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Abstract— In this paper we describe a regular expression pat-
tern matching approach for reconfigurable hardware. Following a
Non-deterministic Finite Automata (NFA) direction, we introduce
three new basic building blocks to support constraint repetitions
syntaxes more efficiently than previous works. In addition, a
number of optimization techniques are employed to reduce the
area cost of the designs and maximize performance. Our design
methodology is supported by a tool that automatically generates
the circuitry for the given regular expressions and outputs
HDL (Hardware Description Language) representations ready for
logic synthesis. The proposed approach is evaluated on network
Intrusion Detection Systems (IDS). Recent IDS use regular
expressions to represent hazardous packet payload contents. They
require high-speed packet processing providing a challenging case
study for pattern matching using regular expressions. We use a
number of IDS rulesets to show that our approach scales well as
the number of regular expressions increases, and present a step-
by-step optimization to survey the benefits of our techniques.
The synthesis tool described in this study is used to generate
hardware engines to match 300 to 1,500 IDS regular expressions
using only 10-45K logic cells and achieving throughput of 1.6-2.2
and 2.4-3.2 Gbps on Virtex2 and Virtex4 devices, respectively.
Concerning the throughput per area required per matching non-
Meta character, our hardware engines are 10-20× more efficient
than previous FPGA approaches. Furthermore, the generated
designs have comparable area requirements to current ASIC
solutions.

I. INTRODUCTION

Many applications in several fields, such as biomedical, data

mining, and network processing, employ regular expressions to

describe search patterns. Biomedical applications use regular

expressions for biosequence search [1]–[3], i.e., in DNA

matching, protein matching or genomes search. The exponen-

tial growth of their biosequence databases greedily imposes

high-performance demands. Networking systems also need

high-speed regular expression pattern matching for content-

based packet processing [4], [5]. For example, regular expres-

sions are used in network security (e.g., intrusion detection

systems), to describe known attack patterns [17] or in traffic

management and routing where packets are classified and

processed upon their content. In many cases, such as the

above, regular expression pattern matching needs to support

high processing throughput at the lowest possible hardware

cost.

When performance is critical, software platforms may not be

able to provide efficient regular expression implementations.

It is a fact that they can be more than an order of magnitude

slower than hardware implementations, their performance does

not scale well as the number of regular expressions increases

and their memory requirements may be substantially large

[4]–[7]. Reconfigurable systems (e.g., Field Programmable

Gate Arrays) may provide an efficient solution for high speed

regular expression pattern matching. Field Programmable Gate

Arrays (FPGAs) can operate at hardware speed and exploit

parallelism. Moreover, they provide the required flexibility

to change the regular expression ruleset implementation on

demand. As the size of the regular expressions set grows,

conventional CPU performance may deteriorate appreciably

compared to an FPGA-based approach. Consequently, FPGAs

offer an excellent implementation platform for regular expres-

sion pattern matching. Architectures such as the Molen [8] or

the ones described in [9] can be followed to best exploit the

advantages of reconfigurable hardware.

Given an input string T [1..n] which uses a finite set of

symbols
∑

(alphabet) and a regular expression R of the same

alphabet which describes a set of strings S(R) ⊆
∑

∗, then

matching the regular expression R is to determine whether

T ∈ S(R). For decades, significant effort has been put

on implementing regular expressions in software. The Non-

deterministic Finite Automata (NFA) approaches have limited

performance in software due to their multiple active states.

Consequently, Deterministic Finite Automata (DFA) are usu-

ally adopted. DFAs allow only one active state at a time, suit

better the sequential nature of General Purpose Processors and

achieve higher performance. However, DFAs suffer from state

explosion [10], especially when regular expressions contain

wildcards (‘.’, ‘?’, ‘+’, ‘*’), character classes or constraint

repetitions. A theoretical worst case study shows that a single

regular expression of length n can be expressed as a DFA of

up to O(
∑n

) states (where
∑

is the alphabet, i.e., 28 symbols

for the extended ASCII code), while an NFA representation

would require only O(n) states [11]. Several studies manage
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to increase the performance of DFAs in software and reduce

the required number of states [4]–[7]. However, this is not

always possible and usually compromises the accuracy of the

implementations (i.e., ignoring overlapping matches).
Alternatively, regular expressions can be implemented in

hardware. A variety of solutions have been proposed and

implemented in technologies that range from Programmable

Logic Arrays [12], [13] to FPGAs [14]. In the past, some basic

blocks have been introduced to implement Wildcards, Union

and Concatenation regular expression operators in reconfig-

urable hardware [15]. However, more complicated regular

expression syntaxes are not efficiently supported. For example,

in order to implement constraint repetitions, the same circuit

has to be repeated for a number of times equal to the number

of repetitions. When a DFA approach is chosen, a substantially

larger number of states is required compared to NFA solutions.

As a consequence DFA hardware engines result in inefficient

designs in terms of area (logic and/or memory). On the other

hand, when implemented properly, NFAs can be more compact

and area efficient; hardware is inherently concurrent, and

therefore can be suitable for NFA implementations.
In this paper we present an NFA-based approach to match

multiple regular expressions in reconfigurable hardware. We

apply and evaluate our approach in IDS rulesets. The main

contributions of this work are the following:

• We introduce three new basic building blocks for con-

straint repetition operators, which are able to detect

all overlapping matches. These blocks handle regular

expressions repetitions that require a single cycle to

match. When combined with previous research in NFA-

based hardware implementations, efficient designs can be

achieved.

• Theoretical proofs are presented to show that two of

the constraint repetition blocks can be simplified without

affecting their functionality.

• To improve the efficiency of the designs, we insert a

pre-processing optimization stage. The extracted regular

expressions are modified to suit our hardware imple-

mentation. Syntax features that only facilitate software

implementations are discarded while others are replaced

by equivalent ones (i.e., conditional branches, lookahead

statements).

• We employ several techniques to reduce the area require-

ments of our designs, such as regular expressions prefix

sharing, pre-decoding, centralized static pattern matching

and blocks of character classes, etc. Furthermore, we take

advantage of the Xilinx SRL16 shift registers to store

multiple states using fewer FPGA resources.

• A methodology is introduced to automatically generate

the regular expression pattern matching engines from the

IDS rulesets. We show how a hierarchical representation

of the regular expressions is used to facilitate the au-

tomatic VHDL generation using basic building blocks.

A tool that outputs the VHDL circuit description of the

design has been developed.

• We are able to generate efficient regular expression en-

gines, in terms of area and performance, outperforming

previous FPGA-based approaches. Our designs match

over 1,500 regular expressions and support 1.6-3.2 Gbps

throughput requiring a few tens of thousand logic cells.

Finally, the area requirements are comparable with DFA-

based ASIC implementations which suffer however from

state explosion.

The remainder of this paper is organized as follows. In

Section II we briefly discuss IDS characteristics and their

Perl-compatible regular expression syntax (PCRE) [16], while

in Section III we survey previous work on hardware regular

expression pattern matching. Section IV describes the top-

level approach of our regular expression engines, the basic

building blocks and the techniques employed to reduce area

and increase performance. Section V presents the methodology

followed to automatically generate VHDL code describing

the regular expression hardware engine for a given set of

regular expressions. In Sections VI and VII, we present the

implementation results of our designs and compare them with

related work. Finally, Section VIII draws some conclusions

and suggests future work.

