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ABSTRACT 

In this paper, we present an accurate method to evaluate the amount of acceleration gained by the hardware 
implementation of the Smith-Waterman algorithm. This is done using the MOLEN Processor Prototype (MOLEN 
platform), where algorithms can be executed both as software or as reconfigurable hardware. By profiling the algorithm, 
we identify a specific function that consumes 78% of the total runtime. Implementing this function in hardware results in 
a speedup of 2.16 in comparison with a software-only implementation. Since the hardware footprint needed for this 
implementation is rather small, this speedup is highly efficient in terms of resource utilization.  
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1. INTRODUCTION 

Smith-Waterman (S-W) is the most accurate sequence alignment algorithm available, but it is also the most 
expensive computationally, particularly for long sequences (Smith T. F. & Waterman M. S. 1981). Faster 
algorithms like FASTA (Pearson W. R. & Lipman D. J. 1985) and BLAST (Altschul S. F. et al 1990) are 
available, but they achieve high speed at the cost of reduced accuracy. Thus it is highly desirable to 
accelerate the S-W algorithm in hardware.  

Various approaches have been adopted to accelerate the S-W algorithm by implementing either the whole 
algorithm or some part of it in hardware and compare the performance with the software-only 
implementation (Chiang J. et al 2006), (Borah M. et al 1994), (Schroder A. et al 2006), (Blas A. Di. et al 
2005), (Laiq Hasan & Zaid Al-Ars 2007), (Yamaguchi Y. et al 2002). The acceleration achieved by these 
methods is not measured in any standard way, which makes it difficult to compare the different approaches 
published in the literature (Hasan L. et al 2007). In the previous reported similar work the software version is 
usually implemented on a general purpose processor, whereas the hardware accelerated version is 
implemented on a different platform, such as FPGA. This leads to a rather less reliable acceleration 
evaluation.  

In this paper, we propose an accurate speedup measurement method that is independent of the specific 
implementation. This is done by comparing both the software-only version and the hardware accelerated 
version of the S-W algorithm on the same platform in order to achieve an accurate profiling and acceleration 
evaluation. The paper is organized as follows: Section 2 provides a brief description of the S-W algorithm. 
Section 3 discusses conventional acceleration evaluation, done using two different platforms. Section 4 



presents the way to perform an accurate speedup analysis of the software-only version of the S-W algorithm 
compared with its hardware accelerated version. Section 5 gives a brief conclusion. 

2. DESCRIPTION OF THE S-W ALGORITHM 

Based on dynamic programming (DP) (Giegerich R. 2000), the S-W algorithm (Smith T. F. & Waterman M. 
S. 1981) is a method used for local sequence alignment (i.e., identifying common regions in sequences that 
share local similarity characteristics). When obtaining the local alignment, a matrix ݅ܪ, ݆ is used to keep track 
of the degree of similarity between the two sequences to be aligned ሺ݆ܤ ݀݊ܽ ݅ܣ ሻ. Each element of the matrix 
,݅ܪ ݆ is calculated according to the following equation: 
 

,݅ܪ ݆ ൌ ,ሼ 0 ݔܽ݉  ሺܪሺ݅ െ 1, ݆ െ 1ሻ    ܵ݅, ݆ሻ, ሺܪሺ݅ െ 1, ݆ሻ –  ݀ሻ, ሺܪሺ݅, ݆ െ 1ሻ –  ݀ሻ ሽ          (1) 
 

where ܵ݅, ݆  is the similarity score of comparing sequence ݅ܣ to sequence ݆ܤ and ݀ is the penalty for a 
mismatch. 

The whole algorithm is divided into the following three steps: 
1. Initialization step 
2. Matrix fill step 
3. Trace back step 

The matrix is first initialized with 0ܪ, ݆ ൌ  0 and ݅ܪ, 0 ൌ  0, for all ݅ and ݆. This is referred to as the 
initialization step. After the initialization, a matrix fill step is carried out using Equation 1, which fills out all 
entries in the matrix. The final step is the trace back step, where the scores in the matrix are traced back to 
inspect for optimal local alignment. The trace back starts at the cell with the highest score in the matrix and 
continues up to the cell, where the score falls down to a predefined minimum threshold. In order to start the 
trace back, the algorithm requires to find the cell with the maximum value, which is done by traversing the 
entire matrix. 

