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ABSTRACT
In this paper, we analyze the problem of supporting conflict-
free access for multiple stride families in parallel memory
schemes targeted for SIMD processing systems. We propose
a Single-Affiliation Multiple-Stride (SAMS) scheme to sup-
port both unit-stride and strided conflict-free vector mem-
ory accesses. We compare our scheme against other pre-
viously proposed techniques using buffers and inter-vector
out-of-order access. The main advantage of our proposal is
that the atomic parallel access is supported without limit-
ing the vector lengths. This provides better support when
short vectors are considered. Our scheme also has the merit
of better memory module utilization compared to the solu-
tions with additional modules. Synthesis results for recon-
figurable Virtex2-Pro FPGA technology indicate that the
address translation of the SAMS scheme has efficient hard-
ware implementation, which has a logic delay of less than
3 ns and trivial hardware resource utilization.

Categories and Subject Descriptors
B.3.m [Hardware]: MEMORY STRUCTURES—Miscella-
neous;
C.1.2 [PROCESSOR ARCHITECTURES]: Multiple
Data Stream Architectures (Multiprocessors)—
Single-instruction-stream, multiple-data-stream
processors (SIMD)

General Terms
Design, Experimentation

Keywords
Parallel memory schemes, multimodule memory, memory
access, stride

1. INTRODUCTION
One of the most critical design challenges in SIMD proces-

sors is imposed by the memory subsystem, which is required
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to deliver sustained high bandwidth at reasonable latency [6,
13]. To meet these challenges, memory subsystems with
multiple memory modules have been widely considered. Par-
allel (or multimodule) memories were introduced in the early
years of building high performance processors [2] and later
extensively adopted in vector supercomputers [18, 7]. Nowa-
days, there is a trend that general purpose systems are utiliz-
ing parallel memories in their memory hierarchy, such as the
multibank on-chip caches in Niagara [11] and Opteron [10],
multislice caches in Power processors [21, 19, 14], parallel
on-chip eDRAM banks in VIRAM processor [13], and in-
terleaved DRAM banks in Rambus and other commercial-
off-the-shelf monolithic DRAM chips. For simplicity of the
module assignment hardware implementation, the number
of memory modules was chosen as a power of two in most of
these real systems. For efficient hardware utilization, the de-
signers prefer systems with non-redundant memory schemes,
i.e. schemes where each and every memory module should
be referenced by any memory access. This paper addresses
non-redundant memory systems with a power of two mem-
ory modules. We introduce the SAMS (Single-Affiliation
Multiple-Stride) parallel memory scheme, which overcomes
the problem of conflict-free1 access across stride families2 in
multimodule parallel memory systems. The specific contri-
butions of our proposal are:

• We propose the SAMS scheme: to our best knowl-
edge, this is the first in-order parallel memory scheme,
which supports both strided3 and unit-stride(precise
definitions provided in Section 2.3) conflict-free vector
access;

• Synthesis results on Virtex2-Pro reconfigurable tech-
nology suggest short critical path (in the proximity of
4 ns) of the address translation logic. This is a strong
indication for the feasibility of the proposed scheme in
practical parallel memory systems.

The remainder of the paper is organized as follows. In
Section 2, we present the background and motivation of the
proposed scheme. In Section 3, the construction procedure
and the mathematical equations of the SAMS scheme are
described, and the initial hardware implementation and syn-
thesis results of the scheme are illustrated in Section 4. The
1Please refer to Section 2.1 for detailed explanation of
“conflict-free access”.
2See the definitions in Section 2.3.
3By “strided” we refer to even strides in this paper, as odd
strides (including unit stride) conflict-free accesses are well
supported by the simple low-order interleaving scheme [22].
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major differences between our proposal and related works
are described in Section 5, followed by some discussions
about the design space and application of SAMS in Sec-
tion 6. Finally we conclude the paper with some suggestions
on future work in Section 7.

2. BACKGROUND AND MOTIVATION
In this section, we will introduce some background on

parallel memory schemes, which play a central role in par-
allel memory systems. We also present some of the key
existing techniques in parallel memory schemes. Then we
will present the limitation in nonredundant parallel mem-
ory schemes, which motivates us to this work.