II. INTRUSION DETECTION & PERL-COMPATIBLE

REGULAR EXPRESSIONS

High speed and always-on network access is becoming com-

monplace around the world, creating a demand for increased

network security. Network Intrusion Detection Systems (IDS)

such as Snort [17] and Bleeding Edge [18] are currently the

most efficient solution for network security. Instead of only

checking the header of each incoming packet, IDS also scan

the payload of the packets to detect suspicious contents. In the

past years, many researchers have worked on reconfigurable

hardware solutions for IDS focusing mostly on the payload

scan, which turns out to be the most computationally intensive

task [19]. Numerous techniques for reconfigurable IDS static

pattern matching have been proposed [14], [20]–[25]. Many of

them employ regular expressions to represent the static search

patterns, implementing either non-deterministic or determinis-

tic finite automata (NFAs or DFAs) [20]–[22]. However, recent

network intrusion detection systems use more extensively

regular expressions instead of static patterns to represent more

efficiently hazardous packet payload contents. These regular

expressions attack descriptions need to be matched at high-

speed against incoming traffic.

Regular expressions, and especially their complex features

such as constraint repetitions, may create a significant bottle-

neck for IDS performance. Table I illustrates the recent in-

crease of regular expressions in Snort [17], [26] and Bleeding

Edge [18] IDS rulesets along with the static patterns included

in these sets. Additionally, the exact number of constraint rep-

etitions is reported for each ruleset. Constraint repetitions are

operators which indicate a sub-expression to be matched re-

peatedly for a defined number of repetitions (Exactly, AtLeast,

and Between quantifiers, e.g., a{10}, a{10, }, a{10, 12}). IDS

rulesets include a significant number of regular expressions

and constraint repetitions which continuously increases. For

example, in May 2003 only 65 regular expressions were used,

in April 2006 increased to more than 500 and within the

year tripled exceeding 1,500. It is expected that the number
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Fig. 1. Distribution of two of the most commonly used constraint repetitions in Snort IDS, type Exactly and AtLeast. Results are for the Snort v2.4 Oct.
2006 version.

TABLE I

REGULAR EXPRESSIONS AND STATIC PATTERNS USED IN SNORT AND

BLEEDING EDGE RULESETS.

Rulesets
#Static

Regular Expressions

patterns Total
Constraint Repetitions

#Exactly #AtLeast #Between

Snort 2.4 (Jan. 2007) 3,432 1,615 274 495 11

Snort 2.4 (Dec. 2006) 3,377 1,589 273 495 10

Snort 2.4 (Nov. 2006) 3,391 1,616 271 495 10

Snort 2.4 (Oct. 2006) 3,248 1,504 265 478 11

Snort 2.4 (Apr. 2006) 1,537 509 209 470 2

Snort 2.3 (Mar. 2005) 2,188 301 124 464 1

Snort 2.2 (July 2004) 1,042 157 85 22 1

Snort 2.1 (Feb 2004) 942 104 52 19 0

Snort 1.9 (May 2003) 909 65 46 1 0

Bleeding (Dec. 2006) 968 318 47 7 17

Bleeding (Nov. 2006) 968 317 48 7 17

Bleeding (Oct. 2006) 934 310 43 7 17

of regular expressions in the IDS rulesets will continue to

increase since new attack descriptions are constantly added

to the rulesets. Based on the data present at the moment,

the number of regular expressions seems to increase faster

than the static patterns in Snort v2.4 (within 2006, static

patterns increased 2.2× and regular expressions 3×). Figure

1 illustrates the number of repetitions and the number of

appearances of the most common constraint repetitions (Ex-

actly{N} and AtLeast{N,}) for the Snort v2.4 ruleset (Oct.

2006 version). Such operations appear tens or even hundreds

of times having up to a thousand repetitions, which indicates

current IDS regular expressions complexity. On average, one

constraint repetition per two regular expressions exists in Snort

2.4. Converting them to DFAs would result in thousands of

states, which would require a significant number of hardware

resources for encoding. Consequently, dedicated blocks for

these operations would substantially reduce the cost of the

IDS regular expression implementations.

Snort and Bleeding Edge IDS adopted the Perl-compatible

regular expression syntax (PCRE) [16]. For example, alert

tcp any -> (pcre:"/∧PASS\s*\n/smi";) is a

Snort rule, it detects any packet containing a payload

string which matches the “/∧PASS\s*\n/smi” regular

expression. Apart from the well known features of the strict

definition of regular expressions, PCRE is extended with new

operations such as flags and constraint repetitions. Table II

describes the PCRE basic syntax supported by our regular

expression pattern matching engines. There are two types

of features that are supported. The first ones are directly

mapped to hardware building blocks (wildcards, union,

concatenation, constraint repetitions, and character classes)

and are explained in more detail in section IV. The second

type is supported by replacing them during a pre-processing

stage with equivalent expressions that suit our hardware

implementations (backslash to escape meta-characters, dollar,

flags, etc.). The PCRE syntax not currently supported is

related to some anchors (\A, \Z, \z), word boundaries (\b,

\B), differences between Greedy and Lazy quantifiers (we

report both matches), and a “continue from the previous

match” command (\G). Since current Snort and Bleeding

Edge rulesets do not use these features, our synthesis tool is

able to generate designs matching all the regular expressions

of the IDS rulesets.

III. RELATED WORK

In 1959, Rabin and Scott introduced the non-deterministic

finite automata (NFAs) and the concept of non-determinism

[27], showing that NFAs can be simulated by (potentially

much larger) DFAs in which each DFA state corresponds to a

set of NFA states. McNaughton and Yamada [28] and Thomp-

son [29] described two of the first methods to convert regular

expressions into NFAs. Thompson encodes the selection of

state transitions with explicit choice nodes and unlabeled

arrows (ǫ-transitions). On the other hand, McNaughton and

Yamada, avoided unlabeled arrows and allowed instead NFA

states to have multiple outgoing arrows with the same label.

Their method can be easier directly mapped in hardware, since

each transition “consumes” an incoming character and the

number of states is reduced.

Matching Regular Expressions in hardware has been widely

studied in the past. In 1979, Mukhopadhyay proposed the basic

blocks for Concatenation, Kleene-star and Union operators

[15]. In 1982, Floyd and Ullman discussed the implementation
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TABLE II

SNORT-PCRE BASIC SYNTAX CURRENTLY SUPPORTED BY OUR

APPROACH.

Feature Description

a All ASCII characters, excluding meta-characters, match a
single instance of themselves

[\∧$.—?*+() Meta-characters. Each one has a special meaning

. Matches any character except new line

\? Backslash escapes meta-characters, returning them to their
literal meaning

[abc] Character class. Matches one character inside the brackets.
In this case, equivalent to (a|b|c)

[a-fA-F0-9] Character class with range.

[∧abc] Negated character class. Matches every character except
each non-Meta character inside brackets.

RegExp* Kleene Star. Matches zero or more times the regular
expression.

RegExp+ Plus. Matches one or more times the regular expression.

RegExp? Question. Matches zero or one times the regular expres-
sion.

RegExp{N} Exactly. Matches N times the regular expression.

RegExp{N, } AtLeast. Matches N times or more the regular expression.

RegExp{N,M} Between. Matches between N and M times the regular
expression.

\xFF Matches the ASCII character with the numerical value
indicated by the hexadecimal number FF.

\000 Matches the ASCII character with the numerical value
indicated by the octal number 000.

\d, \w and \s PCRE Shorthand character classes matching digits 0-
9, word characters (letters and digits) and whitespace,
respectively.

\n, \r and \t Match an LF character, CR character and a tab character,
respectively.

(RegExp) Groups regular expressions, so operators can be applied.

RegExp1RegExp2 Concatenation. Regular Expression 1, followed by Regular
Expression 2

RegExp1 | RegExp2 Union. Regular Expression 1 or Regular Expression 2.
∧RegExp Matches Regular Expression 1 only if at the beginning of

the string.

RegExp$ Dollar. Matches Regular Expression only if at the end of
the string.

(?=RegExp),
(?!RegExp),
(?<=text), (?<!text)

Lookaround. Without consuming characters, stops the
matching if the RegExp inside does not match.

(?(?=RegExp) then
|else)

Conditional. If the lookahead succeeds, continues the
matching with the then RegExp. If not, with the else
RegExp.

