightly slower than the baseline
vector but bringing the benefit of significantly reduced number
of memory accesses.

Since contemporary designs are more constrained by the
memory bandwidth rather than by the available computational
resources, we argue that for a given bandwidth we can
potentially improve performance by allocating more hardware
resources to utilize the saved bandwidth. Overall, we allow the
possibility to trade-off between available memory bandwidth
and hardware resources. By keeping the bandwidth constant
and by using more hardware resources, we can potentially
improve the FFT performance of vector processors by up to a
factor of log(Z). Since every transform is independent from
the others, the amount of parallelism is very high and there
are ample opportunities for performance improvements. We
can reduce execution time by adding more functional units on
a vector processor or by using more vector processors sharing
the same memory bandwidth or a combination of both. We
plan to investigate these possibilities in our future work.

The top line on Figure 12 plots the relative reduction
of memory bandwidth of the permutation implementation
compared to the baseline; the lower line plots the maximum
speedup that can be gained for a constant bandwidth bud-
get. We obtain these numbers by multiplying the relative
bandwidth reduction (Equations 2 and 6) with the speedup
(Equations 1 and 5). We consider typical values of section size
varying from 16 to 256 elements and a butterfly unit latency
of 20 cycles. For a small Z = 16, by allocating sufficient
hardware resources to saturate the available bandwidth, our
approach can be potentially up to 2.1x faster than a baseline
implementation using the same bandwidth. For Z = 256, we
can be up to 7.5 times faster than the baseline for the same
memory bandwidth budget. Note that our approach is more



Fig. 12. Relative bandwidth reduction of the vector register permutation
versus the baseline (top); and maximum potential speedup that can be obtained
for a constant memory bandwidth budget (bottom).

Fig. 13. Register file area overhead of the permutation logic, in percentages.

beneficial when vector lengths increase because the bandwidth
savings are higher and because the difference in execution time
reduces.

Synthesis results. We have implemented in Verilog a vector
register file with and without the permutation support. We have
used the Cadence RTL Compiler and we have synthesized for
a 90 nanometer technology. The critical path for the register
file is determined by the counter, the permutation unit and
the multiplexers (Figure 6 b)). The permutation unit adds
around 2 × log(log(Z)) levels of logic gates corresponding
to a multiplexer with log(Z) inputs (see Figure 6 c)).

The processor’s cycle time is determined by the delay of a
32bit adder in the scalar unit. The critical path of the register
file including the permutation unit fits within the processor’s
cycle time for all the considered values of Z (8 to 256).
Therefore, the permutation unit does not influence the cycle
time.

Figure 13 plots the register file area overhead due to the
permutation logic for various values of Z. The area over-
head is for each vector register in the order of log(log(Z))
multiplexers each with log(log(Z) + 2) inputs. The size of
the vector registers increases much faster than the size of
the permutation logic and, therefore, as Z increases, the area
overhead decreases. The irregularity in the graph for Z = 32 is
caused by increased logic depth that forced the tool to choose
larger size components for fulfilling the timing requirement.

V. CONCLUSION

We proposed an architectural extension to the IBM Sys-
tem/370 Vector Architecture that enabled access to vector
register elements in various orders under software control.
We introduced the concept of permutation applied to a vector
register and evaluated its flexibility and the related overhead.
We investigated the Cooley-Tukey FFT algorithm execution

of Z independent transforms of length equal to the machine
vector length. We showed that the bit-reversal of the input can
be folded into the computation at zero cost and how this FFT
algorithm can be vectorized in a straight forward fashion. We
also showed that our proposal reduced the required memory
bandwidth by a factor of log(Z) compared to the baseline
implementation due to better register re-use. Under constant
bandwidth and by using more hardware resources we can
potentially improve the vector processors FFT performance.
The additional cost of the permutation logic is trivial and does
not penalize the overall vector cycle time. At the algorithmic
level, the execution time has equivalent asymptotic behavior.
Our results suggest that for small input sizes the execution
time is longer than for traditional vector processors, however,
as the input size increases, the difference in execution time
becomes smaller while obtaining a considerable reduction of
memory bandwidth.

REFERENCES

[1] T. Endo-S. Matsuoka A. Nukada, Y. Ogata. Bandwidth intensive 3-D
FFT kernel for GPUs using CUDA. In International Conference for
High Performance Computing, Networking, Storage and Analysis, SC.,
pages 1–11, 2008.

[2] R.M. Smith-W. Buchholz A. Padegs, B.B. Moore. The IBM System/370
Vector Architecture: Design Considerations. In IEEE Transactions on
Computers 37, pages 509 – 519, 1988.

[3] D.H. Bailey. FFT’s in external or hierarchical memory. In Journal of
Supercomputing 4, pages 23 – 35, 1990.

[4] L.K. John D. Talla. Cost-effective hardware acceleration of multimedia
applications. In International Conference on Computer Design, ICCD,
pages 415 – 424, 2001.

[5] A.C. Arpaci-Dusseau J.L. Hennessy, D.A. Patterson. Computer archi-
tecture: a quantitative approach. 2007.

[6] J.W. Tukey J.W. Cooley. An algorithm for the machine computation of
the complex Fourier series. In Mathematics of Computation 19, pages
297–301, 1965.

[7] I. Kuroda K. Nadehara, T. Miyazaki. Radix-4 FFT implementation
using SIMD multimedia instructions. In Acoustics, Speech, and Signal
Processing, ICASSP, pages 2131 – 2134, 1999.

[8] Z. Wang-W. Shi N. Xiao S. Ma L. Huang, L. Shen. SIF: Overcoming
the limitations of SIMD devices via implicit permutation. In High
Performance Computer Architecture (HPCA) 16, pages 1 – 12, 2010.

[9] N.P. Jouppi P. Ranganathan, S. Adve. Performance of image and video
processing with general-purpose processors and media ISA extensions.
In 26th International Symposium on Computer Architecture, pages 124–
135, 1999.

[10] M.C Pease. An adaptation of the fast Fourier Transform for parallel
processing. In J. ACM 15, pages 252–264, 1968.

[11] P. N. Swarztrauber. FFT algorithms for vector computers. In Parallel
Computing 1, pages 45 – 63, 1984.

[12] D Takahashi. An implementation of parallel 1-D FFT using SSE3
instructions on dual-core processors. In PARA’06 Proceedings of the 8th
international conference on Applied parallel computing, pages 1178–
1187, 2007.

[13] Hideto Takano. Hardware arrangement for fast Fourier transform having
improved addressing techniques. In US patent 5,430,667, 1993.

[14] C. Temperton. Fast Fourier Transforms and Poisson solvers on Cray-1.
In Infotech State of the Art Report: Supercomputers, vol 2, pages 359 –
379, 1979.

[15] C. Temperton. Implementation of a prime factor FFT algorithm on
Cray-1. In Parallel Computing 6, pages 99 – 108, 1988.

[16] D.L. Favin-H.D. Helms R.A. Kaenel W.W. Lang G.C. Maling Jr. D.E.
Nelson C.M. Reader W.T. Cochran, J.W. Cooley and P.D. Welch. What
is the fast Fourier transform? In IEEE, Trans. Audio Electroacoustics
Au-15, pages 45 – 55, 1967.