2.1 Parallel Memory Schemes
The parallel memory schemes are the main means to de-

termine the performance and the hardware complexity of the
parallel memory subsystems. Given a specific physical mem-
ory organization and resources, these schemes determine the
mapping from the linear address space to the physical loca-
tion identifiers, such as the module number and row address.
In other words, the memory translation scheme determines
how to distribute data to different memory banks, in order
to better service memory references. Vector access, defined
by an address stream with a constant offset between any two
consecutive addresses, is one of the most important memory
reference patterns in SIMD applications. Traditional paral-
lel memory schemes in vector computers provide conflict-free
access for a single stride family. To solve the module con-
flicts encountered with the cross stride family accesses, sev-
eral enhancements have been previously proposed, including
the use of dynamic memory schemes [5, 4], use of buffers [3],
and use of more memory modules (i.e. memory scheme with
redundant modules) [3], and out-of-order vector access [22].

These traditional multimodule memory schemes assume
that the memory access time is atomic and it is much larger
than the processor cycle time. Consequently, to keep up
with the data access demand of the fast processors, differ-
ent memory schemes were proposed to make multiple mem-
ory modules work together in an interleaved manner to ser-
vice single cycle data accesses from the processor. Partic-
ularly, if the number of memory modules equals to their
latency counted in processor cycles, the scheme is called a
matched memory system, as in this case, the interleaved
memory modules are capable of servicing the processor at
the throughput of one datum per processor cycle, if the data
to be referenced in one access are located in different memory
modules. This condition of uniform distribution of memory
references is called conflict-free access in traditional in-
terleaving schemes. In conflict-free access, data could be
accessed in parallel as there is no module conflict during the
memory access.

With the advance of the semiconductor technologies, how-
ever, the parallel memory modules of traditional vector com-
puters could be (partially) integrated into the processor chip
working as a local store like the Cell processor [9]. Thus,
on the one hand, for medium-sized on-chip memory arrays
(such as the L1 caches in GPPs), it is not difficult to sup-
port one access per processor cycle. On the other hand, to
exploit the available on-chip resources more efficiently, mul-
tiple SIMD data paths are deployed in modern processors.
Furthermore, accessing multiple memory data items in a sin-
gle processor cycle is desirable in order to use the multiple

Figure 1: Inherent limitation in multimodule mem-
ory assignment

data paths efficiently. Therefore, we assume a memory or-
ganization where the multimodule SRAM memories are de-
ployed as on-chip SIMD buffers4 and each of them services
one piece of data reference every clock cycle. In this work,
we address such memory organizations and refer to them
as “fully-parallel multimodule memory systems”. In fully-
parallel multimodule memory systems, the processor could
access at most as many data items as the number of mem-
ory modules in one cycle, when the access is conflict-free.
This is actually the goal of the underlying parallel memory
schemes in such memory organizations.

2.2 Motivation: The Limitation in Nonredun-
dant Parallel Memory Schemes

In traditional matched parallel memory schemes, it is im-
possible to simultaneously support both parallel unit-stride
and arbitrarily strided access orders [22]. Figure 1 illus-
trates an example with four memory modules. Under the
constraint of unit-stride conflict-free access, the module as-
signment function of the scheme is completely fixed. Note
in Figure 1 the constant repeat of module assignment pat-
tern of the first four addresses. When the system is accessed
with stride 2, half of the memory modules are not utilized
(note the shadowed cells in Figure 1). One additional lim-
itation, not illustrated in Figure 1, is that any interleaving
scheme optimized for even-stride conflict-free access could
not support conflict-free unit-stride access at an arbitrary
base addresses5.

There is a large number of strided vector accesses in many
scientific and engineering applications which have significant
impact on the performance of the workloads on traditional
vector supercomputers [1]. In the meanwhile, we certainly
could not neglect the unit-stride access pattern, as it is the
most common one in vectorized scientific and engineering
applications [8, 12, 20]. Even in vectorized SPEC95 bench-
marks it is the second most frequent stride [16]. Further-
more, there are many occasions in which simultaneous sup-
port of both unit-stride and strided memory accesses is de-
sired, as the same data block is accessed with different stride
types. When we have to access data in parallel memories
with both unit and even stride, the problem occurs that we
have to either modify the interleaving scheme (that is, to
redistribute data to memory modules in a different way), or
to have the scheme optimized for conflict-free access with

4Three are already many GPPs with multimodule on-chip
SRAMs, see [14, 9, 11] for examples.
5Refer to Section 2.3 for the definition of “base address”.
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one type of access while suffer from the non-conflict-free ac-
cess with the other. The former would incur data flushing
into and reloading from the lower level memory in the mem-
ory hierarchy whenever there is a change of access stride,
whereas the latter would introduce processor cycles wasted
on waiting for the vector access.