\1, \2. . .\N Backreferences. Have the same value as the text matched
by the corresponding pair of capturing parethesis, from 1st
through Nth.

Flags Description

i Regular Expression becomes case insensitive.

s Dot matches all characters, including newline.

m ∧ and $ match after and before newlines.

of NFAs in Programmable Logic Arrays [12], proposing

among other aspects a hierarchical implementation described

by the McNaughton-Yamada algorithm [28]. Foster, described

some regular expressions modifications to avoid latch forma-

tion in regular expressions implementation [30]; for example,

two kleene-stars when put in sequence can form a latch.

More recently, reconfigurable hardware proved to be benefi-

cial for regular expression matching. FPGAs can provide hard-

ware speed, high degree of parallelism and the flexibility to

modify the functionality of a design on demand. Consequently,

FPGA devices may offer a high-speed regular expressions

pattern matching of large sets and permit to modify and update

the hardware engines according to the IDS ruleset.

Several NFA implementations have been proposed for re-

configurable hardware. In 1999, Sidhu and Prasanna presented

NFA-based implementations of regular expressions in FPGAs

[14] and used the basic blocks of [15] for Concatenation,

Kleene-star and Union operators. Hutchings et al. used NFAs

to represent all the Snort static patterns into a single regular

expression, requiring substantially lower area [20]. Clark and

Schimmel used pre-decoding to share the character compara-

tors of their NFA implementations and thus reducing even

more hardware resources [22], [31]. Lin et al. saved area

resources of their NFA designs by sharing parts of the regular

expressions [32]. Finally, Moscola et al. in [33] attempted

to combine previous NFA approaches [14], [22] with a “pre-

decoding” static pattern matching technique [23], [34].

Despite the fact that FPGAs are suitable for NFAs, several

researchers followed a DFA direction. Moscola et al. used

DFAs to match static patterns, since they discovered that static

patterns can be represented in DFAs of practically O(n) states

[21]. More recently, Baker et al. described a microcontroller

DFA implementation in FPGA for matching IDS regular

expressions [35]. Their design updates its ruleset by only

changing the memory contents. IDS regular expressions are

converted to DFAs in order to be ported into the proposed

microcontroller.

Brodie et al. proposed an ASIC implementation of regular

expressions in [36]. They converted the IDS patterns and

regular expressions into DFAs and implemented them in high-

speed FSM structures specially designed for regular expression

matching. Their architecture uses memories to store transition

and indirection tables and therefore the regular expressions can

be modified by changing the contents of the memory blocks.

In summary, some researchers use DFAs to evaluate regular

expressions resulting in designs with significant area/memory

requirements [21], [35], [36]. The rest employ NFAs, however,

they do not solve the problem of constraint repetitions and

consequently, as Sutton notes in [37], need to repeat the

same circuit in order to support them (i.e., fully unrolling

the constraint repetitions). This work attempts to circumvent

disadvantages and bottlenecks of previous approaches and

also shows a methodology to automatically generate regular

expression hardware engines. Such methodology has been

implemented in a synthesis tool and can be applied to large

sets of regular expressions.

IV. REGULAR EXPRESSIONS ENGINE

In this section, our regular expression engine is de-

scribed.We exploit reconfigurable hardware and generate spe-

cialized circuitry for any given set of regular expressions.

Figure 2 depicts the top-level diagram of the proposed regular

expressions pattern matching engine. The incoming data (one

byte per cycle) feed a centralized ASCII decoder 8-to-256 bits.

The output of the decoder provides a single wire per character

to the regular expression modules. This way, each character

is matched only once and all the regular expression modules

receive the output lines from the decoder. For each regular

expression there is a separate module. Regular expressions

with common prefixes share the same prefix sub-module. The

static sub-patterns (more than one character long) included in

each regular expression are matched separately in a DCAM

(Decoded CAM) static pattern matching module described
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Fig. 2. Block diagram of our Regular Expression Engines.

in our previous work [23]. Similarly, the character classes

(union of several characters e.g., (a|b)) are also implemented

separately and share their results among the regular expression

modules. Both static pattern matching and character class

modules are fed from the ASCII decoder. Each regular ex-

pression module outputs a match for the corresponding regular

expression and subsequently, all the matches are encoded on

a priority encoder described in [38].

i1
i2
in

oBasic 
Building Block

Fig. 3. Generic description of a basic building block.

A. Basic NFA blocks

The proposed design is based on building blocks that

implement basic regular expression syntax features. Figure

3 illustrates a generic view of a basic building block. It

consists of an output o and one or many (e.g., in the Union

block) inputs i (input tokens). The decoded characters, pattern

matching and character classes signals can be considered as

input tokens. Table III depicts the list of all the supported

blocks along with a brief description. For Kleene-star (*),

Union (|) and Concatenation we use the blocks described

by Mukhopadhyay [15]. Extending upon them we implement

blocks for Caret, Dollar, Dot, Question-mark, Plus, etc. Three

new blocks are introduced and described below to implement

constraint repetitions (Exactly, AtLeast, and Between).

Concerning the constraint repetition blocks, our implemen-

tation minimizes the number of required resources, when

compared to previous DFA and NFA approaches [20]–[22],

[32], [36], [37]. In the previous approaches, the constraint

repetition blocks have to be fully unrolled, and thus require

significant amount of hardware resources.

We should further note that our designs detect all
overlapping matches, which is not the case for previous

DFA approaches [21], [32], [36]. To exemplify overlapping

matches consider the following: given the regular expression

“((ad?|b) + bcd)|d(bb)?” and the input stream “adbbcb”, the

following overlapping matches should be detected “d”, “dbb”

and “adbbcb”.

TABLE III

THE BASIC BUILDING BLOCKS OF OUR REGULAR EXPRESSION ENGINE.

Block Description Non Meta charac-

ter count

Character Matches a single character, based on the
design of single character described in [15].

1

Union Union operator of the regular expressions ri,
as described in [15].

The non meta chars
of the Regular Ex-
pressions ri

Concatenation Concatenation operator of the regular expres-
sions ri, as described in [15].

The non meta chars
of the Regular Ex-
pressions ri

Pattern Matches a string of characters. It has an
interface for the DCAM Module. The input
token has to be delayed for N cycles through
an SRL16 in order to be correctly aligned
with the output of the static pattern matching
module.

pattern length

Dollar ($) Validates the match if in the end of the
packet/string. Based on the Character Block
[15].

0

Dot Matches any character except the new line.
Based on the Character Block [15] the input
character is the “newline” (\n) character
inverted.

1

Caret (ˆ ) Starts a match every time a packet/string
arrives. Based on the Character
Block [15], the input character is the
“beginning of packet” character.

0

Character Class Matches a set of characters. Based on the
Character Block [15], the input character is
one of the outputs of character class
module. The character class module
ORs the characters included in a character
class.

1

RegexBlock Encapsulates hardware blocks that implement
regular expressions or sub-blocks of regular
expressions.

# of non MetaChars
of the RegExpr

Question (?) r?, One or zero times the regular expression
r, based on the design of Kleene-star (r∗)
described in [15]. The incoming OR gate
(to the flip-flop) has to be removed, conse-
quently, the input token (i) goes directly to
the flip-flop.

# of non MetaChars
of the RegExpr r

Plus (+) r+, One or more times the regular expres-
sion r, based on the design of Kleene-star
(r∗) described in [15]. The outgoing OR gate
has to be removed, consequently, the output
token (o) is the output of the flip-flop, instead
of the output of the second OR gate.

# of non MetaChars
of the RegExpr r

Kleene (*) r∗, Zero or more times the regular expression
r, as described in [15].

# of non MetaChars
of the RegExpr r

Exactly r{N}, Matches r exactly N times. Con-
straint Repetition for single characters and
sets of characters. Described in Section IV-A.