Figure 1 gives a block diagram representation of a pure software implementation of the S-W algorithm, 
where 

• The init_matrix is a function used for initializing the scoring matrix. 
• The fill_matrix_1 performs two functions i.e. filling the matrix and at the same time keeping track of 

the maximum score in the matrix. 
• The fill_matrix_2 function finds the corresponding maximum candidate for each cell in the matrix, 

according to Equation 1. 
• The trace_back_1 function performs the trace back. 
• The trace_back_2 function keeps track of the direction of the trace back. 

 

  Figure 1. Functional description of a software implementation of the S-W algorithm 

3. CONVENTIONAL ACCELERATION EVALUATION 

Acceleration evaluation of the S-W algorithm is done by comparing the performance of a software-only 
version and a hardware-accelerated version of the algorithm. Conventionally, the software-only versions and 



hardware-accelerated versions of the S-W algorithm are usually implemented on different platforms, as 
discussed later in this section. Table 1 gives examples of conventional speedup evaluation.  

Table 1. Examples of conventional speedup evaluation of the S-W algorithm 

Reference Platform used for 
hardware implementation

Compared with 
implementation on 

Reported 
speedup

(Borah M. et al 1994) MGAP SPLASH 5ൈ 
(Schroder A. et al 2006) GPU Pentium-IV, 3.0 GHz 16ൈ 
(Blas A. Di. et al 2005) Kestrel Ultra SPARC-II, 

500 MHz 
17ൈ 

(Laiq Hasan & Zaid Al-Ars 2007) FPGA Pentium-IV, 3.2 GHz 36ൈ 
(Steve Margerm 2006) FPGA AMD Opteron 

processors 
64ൈ 

(Oliver T. et al 2005) FPGA Pentium-IV, 1.6 GHz 170ൈ 
(Chiang J. et al 2006) FPGA Nios II soft 

microprocessor 
287ൈ 

(Yamaguchi Y. et al 2002) FPGA Pentium-III, 1.0 GHz 330ൈ 
(Yang B. H. W. 2002) VLSI Not compared --- 

 
In (Borah M. et al 1994) an implementation of the S-W algorithm is described on a general purpose fine-

grained architecture, the Micro Grained Array Processor (MGAP). The authors of (Borah M. et al 1994) 
show that their implementation is about 5 times faster than the rapid implementation of a genetic sequence 
comparator using field programmable logic arrays (Daniel P. Lopresti 1991). Showing thereby that massively 
parallel processor arrays, like the MGAP, possess the capability to solve computationally intensive problems 
in Molecular Biology efficiently and inexpensively. 

In (Schroder A. et al 2006), it has been demonstrated that the streaming architecture of the Graphics 
Processing Units (GPUs) can be efficiently used for biological sequence database scanning. GPUs are single-
chip processors, used primarily for computing 3D functions, but is also a good match for bioinformatics 
applications (e.g. S-W algorithm for sequence alignment). To derive an efficient mapping onto this type of 
architecture, the authors have reformulated the S-W algorithm in terms of computer graphics primitives and 
claim that the evaluation of their implementation on a high-end graphics card shows a speedup of almost 
sixteen compared to a Pentium-IV, 3.0 GHz processor. 

The authors of (Blas A. Di. et al 2005) implemented the S-W algorithm on the Kestrel Parallel Processor 
for different query sizes. The Kestrel Parallel Processor is a single-board coprocessor with a 512-element 
linear array of 8-bit, SIMD processing elements (Blas A. Di. et al 2005). The performance was compared 
with the implementation on a 500 MHz, Ultra SPARC-II. The relative speedup for a query size of 100 is 
given in Table 1. The other query sizes considered were 250 and 500. The speedup achieved for the query 
size of 250 was 49ൈ, whereas that for the query size of 500 was 99ൈ. 

In (Laiq Hasan & Zaid Al-Ars 2007), S-W algorithm has been divided into a number of functions, and 
then the time complexity of each function is measured (an activity commonly referred to as code profiling). 
A software-only implementation of the S-W algorithm is profiled on Pentium-IV, 3.2 GHz processor, using 
the GNU profiler. The profiling results identify the most time consuming function. This function is then 
designed in VHDL. The processing run time of a software-only implementation on Pentium-IV, 3.2 GHz 
processor and hardware implementation on a Virtex II Pro FPGA are compared to evaluate the % runtime 
improvement. The results show that the hardware implementation is 35.82 times faster than its equivalent 
software-only implementation. 