As far as unit-stride access on stride-optimized parallel
memory scheme is concerned, it is interesting to examine the
affiliation properties of the scheme. We define affiliation in
the following section, along with other relevant definitions.

2.3 Definitions
For the sake of clarity, we now give the definitions of key

terms used in this paper. First, we define some terminolo-
gies used in general parallel memory systems, and then the
specific ones used in our SAMS scheme will follow.

Definition 1. A sequence of independent memory access
stream issued by the SIMD processor in parallel is called
a vector access. A vector access could be either regu-
lar (with constant stride) or irregular (such as the scat-
ter/gather memory access). However we only discuss regular
vector accesses in this paper.

Definition 2. Base address is the first memory address
in a given regular vector access stream.

Definition 3. Stride is the constant interval between sub-
sequent memory addresses in a given regular vector access
stream.

Definition 4. Unit stride denotes stride 1.

Definition 5. A stride family is a set of infinite number
of strides, {S‖S = σ · 2s, s ∈ N, σ is odd}. This follows the
definitions given in [5, 4, 22].

Definition 6. The exponential part of the stride family
{S‖S = σ · 2s, s ∈ N, σ is odd}, s, is called the stride
family number. The stride family number completely de-
fines the set of strides belonging to a stride family. For
example, stride family with family number 0 (we will say
“stride family s” for short of “stride family with family num-
ber s”hereafter) is the stride set {1, 3, 5, 7, · · · } while stride
family 1 is {2, 6, 10, 14, · · · }.

Now we will give some definitions specific in our proposed
SAMS scheme. Suppose a is the linear address and m(a) is
the module assignment function of a parallel memory scheme
with N memory modules.

Definition 7. If address a satisfies m(a) = m(a+δ) (where
δ < N), address a has forward-affiliation.

Definition 8. If address a satisfies m(a) = m(a−δ) (where
δ < N), address a has backward-affiliation.

Definition 9. Forward-affiliation and backward-affiliation
always occur in pairs. For instance, if address a has forward-
affiliation (m(a) = m(a + δ)) then the address a + δ has
backward-affiliation. We call address a and its affiliated ad-
dress (a + δ) an affiliation-pair.

Now, let us examine the meaning of affiliation. If there ex-
ist forward/backward-affiliations in a memory scheme, then
the scheme is not conflict-free for parallel N unit-stride ac-
cesses at arbitrary base addresses. For instance, unit-stride
accesses starting at addresses with forward-affiliation will
result in module conflicts.

Definition 10. If address a is associated with only one
single instance of affiliation (backward- or forward-), then it
is a single-affiliation address.

Definition 11. If there exist addresses in a nonredundant
parallel memory scheme with single-affiliation and none of
them has multi-affiliation, then it is a single-affiliation
scheme.

Note that in single-affiliation schemes, a single-affiliation
address belongs to only an affiliation-pair. Single-affiliation
parallel memory schemes make sure the module conflicts un-
der unit-stride access are moderate in the sense that, if an
address in linear address space causes module conflict within
access at one base address, then it will never cause any other
conflict within access at a different base address. We will
illustrate how to make use of Single-affiliation parallel mem-
ory schemes to construct a memory system which is capa-
ble of supporting conflict-free strided accesses from multiple
stride families.

3. SAMS: SINGLE-AFFILIATION
MULTIPLE-STRIDE CONFLICT-FREE
PARALLEL MEMORY SCHEME

In this section, we propose SAMS, the Single-Affiliation
Multiple-Stride conflict-free parallel memory scheme. SAMS
aims at supporting conflict-free unit-stride and strided mem-
ory accesses simultaneously, by first constructing a single-
affiliation interleaving scheme, and then making data lines
wider to solve the module conflicting problem in unit-stride
access, which exists in the single-affiliation scheme.