# of non MetaChars
of the repeated Reg-
Expr r

AtLeast r{N, }, Matches r at least N times. Con-
straint Repetition for single characters and
sets of characters. Described in Section IV-A.

# of non MetaChars
of the repeated Reg-
Expr r

Between r{N, M}, Matches r between N and M
times. Constraint Repetition for single char-
acters and sets of characters. Described in
Section IV-A.

# of non MetaChars
of the repeated Reg-
Expr r

Exactly block: This block (e.g., a{N}) will report a match

for each N successive ‘a’ symbols. The Exactly block a{N}
is actually the concatenation of N characters ‘a’ and can be

defined as follows:

a{N} =







ǫ for N = 0
a for N = 1
aa..a,n times for N > 1

(1)

Figure 4(a) depicts the circuit that matches a single character

a; it is a logical AND between the input i and the match of

character a feeding a flip-flop. This circuit can be reduced to

a single flip-flop having i as an input and the ā as a reset.
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Fig. 4. The Exactly block: a{N}.

Applying the concatenation for N a’s results in a sequence

of flip-flops as depicted in Figure 4(b). The correctness of

this circuit can be proven by induction, however, is also

given by the definition of the concatenation function and

therefore omitted from this paper. The sequence of flip-flops

to implement a{N} is actually a true FIFO with a reset

(flush) pin, and can be designed for FPGA-based platforms

as depicted in Figure 4(c).

The proposed Exactly block (Figure 4(c)) has the following

functionality. When a token i is received in the input, the

exactly block forwards it after N matches. The input token

enters the shift register if there is a match of the ‘a’ character

(otherwise the register is reset). The shift register (successive

flip-flops and SRL16 resources) is N bits long and one bit

wide. The token is shifted for N cycles if there is no mismatch.

In case of a mismatch, the shift register must be reset. Each

SRL16 (16 bits long) is implemented in a single LUT and

does not have a reset pin. Therefore, a mechanism is required

to reset the contents of the shift register. To do so, flip-flops

are inserted between the SRL16s. The first flip-flop is reset

whenever a mismatch occurs. The rest of the flip-flops are

reset for 16 cycles in order to erase the contents of their

previous SRL16. When the shift register is shorter than 17

bits (N < 17) then the reset of the second flip-flop lasts

N − 1 cycles. We use a 4-bit counter in order to reset the

flip-flops for 16 cycles. It is noteworthy that a new token can

be immediately processed in the cycle after a reset, since the

first flip-flop and SRL16 continue to shift their contents. The

block can keep track of all incoming tokens and therefore

supports overlapping matches. The exactly block has an area

cost O(N). However, the use of SRL16 minimizes the actual

resources, since an SRL16 and a flip-flop can be mapped on a

single logic cell. The implementation cost in terms of logic

i

a

olog2N Bit
Counter

RST

Count N

Fig. 5. The AtLeast block: a{N, }.

cells is relatively low, for example, the regular expression

a{1000} requires only 63 logic cells.

AtLeast block: In this block (e.g., a{N, }) continuous

matches will be reported for each N or more successive ‘a’

symbols. When a token is received, the block should output

a token after N matches and the output should remain active

until the first mismatch. The AtLeast block can be defined as:

a{N, } =

∞
⋃

k=N

a{k} (2)

We prove next that the output of the AtLeast block is

affected only by the first input token after the last reset,

while subsequent tokens can be ignored. Consequently, we

can implement this block with a single counter controlled by

the first token received after a reset (Figure 5). The counter

counts up to N and remains at value N activating the output

until a mismatch.

Theorem 1: The output of the AtLeast block a{N, } =
∞
⋃

k=N

a{k} depends on only the first still active input token

(received after the last mismatch). Any subsequent input token

does not affect the output of the block.

Proof: Let ilast be the last token received at time t = 0,

then the output of the AtLeast block for this token is:

AtLeast(ilast) =
∞
⋃

k=N

a{k} (3)

Let also ifirst be the first token (still processed, not reset)

received at time −t < 0. Then the remaining AtLeast output

for ifirst is:

AtLeast(ifirst) =







⋃∞
k=N−t a{k} for N > t

⋃∞
k=0 a{k} for N ≤ t

(4)

However, AtLeast(ilast) ⊂ AtLeast(ifirst) and therefore

ilast can be ignored.

Hence, the AtLeast block can be implemented using a single

counter controlled by the first input token after a reset. The

counter keeps track of the number of matches (up to N) and its

implementation cost is O(log2N). About 70% of the constraint

repetitions in Snort v2.4 are of this kind. Therefore, the above

implementation substantially reduces the area requirements of

the hardware engines.

Between block: The Between block (e.g., a{N,M}),

matches N to M successive matches of ‘a’, its formal defini-

tion is the following:
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a

Start Counting
M-N o

Output “1” 
for (M-N) 
matches

i

RST

N

RST

log2(M-N) Bit 
Counter

Fig. 6. The Between block: a{N, M} = a{N}a{0, M − N}.

a{N,M} =
M
⋃

k=N

a{k} (5)

Let us first define a block a{0, N} =

N
⋃

k=0

a{k} which has an

active output from the time an input token is received up to N
matches. We prove next that the output of the a{0, N} block is

affected by only the last input token, while previous tokens can

be ignored. Consequently, this block can be implemented by a

single counter which resets at every mismatch, starts counting

from ‘0’ every time a new input token i arrives, counts up to

N and then resets.

Theorem 2: The output of the block a{0, N} =
N
⋃

k=0

a{k}

depends on only the last still active input token (received after

the last mismatch). Any previous input token does not affect

the output of the block.

Proof: Let ilast be the last token received at time t = 0,

then the output of the a{0, N} block for this token is:

a{0, N}(ilast) =

N
⋃

k=0

a{k} (6)

Let also iprev be any previous token still active received at

time −t < 0, then the remaining output tokens of the a{0, N}
block for iprev is:

a{0, N}(iprev) =







⋃N−t
k=0 a{k} for N > t

Ø for N ≤ t

(7)

However, a{0, N}(iprev) ⊂ a{0, N}(ilast) and therefore

iprev can be ignored.

The Between block a{N,M} can be considered as the

concatenation of an exactly block a{N} and a block such

the one described above a{0,M −N}. As depicted in Figure

6, the proposed design for the Between block is actually

a{N}a{0,M − N}. The functionality of the Between block

is the following. The incoming token enters the shift register

(length N ) which can be reset (flushed) by a mismatch. After

N simultaneous matches, the shift register outputs ‘1’ and

the counter is enabled. The counter (counts up to M − N )

outputs ‘1’ for M − N simultaneous matches. Furthermore,

it is reset and starts counting from ‘0’ whenever it is enabled

by the shift register, even if it has already started counting

for a previous token. In case of an intermediate mismatch, the

counter is reset. It could be assumed that the a{0,M − N}
block and a second counter (replacing the a{N}) would be

Not \n

FF FF o

FF

i

b

[^\n]{2}b+

Fig. 7. An implementation for the regular expression b+[∧\n]{2}.

sufficient to implement this block without the use of the shift

register. However, this is not possible since the intermediate

tokens would be lost and therefore other (overlapping) matches

would be missed. Consequently, the implementation cost of the

between block is O(N + log2(M −N)), and like the exactly

block due to the use of SRL16s the area requirements are not

high in terms of logic cells.

The above constraint repetition blocks support repetitions

of only a single character or a character class. They do not

support repetitions of expressions that require more than one

cycle to match (e.g., (ab){10}), especially when the length

of the expression between the parenthesis is unknown or not

constant (e.g., ((ca) ∗ |b){10}, ((ab|b){10})). In these cases,

the expressions are unrolled. To our advantage however is the

fact that more than 95% of the constraint repetitions included

in Snort v2.4 and Bleeding Edge IDS regular expressions

are of a single character or character class. The rest 5% are

repetitions of regular expressions that require multiple and

possibly variable number of cycles to match. These cases are

implemented via unrolling the constraint repetitions.