In (Steve Margerm 2006), the performance of the S-W algorithm has been increased substantially by 
using run time reconfiguration. The percentage of time spent on calculating the elements of ݅ܪ, ݆ matrix was 
cut by nearly a third and the absolute time spent on the algorithm dropped from 6,461 seconds to a little over 
100 seconds, approximately 64 times faster than the equivalent software-only implementation on AMD 
Opteron processors. 

In (Oliver T. et al 2005), the authors present a new approach to bio-sequence database scanning using re-
configurable FPGA-based hardware platforms to gain high performance at low cost. Their FPGA 
implementation achieves a speedup of approximately 170, as compared to a Pentium-IV, 1.6 GHz processor.  



In (Chiang J. et al 2006), the authors studied the improvement of computational processing time of the S-
W algorithm using custom instructions (CIs) on an FPGA board. This was done by first writing the S-W 
algorithm in pure software and then replacing the portion which was the most computationally intensive with 
an FPGA custom instruction. Particularly, they designed CIs on an Altera Nios II integrated development 
environment. The Nios II soft microprocessor was instantiated on an FPGA to allow rapid prototyping of 
new designs. Finally, they compared the processing runtime between the “pure software” and the “hardware 
acceleration” versions to calculate the percentage of runtime improvement. The results showed that the 
hardware accelerated algorithm improved the processing runtime by an average of 287%. Thus using FPGA 
CIs is a promising direction for further research in improving genomic sequence searching. 

In (Yamaguchi Y. et al 2002), an approach to realize high speed sequence alignment using run-time 
reconfiguration is proposed. With this approach, it is demonstrated that high performance can be achieved 
using off-the-shelf FPGA boards. The performance is almost comparable with dedicated hardware systems. 
The time for comparing a query sequence of 2048 elements with a database sequence of 64 million elements 
by the S-W algorithm is about 34 sec, which is about 330 times faster than a desktop computer with a 
Pentium-III, 1.0 GHz processor. 

In (Yang B. H. W. 2002), the design of a small fully custom processing element, called Proclet, is shown. 
This Proclet is used for a new VLSI implementation of the S-W algorithm. The results show that the design 
achieves a performance of 976 Kilo Cell Updates Per Second (KCUPS), but is not compared with any 
reference design. 

It is evident from Table 1, that no standard comparison approach is adapted. That is why, we can only 
look into each implementation on individual basis to see how much improvement is achieved in comparison 
with the reference provided for each implementation. In contrast, we propose to adapt a more accurate 
acceleration evaluation approach, as discussed below in Section 4. The results obtained from our 
implementation achieve a speedup of 2.16 in comparison with a software only implementation.  

4. ACCURATE ACCELERATION EVALUATION 

Implementing both software-only as well as hardware accelerated versions of the S-W algorithm on the same 
platform leads to an accurate acceleration evaluation. We have used the MOLEN platform for this purpose, 
since it contains both a general purpose processor in addition to a reconfigurable hardware module. 

4.1   The MOLEN platform 

Figure 2 shows the block diagram representation for the MOLEN platform (Vassiliadis S. et al 2004). The 
first block at the top indicates that either the software-only version or hardware accelerated version of the 
algorithm arrives as input to the arbiter. For every function in the algorithm, the arbiter decides whether to 
send it to the core processor or the reconfigurable processor. The arbiter does this by using specialized 
instructions for calling the hardware. 

The core processor is the IBM Power PC, which is built in with the Virtex II Pro FPGA. There can be 
upto four such Power PCs in a Virtex II Pro FPGA. The core processor is used for implementing the software 
portion of the application. 

The reconfigurable processor is the processor used for implementing the hardware portion of the 
application. It has two parts. The main part is the reconfigurable microcode unit, which is responsible for the 
entire operation of the reconfigurable processor and the Custom Computing Unit (CCU) design, which is 
application dependant. The CCU is embedded into the reconfigurable processor, using the interface given 
with the MOLEN platform. The reconfigurable processor utilizes the microcode unit and the CCU to improve 
performance of various applications. The details of the data interface between the core processor and the 
reconfigurable processor are given in (Vassiliadis S. et al 2004). 

 



 
Figure 2. Block diagram representation of the MOLEN platform 

4.2   Implementation of the S-W algorithm on MOLEN platform 

The methodology for implementation is comprised of the following four steps. 
1. Identifying the desired function in software (Code profile). 
2. Designing a CCU for the identified function. 
3. Replacing the identified function by the CCU design. 
4. Comparing the cycles consumed by the software-only version and the hardware accelerated version of 
the identified function to measure the relative speedup. 