3.1 Relax the Constraint from Conflict-Free to
Low Degree of Affiliation

It has been observed that when a nonredundant paral-
lel memory scheme is configured for conflict-free unit-stride
access, it is incapable of supporting conflict-free strided ac-
cess. Now that it is difficult to achieve the goal of adding
conflict-free unit-stride access support at once, we propose
to do this in two steps. First, we relax the constraint from
conflict-free to low degree of affiliation, for unit-stride ac-
cess. Second, for each and every memory module, we re-
arrange the groups of conflicting data items in unit-strided
access into wide data lines so that they could be referenced
during one access. The philosophy behind this idea is to
restructure the memory modules. Traditionally, the mem-
ory module in a multimodule memory system is treated as a
linear (one-dimensional) structure, and a memory interleav-
ing scheme maps the linear address space from processor’s
view into multiple linearly structured storage units. In our
approach, instead of one-dimensional, we model each mem-
ory module as a two-dimensional structure. Therefore, the
aforementioned limitation in parallel memory schemes could
hopefully be resolved by introducing a new dimension of ac-
cess parallelism, namely the module data line. If the con-
flicting data items are located in the same data line, then
they could be accessed in parallel with proper shuffling and
selecting operations. The reason why low-affiliation schemes
are preferable is that, as the degree of affiliation increases,
the module data line grows wider because it has to be wide
enough to accommodate all conflicting items. Consequently,
the hardware for choosing the proper one(s) from the data
line and shuffling data items from different modules becomes
more complicated.
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Figure 2: Example of construction of SAMS single-affiliation scheme with q = 2, s = 2

3.2 Hierarchical Single-Affiliation Parallel
Memory Scheme

We propose to construct a single-affiliation scheme for
SAMS hierarchically. When s > q, SAMS adopts Harper’s
XOR scheme [4] as it is a single-affiliation one in this case.
However, as it is not a single-affiliation scheme when s ≤ q,
some modifications must be considered. Figure 2 illustrates
one example of how to build SAMS single-affiliation scheme
based on Harper’s XOR scheme [4] (referred as “basic XOR
scheme” in the figure). The construction process is described
as follows:

(1) Divide 4 (i.e. 2q) memory modules into 2 (i.e. 2q−s+1)
subgroups, with each group deployed with basic XOR
scheme configured with 2 (i.e. 2s−1) modules and
stride 4 (i.e. 2s).

(2) Interleave the two groups, at the granularity of 4 (i.e.
2s). Now, the module assignment looks like that of the
XOR scheme configured with 2 (i.e. 2s−1) modules and
stride 8 (i.e. 2q+1).

(3) Combine the two groups and make uniform module
index by merging the subgroup module index and the
group index.

As Figure 2 suggests, there are cases of four items affiliated
with each other (marked with “X”), when the basic XOR
scheme is used. The affiliation problem is resolved when
we shrink the number of modules in a group, which in turn
introduces several (2 in the figure) subgroups of modules.
Therefore, steps (2) and (3) in Figure 2 interleave them at
the subgroup level and merge them into a unified scheme.
After that, we could finally get a single-affiliation scheme,
as shown at the bottom of the figure.

In the following, we provide the mathematical description
of the above construction process.

• module assignment function:

m(a) =

⎧⎨
⎩

a%2q , s = 0〈
aq · · · as,

(
a ⊗ THs−1,q+1

)
%2s−1

〉
, 1 ≤ s ≤ q(

a ⊗ THq,s

)
%2q, s > q

(s, q ∈ N)

where, a is the n bit linear address, and 2q is the num-
ber of memory modules in the SAMS scheme; s is the stride
family number, which is the exponential part of the stride
family {S‖S = σ · 2s, σ odd} to be supported with conflict-
free access by the scheme; ai is the i − th bit of a; m(a)
is the module assignment function which has q bits. The
notation x%y means x modulo y, and < . . . , · · · > de-
notes binary bits concatenation. THx,y is the XOR scheme
address transformation matrix taken from [4]. THx,y =∏min(x,y)−1

k=0 Tk+max(x,y), k, where Ti,j is defined to be the
identity matrix with a single off-diagonal 1 in T (i, j). The
binary matrix T is arranged in a form that the bottom-right
element is T (0, 0), and the row index grows when moving up
and the column index grows when moving left so that the
top-left element is T (l − 1, l − 1) (assume T is l × l in size).
For example,

T =

⎡
⎣

1 1 0
0 1 1
0 0 1

⎤
⎦ =

⎡
⎣

1 0 0
0 1 1
0 0 1

⎤
⎦·

⎡
⎣

1 1 0
0 1 0
0 0 1

⎤
⎦ = T1,0·T2,1

The ⊗ symbol in this paper is used for binary vector-matrix
multiplication. For instance, consider

a = 7, T =

⎡
⎣

1 0 0
0 1 1
0 0 1

⎤
⎦

then

a ⊗ T = [1 1 1]

⎡
⎣

1 0 0
0 1 1
0 0 1

⎤
⎦ = [1 1 0] = 6 .