Detecting overlapping matches may not be useful when a

basic building block forms on its own a regular expression,

since in that case the first match is enough to match the

regular expression. Then the shift registers of the Exactly and

Between block can be reduced to a counter. On the contrary,

when a basic block is placed in a larger regular expression,

the first match may not lead to the match of the entire regular

expression, while another overlapping match may do. There

are cases where detecting the last match would be sufficient.

For example, in the regular expression r = a{3}bc, only the

last match of a{3} block can result in a match of r, (i.e.,

given an input string aaaaaabc). However, detecting only the

last match without keeping track of all input tokens is not

straightforward.

We describe next an implementation example of the regular

expression b+[∧\n]{2} illustrated in Figure 7. The above

regular expression detects one or more ‘b’ characters followed

by two characters that are not “new lines”. The module

consists of a Plus block (upper-left), a character block (down-

left), and an exactly{2} block (on the right). Consider an input

string “bba \ n”. In the first clock cycle the input ‘i’ will be

high, and the first ‘b’ will be accepted. Hence, the first flip-

flop will be activated. At the second cycle the second ‘b’ will

keep the first flip-flop high, and activate the second flip-flop.

At the third cycle, an ‘a’ arrives, the first flip-flop goes low,

while the other two flip-flops are high and the module outputs

a match for the input string “bba”. Then, an “\n” character
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arrives, which resets the exactly block, and therefore a second

match for the input string ‘ba \ n” will not occur.

B. Reducing Area

We apply several techniques to reduce the area cost of

our designs. Apart from the centralized ASCII decoder, first

introduced by Clark and Schimmel [22], we perform the

following optimizations. As mentioned in the previous sub-

section, we employ the SRL16 modules to implement single

bit shift registers and store multiple NFA states. Additionally,

we share all the common prefixes; that is, regular expressions

with a common prefix share the output of the same prefix

sub-module. Static patterns and character classes are also

implemented separately in order to share their results among

the RegExp modules. The above optimizations, excluding

the use of SRL16, save more than 30% of the total FPGA

resources for the Snort v2.4 ruleset. Next, each optimization

is discussed in more detail.

Xilinx SRL16: Usually, the states of the NFA are stored

in flip-flops, each flip-flop representing a single state. An

area efficient solution to store multiple states is to configure

Xilix LUTs as shift registers (SRL16s). Many basic blocks,

such as constraint repetitions, need to store a large number

of states, which can also be implemented by shift registers.

These shift registers are true FIFOs, and consequently, can be

implemented with SRL16s which require a single logic cell to

store 17 states (a single LUT plus a flip-flop). This extensive

use of SRL16s, to efficiently represent a great number of

states, is one of the main optimizations to reduce the area

of our designs.

Prefix Sharing: In some rulesets (e.g., Snort v2.4) a large

number of regular expressions have the common prefixes.

Consequently, these prefixes can be shared as depicted in Fig-

ure 2. Without any additional hardware the common prefixes

are implemented separately, as complete regular expressions,

and their outputs provide an input to the suffixes of the

corresponding regular expressions.

Sharing of Character Classes: Character Classes are

widely used in Snort ruleset. Each character class is a Union

of several characters. We implement these blocks separately

and share their outputs in order to reduce the area cost. As an

example, note that there are more than 8,000 character class

cases in the Snort 2.4 Oct’06 regular expressions, which are

reduced to about 62 unique cases.

Sharing of Static Patterns: Similar to the character classes,

this work considers a static pattern matching module to match

static patterns included in the regular expression set. We use

our previously proposed technique DCAM [23] and share

the outputs of the module. DCAM pre-decodes incoming

characters, aligns (shifts) the decoded data and ANDs them to

produce the match signal for each pattern. Resource sharing

is due to the centralized ASCII decoder and the shared shift

registers. The sub-patterns are matched using DCAM because

it can be integrated more efficiently with the rest of the Regular

Expression Engine compared to other more area efficient

solutions such as [24]. As an example, note that the Snort v2.4

Oct’06 regular expressions include more than 2,000 unique

VHDL
Generator

.VHD
Files

Compare

PCRE 
Regular 

Expressions
Pre-

processing

Logic 
Synthesis and 
Place & Route

FPGA
BitStreams

Software
Regular 

Expressions 
Engine

RTL
Simulation

Test
Patterns

Test
Patterns
Generator

Hardware
Matches

Software
Matches

Building
Blocks
Library

Fig. 8. Proposed methodology for generating regular expressions pattern
matching designs.

static sub-patterns of 35,000 characters in total, and therefore,

a large amount of resources is saved.

C. Increase Performance

Two techniques have been employed to improve the per-

formance of the regular expression engines proposed in this

paper. The first one keeps the fan-out of certain modules low,

while the second one pipelines (when possible) combinational

logic. More precisely, like in our previous work [39], this study

considers fan-out trees to transfer the outputs of the decoder,

the static pattern matching (DCAM) and the character class

blocks to the regular expression modules. In doing so, the

delays of the above connections are reduced at the cost of

a few registers. Second, modules such as the decoder, the

DCAM and the character class are pipelined. Pipelining the

above modules is based on the observation that the minimum

amount of logic in each pipeline stage can fit in a 4-input LUT

and its corresponding register. This decision was made based

on the structure of Xilinx logic cells (for device families before

Virtex5). The area overhead of this pipeline is zero since each

logic cell used for combinational logic includes a flip-flop.

Finally, the output of the pipelined modules is correctly aligned

with the rest of the design.

V. SYNTHESIS METHODOLOGY

In this section we describe the methodology followed to

generate regular expression hardware engines from PCRE

regular expressions. The methodology is supported by a tool
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which generates hardware engines based on the basic blocks

previously presented. Figure 8 illustrates the steps used for

synthesis and testing of the regular expression hardware

engines. Concerning the hardware synthesis of the regular

expressions, the tool uses a syntax tree-based approach to

generate the structure of the hardware engines. That structure

uses building blocks to implement the regular expression

primitives. A structural-RTL VHDL code with components

described in behavioral-RTL VHDL is generated and logic

synthesis, mapping, place and routing are then performed to

create the bitstreams able to program the target FPGA.

First, the regular expressions are extracted from the rule-

sets. Then, an automatic pre-processing step rewrites regular

expressions in order to discard any software related features

(conditionals-lookahead) and to change other features (back

references) to suit hardware implementation. For example,

a conditional-lookahead statement chooses, between multiple

regular expressions suffixes, a single one that should be fol-

lowed, based on the condition. The hardware implementations

consider all the multiple suffixes and discard the conditional

statement. A back-reference stores the string matched by a

sub-RegExp and uses it in a subsequent part of the RegExp.

For example, the expression (a|b|c)\1 has a back reference on

(a|b|c) which is, e.g., the character a when incoming character

a matches the expression (a|b|c). Consequently, the expression

(a|b|c)\1 can be matched by the input strings aa, bb, or cc,

but not by ab. In our implementation we replace the back-

references with the sub-RegExp they refer to (e.g., (a|b|c)\1
becomes (a|b|c)(a|b|c)). This way our designs will not miss

any matches compared to the PCRE-software implementation,

however, may output some extra matches (e.g., (a|b|c)\1 will

match the input string ab). A more consistent representation

of the back-references is planned for future work. Finally, the

flags included in regular expressions are considered, in order

to change (if necessary) the functionality of some blocks (flags

such as case (in)sensitive, multi-line, DOT includes \n, etc.).

