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Abstract

Speed and placement quality are two very important at-
tributes of a good online placement algorithm, because the
time taken by the algorithm is considered as an overhead to
the application overall execution time. To solve this prob-
lem, we propose three techniques: Merging Only if Needed
(MON), Partial Merging (PM), and Direct Combine (DC).
Our IM (intelligent merging) algorithm uses dynamically
these three techniques to exploit their specific advantages.
IM outperforms Bazargan’s algorithm as it has placement
quality within 0.89% but is 1.72 times faster.

1. Introduction

One essential problem in partially reconfigurable com-
puting is to search the best way to place tasks on the right
position and at the right time on an FPGA in the shortest
possible time. The algorithms usually trade off between
placement quality and execution speed. Algorithm execu-
tion time is, for instance, very important in multithreaded
applications in which the flow of code cannot be determined
beforehand. Speed and placement quality are therefore two
very important attributes of a good online placement algo-
rithm.

One of the dominant approaches is described in [2]
where Bazargan et al. presented the Keeping Non-
overlapping Empty Rectangles algorithm for online place-
ment. The main disadvantage is that the number of empty
rectangles produced by Bazargan’s algorithm quickly in-
crease with more task insertions. The algorithm execution
time depends on the total number tasks placed on the FPGA
and it is dominated by the time for merging and splitting
these empty rectangles. In return, Bazargan’s algorithm has
a high algorithm execution time. The goal of our algorithm
is to reduce the execution time of this algorithm while pre-

serving its placement quality.
In this paper, we will compare the algorithm perfor-

mance based on the following criteria. We define the al-
gorithm execution time as the time needed by the algorithm
for a single task placement. Percentage of accepted tasks is
the ratio between the total number of accepted tasks and the
total number of tasks. Good placement quality algorithms
have higher percentage of accepted tasks in general.

This paper presents one solution for prohibitively long
algorithm execution times during online placement. The
main contributions of this paper are:

• novel three techniques to speedup online placement al-
gorithms;

• a novel Intelligent Merging(IM) online placement al-
gorithm to speedup a good quality well known algo-
rithm.

The remainder of this paper is organized as follows. In
Section 2, we discuss related work in online placement al-
gorithms. Detail of our proposed techniques and IM algo-
rithm for online placement are presented in Section 3. In
Section 4, we present the evaluation of the proposed tech-
niques and algorithm. Finally, in Section 5, we summarize
the paper.

2. Related work

Many authors have already proposed algorithms with
shorter execution times compared to Bazargan’s [2] pro-
posal. Instead of partitioning the free area, the Vertex-
list [8, 9] algorithm uses only the free area perimeter while
placing a new task. However this algorithm spends signif-
icant time on computing the contact or fragmentation level
for placing tasks on one of the corners of this free area
perimeter.

Steiger et al. [7] and Walder et al. [12] proposed the On
The-Fly (OTF) algorithm by delaying the split decision of
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Bazargan’s algorithm until the next task is placed on the
FPGA to avoid wrong split decision. However they both
need to resize several rectangles when a new task is inserted.
This process ultimately results in additional execution time.

In [1], Ahmadinia et al. proposed the Horizontal Line
(HL) algorithm. Instead of managing a list of empty rectan-
gles, HL uses exactly two horizontal lines for placing tasks;
one above (top HL) and one under (bottom HL) the already
placed tasks.

In [5] and [6], Handa et al. proposed the Staircase al-
gorithm for finding Maximal Empty Rectangles (MERs).
They used a 2D array (referred as area matrix) for modeling
the FPGA surface. The area matrix is used for constructing
staircases and finally these staircases are used for finding
MERs. Hence the bottleneck is the time for constructing
staircases and finding MERs.

In [3], Jin Cui et al. proposed the Scan Line Algorithm
(SLA). They use the same area matrix as Staircase algo-
rithm in different encoding of the reconfigurable area. In
SLA, the area matrix is used for finding Maximum Key El-
ements (MKEs) and finally these MKEs will be used for
finding MERs. Consequently the bottleneck is the time for
finding MKEs and MERs.