The objective of SAMS module assignment function is to
make sure that, on one hand, the scheme is conflict-free for
stride family {S‖S = σ · 2s, with σ odd}; while on the other
hand, there are at most two data references going to the
same module on a parallel unit-stride access.

3.3 Solving Module Conflicts in Single-
Affiliation Schemes

As described in Section 3.1, the construction of a single-
affiliation scheme is just the first step of SAMS. To cope with
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the module conflicts in the single-affiliation scheme, we have
to make the modules data lines wider in order to accommo-
date the conflicting data items. Furthermore, we have to
arrange the data properly in the two-dimensional storage,
as shown in Figure 3. Note 2n in the figure is the capacity
of the multimodule memory system. Part (1) of the figure
shows the linear address distribution in 4 memory modules
which satisfies both unit-stride and stride-4 family conflict
free access, and part (2) illustrates the linear address dis-
tribution which satisfies both unit-stride and stride-8 fam-
ily conflict free access. We could see from the figure that
the idea of SAMS interleaving scheme virtually introduces
a third dimension of address flexibility, the offset in the row
(data line), besides the module index and row address. The
guideline of items placement in module row and offset is sim-
ple yet effective: to pack the conflicting items into the same
row while maintaining the natural order of the items in the
local modules. As there is at most a pair of conflicting items
located in the same module on a parallel unit-stride access,
a row with width of two is enough for holding them.

The SAMS interleaving scheme consists of three functions:
(1) the module assignment function which assigns an item
in linear address space to a specific module; (2) the row
assignment function which determines the row in which the
item is placed; and (3) the offset assignment function which
calculates the offset of the item in the row. Since we have
presented the module assignment function in Section 3.2,
we introduce the row assignment and the offset assignment
functions below:

• row assignment function:

r(a) =

⎧⎨
⎩

a
2q+1 , s = 0

a
2q+1 , 1 ≤ s ≤ q((

a
2q + 1

)
%2n−q

)
/2, s > q

(s, q ∈ N)

• offset assignment function:

o(a) =

⎧⎨
⎩

aq, s = 0
as−1, 1 ≤ s ≤ q
aq, s > q

(s, q ∈ N)

The notations x/y and x
y

mean the quotient of integer
division between x and y. Note that n is the number of bits
of the linear address of the 2q memory modules. r(a) has
n− q − 1 bits, while o(a) is a single bit, because we consider
only two pieces of data per data line in the SAMS scheme.

4. HARDWARE DESIGN AND EXPERI-
MENTAL EVALUATION

Above, we have presented the formula of the SAMS sche-
me. For any parallel memory scheme to be practically useful,
it is important to have efficient hardware implementation as
the scheme logic is in the critical path of every memory
access. In this section, we will examine the hardware imple-
mentation issues of the proposed scheme.

Memory
Module 0

Memory
Module 7

Row, offset 
address 0

Row, offset
address 7

Address
Translation Unit

Vector Processor

Linear
addresses

Local row, 
offset address 0

Switch

Module
assignment 0...7

Local row, 
offset address 7

Data 0 Data 7

Switch

Address
Generation Unit

Base, stride

Figure 4: Parallel memory system based on SAMS

Figure 4 illustrates the organization of parallel memory
system based on our SAMS scheme. The vector proces-
sor core issues memory access commands (base address and
stride) to the Address Generation Unit(AGU), where the
2q(in Figure 4 2q = 8) linear addresses are calculated in par-
allel and then sent downto the SAMS memory system. The
eight linear addresses are resolved by the Address Transla-
tion Unit(ATU) into eight module assignments, eight row
addresses and eight row offset addresses. After that, the
eight groups of row-offset pair and eight data items from in-
put data port (on a memory write) go to the address & data
switch and get routed to the proper memory modules ac-
cording to their corresponding module assignments. In case
of a read memory access, after one clock cycle the eight read
data are fed back to the vector processor via the data switch
at the bottom of Figure 4. We will focus on the hardware
implementation of ATU, as it is the core of the parallel mem-
ory scheme and the overall components of Figure 4 are more
or less independent of the parallel memory scheme itself.