After rewriting, each regular expression is transformed into

a list of tokens (in this case with the same meaning used by

lexical analysis), and the sequences of tokens are bound to

“basic building blocks” which can be automatically mapped

to hardwired modules. At this level, the tool can perform

a number of optimizations. For example, fully unrolling of

certain constraint repetitions (i.e., non single character and

non single character classes) is done at this level. Some rules

are applied to enable full unrolling of some expressions (e.g.,

fully unrolling of Between blocks when {n,m}, 0 ≤ n ≤
2 and 1 ≤ m ≤ 3). These rules are based on the fact that until

a certain value of repetitions it is better - area and performance

wise - to fully unroll the constraint repetition. The following

are examples of rewritten regular expressions. Note that the

following rewritten rules are applied for m > 3 since for

lower values of m the regular expression is fully-unrolled:

R{0,m} ⇒ ((RR?)|R{3,m})?
R{1,m} ⇒ (RR?|R{3,m})
R{2,m} ⇒ ((RR)?|R{3,m})

Performing multiple passes, the tool creates a hierarchical

structure of each regular expression in order to generate

CARET PATTERN CHAR
CLASS QUANTIFIER

ATLEAST

CHAR
CLASS(N)

^ CEL \s

{100,}

[^\n]

CARET PATTERN CHAR
CLASS ATLEASTCHAR

CLASS(N)

^ CEL \s {100,}[^\n]

Fig. 9. Example of a hierarchical decomposition.

the VHDL descriptions for the hardware blocks. Figure 9

illustrates an example of a hierarchical decomposition of the

regular expression “∧CEL \ s[∧\n]{100, }”. First, the tool

parses the regular expression, creates the regular expression

hierarchy and identifies the basic building blocks (upper part

of Figure 9). Then, the parser gathers the information needed

for its block. For the example of Figure 9, that is, the characters

of the character classes and the repeated expression, and the

number of repetitions for the AtLeast block are detected.

Subsequently, the generation of the VHDL representation

is straightforward. A bottom-up approach is used to construct

each regular expression module based on the hierarchy ex-

tracted by the tool.

After the VHDL generation, the functionality of the design

is automatically tested. Based on the regular expression set,

the tool generates input strings covering a subset of possible

matches. These input strings are used by the hardware imple-

mentations and by a software regular expression implemen-

tation. As shown in Figure 8, the hardware implementations

are tested by comparing their outputs with the results of the

software regular expressions engine.

The compilation of current IDS regular expression sets into

VHDL hardware descriptions requires a few tens of seconds,

while the logic synthesis, mapping and place & route of the

design takes a few hours when the time and area constraints

are tight. Looser implementation constraints would lead to

shorter execution time. Table IV shows the execution time

required in each stage for generating the regular expression

hardware engines of Snort and Bleeding rulesets of Oct’06.

Snort contains about 5× more regular expressions and there-

fore requires longer time. The generation of the VHDL code

for Snort was completed in 22 seconds, while the synthesis,

map and P&R required about 4 hours in total. Compared to

Snort, the Bleeding ruleset is substantially smaller. Our tool

required 9 seconds to generate the VHDL code, and less

than 45 minutes for the subsequent steps. We can observe

that the time required for the VHDL generation is negligible

compared to the time required for the other stages (from RTL
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TABLE IV

GENERATION AND IMPLEMENTATION TIMES FOR SNORT AND BLEEDING

RULESETS OF OCT.’06.

Rulesets # RegExprs
HDL Generation Synthesis Map Time Place & Route
Time (hh:mm:ss) Time (hh:mm:ss)(hh:mm:ss)Time (hh:mm:ss)

Snort 2.4
1,504 00:00:22 00:57:54 02:24:47 01:30:47

Oct. 2006

Bleeding
310 00:00:09 00:01:55 00:26:56 00:16:49

Oct. 2006

synthesis to the bitstreams ready to be downloaded to an FPGA

device). Moreover, the VHDL generation scales better than the

subsequent implementation stages as the regular expression set

grows. For 5× more regular expressions the compilation time

increases only 2.5×, synthesis 29×, and map and P&R about

5.5 ×.

VI. EVALUATION

In this section, we present the evaluation of our regular

expression pattern matching designs. The designs have been

implemented in Xilinx Virtex2 and Virtex4 devices. The

performance is measured in terms of operating frequency and

throughput (post place & route results), and FPGA area cost

in terms of required LUTs, flip-flops (FFs) and logic cells

(LCs). The size and density of the regular expressions sets is

evaluated counting their number of non-Meta characters. Meta

characters are the ones that have a special meaning/function in

the regular expression, the rest are non-Meta characters. Table

III presents the number of Non-Meta characters for each basic

building block. For example, a character class [A − Z] or a

constraint repetition a{100} counts as one non-Meta character.

This might not be the most indicative metric to measure the

size of a regular expression, however, it provides an estimate of

the regular expressions sets and enables us to compare against

related approaches.

We first present some implementation examples of con-

straint repetition blocks and evaluate their cost in current FP-

GAs. Then, we discuss the area reduction and the performance

increase achieved with the proposed techniques, by offering a

step-by-step optimization flow. Finally, we provide the detailed

results of the hardware engines automatically generated using

the techniques presented in this paper when all optimizations

are enabled.

For evaluation purposes the regular expressions included in

three different IDS rulesets are considered. Namely, the Snort

v2.4 of April 2006 and October 2006 [17], and Bleeding Edge

of October 2006 [18]. Snort v2.4 of April 2006 contains 509

unique regular expressions of 19,580 non-Meta characters in

total, while the October version is more than 3× larger having

1,504 regular expressions and 69,127 non-Meta characters.

The Bleeding edge ruleset uses relatively fewer regular ex-

pressions (310) of 13,441 non-Meta characters in total. Table

I includes the main characteristics of these rulesets.

Constraint Repetitions Area Requirements: Figure 10

illustrates the area requirements of the three proposed con-

straint repetition blocks for different number of repetitions.

The exactly block a{N} for 10 repetitions (i.e., N =10) needs

5 logic cells (LCs), for N =1,000 it uses 63 LCs, and for
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Fig. 10. Area cost of the constraint repetitions blocks.

10,000 repetitions needs 593 LCs. Although the Exactly block

has O(N) area requirements, the actual cost is only N
17

LCs

plus a 4-bit counter. The Virtex5 SRL32s would reduce the

area cost to N
33

, while an embedded reset pin in the SRLs

would save the 4-bit counter cost. The AtLeast block a{N, }
scales better as the number of repetitions increases due to

its O(log2N) area cost. For 1,000 and 10,000 repetitions the

AtLeast block needs only 22 and 41 LCs respectively. Finally,

a Between block a{N,M} of N =1,000 and M =2,000

requires 85 logic cells, and for N =10,000 and M =20,000

needs 634 LCs.

Advantages of our Regular Expressions Optimizations:

Next, we show a progressive area and performance improve-

ment applying different optimizations (see Figure 11). The

designs have been implemented in a single device (Virtex2-

8000-5) in order to perform a fair comparison. The above

device is the largest of the Virtex2, however, its speed grade

(-5) is lower than other devices of the same family. The lower

speed grade and the absence of area constraints is the reason

why the results in Figure 11 are slightly different than the

best final results depicted next in Table V. For the three sets

of regular expressions included in the IDS rulesets mentioned

above, three major optimizations are enabled one-by-one. The

reference design used to evaluate this proposal is the Sidhu

and Prasanna approach [14] combined with the character pre-

decoding technique of [22], [23]. We were able to implement

a design for the reference approach only for the Bleeding edge

ruleset. In that case, the the number of constraint repetitions is

relatively small to fit the design in a single FPGA device. For

the rest of the rulesets we only measure the required states

needed when unrolling the constraint repetitions operators.

The first optimization is to use the constraint repetition blocks

previously described in this paper. Subsequently, the prefix

sharing optimization is enabled in order to reduce the required

area. Finally, the centralized modules which implement the

character classes and match the static patterns are included.