The following discussion elaborates these steps. 
Figure 1 gives a block diagram representation of a software-only implementation of the S-W algorithm. 

We compiled this software-only implementation using MOLEN Power PC Compiler (Elena Moscu Panainte 
2007). The cycles consumed by each function in the code were evaluated, using the Power PC timer 
instructions. The Power PC has a clock frequency of 100 MHz, so the time period for one cycle is ଵ

ଵ
ݏߤ  ൌ

 Thus the time consumed by each function is equivalent to the number of cycles consumed multiplied .ݏߤ 0.01
by the time period for one cycle. The overall time consumed is the summation of time consumed by all 
functions, which is 172 ݏߤ and the % time consumed is the ratio of the time consumed by a function to the 
overall time consumed. Table 2 gives the function names, number of times that each function is called, the 
number of clock cycles consumed by each function, the amount of time consumed by each function in micro 
seconds and the % time consumed by each function. In Table 2, the fill_matrix_2 is highlighted as the most 
time consuming function and is the right candidate to be designed in hardware as a CCU. Table 2 shows that 
the cycles consumed by fill_matrix_2 function for 48 calls are 13392, so the cycles consumed for 1 call will 
be ଵଷଷଽଶ

ସ଼
ൌ 279. We designed a hardware module (CCU) in a hardware description language (VHDL) to 

support the identified function of interest (fill_matrix_2) using the interface described for the MOLEN 
platform. The device used for the implementation was Xilinx Virtex-II Pro (XC2VP30) with speed grade -7. 



The device utilization summary in the synthesis report showed that 29 out of 13696 slices were used, so apart 
from achieving the speedup, calculated later in this section, the design is very efficient in terms of resource 
utilization as well. 

Table 2: Profiling results of the software-only version of the S-W algorithm on the core processor of the MOLEN 
platform (Power PC 100 MHz processor) 

Function name Number of calls Clock cycles 
consumed

Time consumed (ݏߤ) % Time consumed 

init_matrix 1 753 7.53 4.33 
fill_matrix_1 1 688 6.88 4.00 
fill_matrix_2 48 13392 133.92 78.00 
trace_back_1 1 102 1.02 0.55 
trace_back_2 5 2265 22.65 13.12 

 
After designing the desired CCU, we annotated the definition of fill_matrix_2 function with (#pragma 

call fpga fill_matrix_2) in the C source code. We compiled the entire annotated C code, using the MOLEN 
Power PC compiler. An executable file (executable.elf) thus generated was downloaded locally. The CCU 
design was embedded into MOLEN using the Xilinx modular design flow. The generated bit stream was 
downloaded into the XUP V2P prototyping board by connecting a configuration cable to the prototyping 
board. To see the results on the terminal the serial communication port of the board was connected to the PC 
COM port and a session was set at 19200 bps, 8 data bits, no parity, 1 stop bit and no flow control. 

Using the Power PC timer functions, we evaluated the cycles consumed by fill_matrix_2 function in the 
annotated C code, which came out to be 129. The comparison between the cycles consumed by the software-
only version and the hardware accelerated version of fill_matrix_2 gives the relative speedup, where the 

 

ݑ݀݁݁ܵ ൌ  
݁ݎܽݓݐ݂ݏ ݊݅ ݀݁݉ݑݏ݊ܿ ݏ݈݁ܿݕܥ

݊݅ݐܽݎ݈݁݁ܿܿܽ ݁ݎܽݓ݀ݎ݄ܽ ݄ݐ݅ݓ ݀݁݉ݑݏ݊ܿ ݏ݈݁ܿݕܥ ൌ  
279
129 ൌ 2.16 

 
This speedup is more accurate, as the software-only and hardware accelerated versions are both 

implemented on the same platform. To ensure an accurate measurement of the speedup, all bottlenecks have 
been taken care of, such that only processing time is the limiting factor. Furthermore the approach is 
technology independent and can also be implemented on alternative available FPGAs, such as Virtex IV and 
Virtex V. 

5. CONCLUSION 

 In this paper, we implemented both software-only and hardware-accelerated versions of the S-W algorithm, 
using the MOLEN platform and evaluated the cycles consumed by the most computationally intensive 
function within the algorithm in both cases. This approach gives us an accurate number of cycles consumed 
in both cases and helps in achieving a more accurate speedup evaluation than the already reported work in the 
literature, as the software-only and hardware-accelerated versions are both implemented using the same 
platform. The results demonstrate that our implementation approach achieves a speedup of 2.16, as compared 
to a software-only implementation.  
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