As we have described in Section 3, the Address Transla-
tion Unit maps the linear addresses ai(0 ≤ i ≤ 2q −1) to the
module-row-offset triples m(ai), r(ai) and o(ai). Figure 5 il-
lustrates the logic implementation of the address translation
process. Note, in Figure 5, the bits selections without the
involvement of s are simply static wire selections. The latter
which are completely fixed as n and q are fully determined by
hardware (such as a[n−1 : q] in Figure 5 (b)), whereas those
with involvement of s result multiplexors (such as as−1 in
Figure 5 (c)). And the comparisons in r(a) and o(a) logic(i.e.
s ≤ q, s �= 0 and 1 ≤ s ≤ q) could be done and stored a
priori, therefore they are not in the critical path. Conse-
quently, the critical path of the row assignment logic is an
n − q bit CLA followed by a 2-to-1 multiplexer, and that
of the offset assignment is an (n− q)-to-1(incurred by as−1,
note 0 ≤ s ≤ n − q) multiplexer and a 2-to-1 multiplexer.
For the module address assignment function m(a), we have
analyzed that after collapsing and merging all the multi-
plexors in Figure 5 (c), we could get the simplified hardware
implementation with q independent (n − q + 1)-to-1 multi-

363



0 1 2 3 0 1 2 3 1 0 3 2 1 0 3 2

0 1

Module Assignment 
with SAMS
(q=2, s=3)

0 1 0 1 2 3 2 3 1 0 1 0 3 2 3 2 0 1
Module assignment 

with SAMS
(q=2, s=2)

Address distribution in 4 modules with SAMS(q=2, s=2)

Module 0

0 2

9 11

Module 1

1 3

8 10

Module 2

4 6

13 15

Module 3

5 7

12 14

(1)

Address distribution in 4 modules with SAMS(q=2, s=3)

Module 0

0

4 9

Module 1

1

5 8

Module 2

2

6 11

Module 3

3

7 10

(2)

31 30 29 28

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17Linear address

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

32 33

Linear address

2 3 0 1 2 3 0 1 3 2 1 0 3 2 1 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

13 18 12 19 15 16 14 17

22 27 23 26 20 25 21 24

2n-1 2n-2 2n-3 2n-4

Figure 3: SAMS data arrangement example with 4 modules

+++
a[n-1:0]

a[s+n-1:s]

a[n-1:0]

M
U
X

(s, q)

s<=n-1?

M
U
X

an-1

+
an-2
a2n-1

1

0

s<=n-2?

M
U
X

an-2

+
an-3
a2n-2

1

0

s=1?

M
U
X

a1

+
a0
an+1

1

0

an

(s=0)

(1<=s<=q)

(s>q)

s<=q?

M
U
X

a[n-1:q+1]
1

0

a[n-1:q]

static bits 
selection

([n-q-1:1])

1<=s<=q?

M
U
X

1

0

as-1

aq

s=0?

+
1

+

Figure 5: SAMS address translation logic: (a)Module assignment, (b)Row assignment, (c)Offset assignment

364



plexors fed by 2-input XOR gates. Hence, the critical path
of the module assignment function is a 2-input XOR gate
followed by a (n − q + 1)-to-1 multiplexer. Notice that the
module, row and offset assignment functions work indepen-
dently, therefore the critical path of ATU is the longest one
among the three, which is the n − q bit Carry Look-ahead
Adder followed by a 2-to-1 multiplexer in the row assignment
function.

We have implemented the ATU in Verilog and synthe-
sized it using Xilinx ISE 9.1i. The target FPGA device
is Virtex2-Pro XC2VP30-7FG676. Table 1 summarizes the
performance results of our design in terms of delay and hard-
ware utilization. The experiment is done under different
configurations with various module capacities (denoted by
n) and number of modules (denoted by q). For example,
n = 23 means the address space (i.e. the capacity) of the
multimodule memory system is 8M (223) words and q = 3
means there are 8 modules. We could see that the SAMS ad-
dress translation logic has low critical path delay, which is in
the proximity of 4 ns. In addition, the FPGA logic resources
consumption is trivial - less than 1%. It is also shown in the
table that the critical path delay and resource consumption
scale well with the capacity of the parallel memory and the
number of memory modules.