In Bleeding edge IDS ruleset the reference design requires

2.5× more area than the design using the constraint repetition
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Fig. 11. Area and performance improvements when applying a step-by-step
optimization for three different IDS rulesets.

blocks. As depicted in Figure 11(a), that is about 17,000

more flip-flops which correspond to the number of states

required when unrolling the constraint repetition expressions.

The Exactly and Between blocks store about 15,000 states in

about 900 logic cells exploiting SRL16s. Prefix sharing did

not reduce the area requirements, due to the small number

of regular expressions implemented. When dedicated pattern

matching and character classes modules are added then 25%

of the area is saved and the maximum clock frequency is

improved by 50%. The last design has 3× less area and more

than twice the performance compared to the reference one.

Figure 11(b) illustrates the equivalent results for Snort

v2.4 of April 2006. This set of regular expressions contains

about 700 constraint repetitions that correspond to 470K states

when unrolled. Consequently, a reference design would need

to store about 470K states more than the one that exploits

our constraint repetitions building blocks. Given that about

440K of these states are due to the AtLeast block (a{N, })

which we implement with an area cost of O(log2N), the area

savings of the proposed building blocks are increased. We need

shift registers only in the Exactly and Between blocks which

store about 30K of states in 2,000 logic cells using SRL16.

When prefix sharing is applied additionally to the constraint

repetition blocks, a 15% area reduction is achieved, while

the centralized modules for pattern matching and character

classes add another 15% area improvement and a 50% increase

in performance. The fully optimized design compared to the

one which uses only the constraint repetitions building blocks

requires about 1/3 less FPGA resources and achieves about

50% higher frequency.

Figure 11(c) depicts the area and performance gain when

applying the optimizations in the largest regular expressions

set used Snort v2.4 of October 2006. The overall number

of states required for the ∼750 constraint repetitions when

unrolled is about 480K, and 440K of them due to the AtLeast

module. In practice, that is the number of extra states required

when the constraint repetitions blocks are not used. The

37 Kbits of storage needed for the Exactly and Between

blocks are implemented in about 2,200 logic cells. Prefix

sharing further reduces area about 15% without significant

performance gain. A fully optimized design, using centralized

static pattern matching and character classes saves 15% more

area and achieves twice the previous maximum operating

frequency.

Although the number of required flip-flops is reduced when

a new optimization is enabled, this is not the case for the

utilized LUTs. Designs that match the static patterns in a

separate module require more LUTs than before. Without this

optimization static patterns are matched character-by-character

as depicted in Figure 4(a). More precisely, the ASCII decoder

provides the decoded value of each character, the input token

is registered and the inverted decoded character is used for the

reset of the flip-flop. This way only a few LUTs are required

however a significant amount of flip-flops are used. On the

contrary, using a centralized module to match the patterns

(DCAM [23]) uses shared SRL16s (each implemented in a

LUT) to shift the decoded characters reducing the required

flip-flops and increasing the number of LUTs.

In general, our approach results in significant area savings

and performance improvements. The dedicated constraint rep-

etition blocks substantially reduce the overall number of states

required. The low area requirements of the AtLeast block

is especially suitable for IDS regular expressions where the

AtLeast statements correspond to over 90% of the number of

constraint repetitions states (when constraint repetitions are

unrolled). The prefix sharing optimization leads to a further

∼15% area reduction. Moreover, the static pattern matching

and character classes modules decrease area another ∼15%

and improve the maximum operating frequency by 1.5-2×.

Implementation Results: We further present the detailed
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results of the fully optimized designs implemented in the

fastest Virtex2 and Virtex4 devices for the three IDS rulesets.

The first part of Table V depicts the area cost and the

performance results of our designs. More precisely, we report

the required LUTs, flip-flops (FFs), logic cells (LCs) and

logic cells per matching non-meta character, and the maximum

processing throughput for each design. It is noteworthy that

all designs process a single byte per clock cycle. Matching

the 310 regular expressions of Bleeding Edge ruleset results

in about 2.2 and 3.2 Gbps throughput in Virtex2 and Virtex4

devices, respectively. Less than 11,000 logic cells are required

which translates to 0.8 logic cells per non-Meta character. The

Snort v2.4 ruleset of April 2006 includes over 500 regular

expressions and a great number of constraint repetitions.

Consequently, it requires 2.5× more logic cells and about

1.28 LCs per non-Meta character. The generated design can

support 2 and 2.9 Gbps throughput in Virtex2 and Virtex4

devices, respectively. Although the largest Snort ruleset of

Oct’2006 includes 3× more regular expressions, the number

of constraint repetitions has increased only 7%. Therefore, the

generated design needs only 0.66 logic cells per character

and a total of 45,586 logic cells. Note that the overall size

of the circuit causes a performance reduction. The maximum

throughput achieved is 1.6 Gbps in a Virtex2-4000 and 2.4

Gbps in a Virtex4-60. In general, the number of constraint

repetitions in the ruleset and in particular the area consuming

ones (Exactly O(N) and Between blocks O(N + log2(M −
N))) affect the required resources and the number of LCs per

character. For example, both Snort rulesets have similar num-

ber of constraint repetitions although the recent one (Oct’06)

matches 3× more regular expressions. Hence, the area cost

(LC/nMchar) of Snort Oct’06 is substantially better (half) than

the one of Snort Apr’06. Finally, and as aforementioned, as the

design becomes larger the maximum processing throughput

decreases. Snort Oct’06 designs maintain about 75% of the

bleeding edge designs performance having a ruleset about

5× larger. Consequently, performance scales relatively well

as the ruleset grows, while the area resources per matching

character are not significantly affected. Partitioning the designs

into smaller blocks similarly to [23], can alleviate performance

decrease at the cost however of area overhead. Our preliminary

results of partitioned designs show that a 30% performance

improvement can be achieved at the cost of 10% increase in

resources.

VII. COMPARISON

Next we attempt a fair comparison with previously reported

research on software and hardware regular expression match-

ing approaches.

Recent state of the art software-based solutions offer limited

performance and have scalability problems as the regular

expression set grows. More precisely, when matching 70-

220 regular expressions a NFA approach supports 1-56 Mbps

throughput (Yu et al. [4]). To provide a faster solution

Yu et al. propose a DFA solution and rewrite the regular

expressions at hand as follows: eliminate closure operands (*,

+, ?), e.g., \s+ ⇒ \s, reduce the repetitions of constraint

repetition operators, e.g., [A − Z]{j+} ⇒ [A − Z]{j, k},

and do not detect overlapping matches. Hence the accuracy

of their implementation is compromised. Their DFA approach

requires several Mbytes of memory for only a few tens of

regular expressions and achieves 0.6-1.6 Gbps throughput

depending on the regular expression set and the input data [4].

Compared to our approach, NFA software approaches support

about 40× lower throughput, while DFA software solutions

when matching a 10× smaller set achieve 20-65% of our

performance.

Next we present a detailed comparison with hardware

regular expression matching approaches. Table V contains

performance and area results of the most efficient hardware

regular expression approaches. In order to compare in terms

of area with designs that utilize memory, the memory area

cost is measured based on the fact that 12 bytes of memory

occupy area similar to a logic cell [40]. Finally, we evaluate

our schemes and compare them with the related research,

using a Performance Efficiency Metric (PEM), which takes

into account both performance and area cost, described in the

following equation:

PEM =
Performance

Area Cost
=

Throughput
Logic Cells +

MEMbytes

12

Non−Meta Characters

(8)

Such a metric is commonly used to evaluate the efficiency of

FPGA-based static pattern matching designs, e.g., [22], [24],

[25], [34]. In the case of regular expressions, the metric differs

in the way the non-meta characters are counted. As shown

in Table III, we count the Non-Meta characters of a regular

expression set as proposed in [20]. We follow a conservative

approach, which ignores the number of characters in character

classes and the range values in constraint repetitions. Although

this approach may hide some of the regular expressions

complexity, it enables us to compare against previous works.

Finally, the memory requirements of a design should be taken

into account. The metric of Sproull et al. gives a close estimate

of the FPGA area occupied by the memory blocks [40].

Our designs achieve up to 2.5× higher throughput compared

to designs that process the same number of incoming bits

per cycle and require the lowest area cost. More precisely,

compared to Lin et al. [32], our design requires the same or

up to 2× more resources. Their design needs 0.66 LC per

character, while our designs occupy 0.66 to 1.28 LC per char-

acter. Unfortunately, Lin et al. do not report any performance

results focusing only on minimizing the hardware resources

and therefore we cannot measure their overall efficiency. Baker

et al. implemented multiple DFA microcontrollers, which are

updated by changing the contents of their memories instead

of reconfiguring the FPGA device [35]. Due to this design

decision, their module requires about 5-10× more resources

than our engines taking into account their memory require-

ments. Furthermore, they support about half the throughput

compared to our solution and have a 10-20× lower efficiency.
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TABLE V

COMPARISON BETWEEN OUR REGEXP ENGINES AND OTHER REGULAR

EXPRESSION APPROACHES.

Description
RegExp/ Input

Device
Throu-

Logic
Logic

MEM
# Non-Meta

PEMStatic bits ghput
Cells2 Cells

chars
Patterns1 /cycle (Gbps) /char

Our RegExp Eng.

RegExp 8

Virtex2 2.19
10,698 0.80 0 13,441

2.75
BleedingEdge Oct’06 Virtex4 3.26 4.10

Our RegExp Eng. Virtex2 2.00
25,074 1.28 0 19,580

1.56
Snort Apr’06 [41] Virtex4 2.90 2.27
Our RegExp Eng. Virtex2 1.60

45,586 0.66 0 69,127
2.43

Snort Oct’06 Virtex4 2.42 3.68

Lin et al. [32] NFA
RegExp 8

VirtexE
N/A3 13,734 0.66 0 20,914 N/A3

sharing sub-RegExp -2000

Baker et al. [35]
RegExp 8

Virtex4
1.4 N/A 2.56 6Mb 16,715 0.22

DFA µ-controllers -100

Sidhu et al. [14]
RegExp 8

Virtex
0.46 1,920 66 0 29 0.01

NFAs -100

Brodie et al. [36]
RegExp 32

Virtex2 4.0 860 N/A 96Kb per engine4 N/A4

DFAs ASIC 16.0 N/A N/A 27Mb 11,126 N/A4

Hutchings et al. [20] Static
8

VirtexE
0.4 40,232 2.52 0 16,028 0.16

NFAs Patterns -2000

Clark et al. [22] Static 8 Virtex2 2.0 29,281 1.70 0
17,537

1.19
Decoded NFAs Patterns 32 -8000 7.0 54,890 3.1 0 2.26

Moscola et al. [21] Static
32

VirtexE
1.18 8,134 19.4 0 420 0.06

DFAs Patterns -2000

Brodie et al. implemented DFAs using FSM-based en-

gines aiming at ASIC implementations [36]. Due to their

high area cost their entire design cannot be prototyped in

current FPGA devices. A single engine of Brodie et al. that

matches approximately a single regular expression has been

prototyped in a Virtex2 device. It achieves 4 Gbps (2× vs.

our design), processing 4 bytes per cycle. A single engine

requires 860 logic cells and 96 Kbits memory. Their complete

design matches 315 Snort-PCRE regular expressions and has a

density of 204 chars/mm2 in a 65 nm technology. Assuming

the same technology, we synthesized our largest design in a

Virtex5 (65 nm) device. We adjusted only the SRL16s into

Virtex5 SRL32s and not our pipeline which is tailored for 4-

input LUTs and not the Virtex5 6-input LUTs. Our design

matches more than 1,500 regular expressions (69,000 non-

meta characters), occupies less than 2/3 of a Virtex5LX-110

(729 mm2) which leads to a 142 chars/mm2 density. Conse-

quently, our approach has comparable area requirements, while

we would support roughly 4-5× lower throughput. Despite

the lower performance results compared to the above ASIC

implementation, there are several advantages to oppose. Brodie

1We denoted as “RegExp” the designs that match PCRE Snort regular
expressions, and “Static patterns” the ones that match IDS (Snort) static
patterns by converting them into regular expressions.

2Two Logic Cells form one Slice. We calculate the number of
logic cells required for a design according to the next equation:
Logic Cells = 2 × Slices, where slices is the reported number of
used slices of the Xilinx ISE tool. The above hold true for device families
before Virtex5.

3There are no performance results (frequency-throughput) for this design.
4The authors provide the logic and memory cost per Engine. They need

287 engines to match 315 PCRE-Snort regular expressions. Their complete
ASIC design matching the 315 regular expressions (11,126 characters) would
require about 247,000 logic cells and 27 Mbits of memory if it could be
implemented in a Virtex2. In a 65 nm technology it is estimated that their
module would have a density of 204 characters per mm2.

et al. implementation suffers from the DFA drawbacks such

as lack of support to overlapping matches and state explosion.

For instance, in case an IDS regular expression when converted

to a DFA requires more states than can be stored in the

available memory per engine, then this regular expression

cannot be implemented. In addition, the implementation and

fabrication of an ASIC is substantially more expensive than

an FPGA-based solution. Therefore, reconfigurable hardware

is an attractive solution for regular expression pattern matching

providing higher accuracy, fast time to market and low cost.

Clark et al. and Hutchings et al. match only static patterns

transformed into regular expressions [20], [22] and therefore

their designs are simpler. Compared to Hutchings et al. we

achieve more than 2× their throughput (taking into account

that VirtexE devices are about 30-40% slower than Virtex2)

and occupy less than half the area. Compared to Clark and

Schimmel design that processes 8-bits per cycle, we achieve

similar performance requiring 25-50% fewer resources. Our

design has similar efficiency (based on the PEM) compared

to Clark and Schimmel second design which processes 32

bits per cycle. In static pattern matching, it is relatively

straightforward to exploit parallelism and to increase resource

sharing. Notice however, this shows that our designs, albeit

dealing with dynamic pattern matching, are also comparable

to static pattern matching solutions (unable to deal with most

regular expressions).

Finally, Sidhu et al. and Moscola et al. implemented only

few regular expressions. Therefore, their results may not be

compared to designs that match complete rulesets, although,

the approach presented in this paper clearly outperforms their

designs.

VIII. CONCLUSIONS

In this paper we presented techniques for FPGA-based

regular expression pattern matching. More precisely, we de-

scribed a method to automatically generate hardwired engines

that match Perl-compatible regular expressions (PCRE). We

introduced three new basic building blocks to implement

constraint repetitions and proved that to of them can be

simplified without affecting their functionality. Moreover, a

number of techniques were employed to minimize the area

cost and improve performance. Large regular expressions IDS

rulesets were employed to validate the proposed approach.

Furthermore, we discussed our methodology and suggested

techniques to rewrite PCRE regular expressions in order to

suit hardware implementations. Concerning the entire Snort

and Bleeding Edge regular expression IDS rulesets, our au-

tomatically generated designs achieve a throughput of 1.6-2.2

and 2.4-3.2 Gbps in Virtex2 and Virtex4 devices, respectively.

The generated hardware engines require 0.66-1.28 logic cells

per non-Meta character. Based on the performance efficiency

metric (PEM), our designs are 10-20× more efficient than the

best related FPGA approaches. Even compared to designs that

match static patterns using regular expressions, and therefore

are simpler, our approach has similar and up to 10× bet-

ter efficiency. In addition, the proposed NFA-based designs

have comparable area costs with current ASIC DFA-based
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approaches. Future work will focus on a more general solution

for constraint repetitions, back-references support and more

advanced resource sharing techniques.
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