5. RELATED WORKS
To cope with module conflicts of vector accesses across

stride families, several techniques have been proposed in the
literature, including the use of buffers [3], dynamic mem-
ory schemes [5, 4], memory modules clustering [3] and intra-
stream out-of-order access [22]. Under the fully-parallel mul-
timodule memory model, these methods still work but are
subject to some limitations.

The use of buffers [3] is probably most straightforward so-
lution as it tolerates the module conflicts by simply buffering
the input addresses and output data and collecting the re-
quired data after some delay. The buffer depth required de-
pends on misalignment between the parallel memory scheme
used and the vector access stride. If the access stream is dis-
tributed evenly between the memory modules of the system,
then the peak throughput of one data per memory module
in one cycle might be achieved after a transient startup time.
However, since the startup disparity is unavoidable, this so-
lution introduces significant time penalties in case of short
access streams. Moreover, the use of buffers and the logic
for collecting the correct data items from the buffers could
cause substantial hardware overheads.

The dynamic scheme proposed in [5, 4] works well only
when the same data set is accessed with single stride fam-
ily. However, if the data set is to be accessed using different
stride families, the penalty of flushing and reloading data be-
tween the memory modules and the lower level in the mem-
ory hierarchy may not be amortized in some cases, which
would result in performance degradation of the system.

The memory modules clustering [3] introduces inefficient
use of module control logic and data routing resources, as
a large portion of memory modules may remain idle dur-
ing each parallel memory access. For instance, under the
assumption that the number of modules is a power of two
number, the amount of memory modules used for conflict-
free access of two unmatched stride families may be no more
than 50% of the available modules. This results in waste of
logic resources and power in some cases.

The out-of-order vector access [22] is based on the obser-
vation that a long, strided memory reference stream with
module conflicts in sequential order could become conflict-
free, if properly reordered. For instance, in a multimodule
system with conflict-free stride-4 access support, a stride-2
stream with 16 memory references could be accomplished
by two stride-4 streams with 8 memory references each. Ba-
sically the original stride-2 stream is split into two stride-4
sub-streams and the memory system is accessed with by the
alternating sub-streams. In this case, the access is conflict-
free. The problem with intra-vector out-of-order access is
that it requires long vectors for proper operation. In addi-
tion, as data items are read out of order, data permutation
logic may introduce additional penalties 6.

The most distinctive aspect of our scheme compared to the
previous solutions is that it avoids the module conflicts when
the memory reference patterns go back and forth between
unit-stride and strided accesses, and thus truly-parallel data
access is supported. Unlike the out-of-order vector access
scheme, our proposal preserves the data sequence required
by the vector load/store units, thus atomic parallel access
is achieved for short vectors and peak performance could be
sustained for vectors as short as 2q elements. The SAMS is
a memory scheme with no redundancy and high utilization
of module resources. On the other hand, the SAMS scheme
is complementary to the existing techniques, which means
that it could also take their advantages to improve system
performance. For instance, it adopts the idea of the dynamic
scheme where s can be configured by the software at run
time for different stride family access in different execution
phases. For long vectors, it could also be augmented with
out-of-order intra-vector access scheme to support conflict-
free access for a wider spectrum of stride families.

6. DISCUSSIONS
The improvement of this work compared to existing mul-

timodule memory scheme techniques rests upon the use of
two-dimentional memory modules as building blocks of our
parallel memory system. This allows us to overcome the
limitation of nonredundant parallel memory schemes, and
to exploit the data line access parallelism, which is the key
to tolerate the module conflicts raised by the unit-stride ac-
cess. It should be noted that although we choose Harper’s
XOR scheme as our starting point to construct a single-
affiliation multi-stride parallel memory scheme, the idea of
SAMS could be generally applied to other interleaving sys-
tems, such as the row-rotation scheme [5]. The key point
is to apply the two steps introduced in Section 3.1, just as
described in Sections 3.2 and 3.3 for the XOR scheme.

It should be noted that SAMS is just one of the set of
parallel memory schemes, which provide conflict-free access
support for cross stride family vector accesses, under the
configuration of 2D memory modules with wide data lines.
It has not yet been proved that SAMS scheme is optimal
in terms of the number of strides supported, and the com-
plexity of hardware implementation. Therefore, it could be
worthwhile to explore the design space of memory schemes

6Data permutation is not required in the original pro-
posal [22] as there the assumed memory organization is that
single datum is read out from the multiple memory modules
per cycle, whereas in the organization considered in this pa-
per multiple data items (equal to the number of memory
modules) are read per cycle.
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Table 1: Delay and hardware usage of ATU
Configuration Delay (ns) Hardware Used

n q Logic Delay Wire Delay Total Slices LUTs

8 3 1.43 1.01 2.44 18 26

16 3 2.54 0.93 3.47 47 71

25 3 2.86 0.95 3.81 75 119

27 3 2.28 1.75 4.03 76 125

32 3 2.83 1.40 4.23 96 148

64 3 4.28 0.95 5.33 180 292

23 3 2.79 0.95 3.74 67 108

23 4 2.75 0.98 3.73 78 126

23 5 2.71 0.99 3.70 88 140

under the configuration of wide memory modules, to hope-
fully find a scheme with better performance compared to
SAMS.

Even inside the SAMS scheme itself, there is still space for
performance improvement. As presented in the paper, we
have elaborated on the module assignment function; how-
ever we chose the row assignment and offset assignment
functions straightforwardly. With the module assignment
function fixed, there are no means to enlarge the number
of supported conflict-free strides as the module conflict pat-
terns are fixed with a fixed module assignment function. We
also found that the row assignment function does not affect
neither the module conflicts nor the hardware implementa-
tion of the SAMS scheme. However, the offset assignment
function, which determines the relative positions of the data
items in the same row, do have some impact on the hardware
implementation. Namely, the offset assignment function de-
termines the permutation patterns of accessed data which
should be supported by the data routing circuitry of the
SAMS scheme. Therefore, investigation for other offset as-
signment functions could also be helpful for better hardware
implementation.

Regarding the application, the SAMS scheme could be ap-
plicable wherever the data level parallelism is exploited, to
boost the performance of data intensive applications with
both unit-stride and strided memory accesses. For instance,
it could be adopted as on-chip local store for SIMD proces-
sors, such as the SPUs in the Cell processor [9], to improve
the flexibility of memory access. It could also be considered
for integration as on-chip buffer for GPP SIMD extensions,
where the data alignment and permutation problem, which
results from the lack of flexible memory access support, re-
mains a bottleneck for many applications [15, 17]. It should
be noted that the integration of a SIMD buffer into a GPP
introduces coherence problem, as it will be deployed at the
same level as the data caches in memory hierarchy. However,
this problem could be solved by either snooping mechanisms
or by the use of non-cacheable regions in the address space.

7. CONCLUSIONS AND FUTURE WORK
In this paper, we proposed the SAMS scheme, which im-

proves the previous memory interleaving schemes by pro-
viding additional support for conflict-free unit-stride access,
which is the most common access pattern in vectorized sci-
entific and engineering applications. In the SAMS approach,
we created a hierarchical way of composing single-affiliation
memory scheme from given multi-affiliation scheme. Fur-
thermore, we added a new dimension of data access paral-

lelism by representing each memory module as a 2D stor-
age to resolve the unit-stride access conflicts in the single-
affiliation scheme. In this way, SAMS provides atomic access
time for unit stride access, while it could preserve all benefits
of the existing cross-stride-family parallel memory schemes.
Experimental results indicate that the address translation
of the SAMS scheme has efficient hardware implementation
which makes it a promising technique to be used for low
latency on-chip parallel memory buffers.

The SAMS scheme could be extended to provide conflict-
free access for even more stride families or to be used in
two-dimensional strided access environment, by deploying a
wider data line with more than two data items. However,
it should be noted that a trade-off exists between the hard-
ware complexity and the performance benefits due to the
wide data lines. The SAMS scheme has the same draw-
back as proposals with redundant memory modules, as far
as the data routing circuitry is concerned. Therefore, if the
implementation of an ordinary scheme needs a 2q ×2q cross-
bar, then a (k · 2q) × 2q crossbar can be required in the
SAMS scheme. We are investigating the correlation of the
data routing patterns of different modules, and other can-
didates of offset assignment functions and their impact on
data routing, in order to reduce the complexity. In addi-
tion, we are also working on the fusion of the SAMS scheme
with other existing techniques, such as out-of-order vector
access, to achieve better support for conflict-free access for
wider range of stride families.
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