In [4], Jin Cui et al. proposed the Cell Fragmentation
(CF) algorithm. CF uses SLA to find MERs and Fragmen-
tation Matrix (FM). To place a new task on the FPGA, CF
needs to compute the Time-Averaged Area Fragmentation
(TAAF) for all MERs that is computational intensive.

In [10] and [11], Tomono et al. proposed an algorithm
that uses the same area matrix of Staircase algorithm with
additional I/O communication constraints. Because of this
the status of each communication channel is monitored dur-
ing the process of creating staircases. Since this algorithm
optimizes for short communication distances among placed
tasks, additional execution time is required.

3. Our techniques and algorithm

3.1. MON technique

Merging only if needed (MON) is a technique where
Non-overlapping Empty Rectangles (NERs) are merged
only if there is no available NER for placing the new ar-
rived task. By doing so we can save algorithm execution
time (the original algorithm merges NERs always). Figure
1 shows how our MON technique works.

The top left corner of Figure 1 depicts the empty FPGA
model (the beginning status) that consists of a single NER
(NER A). If there is a new task (T1), the task is placed on
the NER A. This process produces two new NERs (B and
C) as shown on top right of the same figure. The bottom
left of Figure 1 shows the FPGA area when the task T1
is removed from the FPGA after completion, leaving one
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Figure 1. MON technique

new NER (NER D). In this situation, Bazargan’s algorithm
works differently as it would merge the NERs (NERs B,
C, and D) into one single bigger NER (NER A in our ex-
ample). Hence Bazargan’s algorithm spends computational
time on (unnecessary) merging every time a task completes.
In case of MON when a new task (T2) arrives, it is placed
on one of the available NERs (in our example NER C) that
has enough size to accommodate it. Reducing the unnec-
essary merging is the key factor in our MON technique for
improving the Bazargan’s algorithm execution time.

3.2. PM technique

Partial Merging (PM) technique allows our Intelligent
Merging mechanism to merge only a subset of the available
NERs until there is enough free space for the new task. We
thus again save algorithm execution time by terminating the
merging process earlier. In Bazargan’s algorithm as men-
tioned earlier all available NERs will be merged. Figure 2
shows how this PM technique works.

Top left of Figure 2 shows how three tasks (tasks T1, T2,
and T3) have been placed on the FPGA. Task T2 produces
two NERs (NERs A and B), while task T3 also produces an-
other two NERs (NERs C and D). The top right of Figure 2
shows the situation when these three tasks are removed from
the FPGA and three new NERs (NERs E, F, and G) become
available. Let’s assume task T4 arrives and has to be placed.
At this point, there is no single NER available that can fit
this new task. In this case, IM needs to merge NERs and
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Figure 2. PM technique

form a bigger NER for this new task. In order to accommo-
date task T4 (bottom right of Figure 2), the PM technique
in our IM algorithm only needs to perform one merge op-
eration (NERs A, B, and E) and form a new bigger NER
(NER H) (bottom left of Figure 2). Again, Bazargan’s al-
gorithm would perform additional merging. More precisely,
the merging of NERs A, B, and E, then merging C, F, and D,
and finally merging of all of them into one new bigger NER
is required. In this example, Bazargan’s algorithm needs
three merging operations while our IM needs only one. We
call this technique also merge-on-demand which is the key
element of the proposed PM technique to reduce algorithm
execution time.

3.3. DC technique

Direct Combine (DC) technique is a technique that al-
lows IM to combine NERs directly without merging and
splitting operations, thereby saving algorithm execution
time. Figure 3 shows the working of the proposed DC tech-
nique.

As in the figures above, the top left of Figure 3 shows the
beginning situation when a task T1 is placed on the FPGA.
This leads to two NERs (NERs A and B). The top right of
Figure 3 shows the FPGA after T1 has been completed. The
new NER (NER C) is produced. Let’s assume, Task T2 ar-
rives. At this point, all NERs in this location are free, so it is
possible to merge the NERs (NERs A, B, and C) to form a
new bigger NER (NER D) as in the Bazargan algorithm. To
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Figure 3. DC technique

decrease algorithm execution time, instead of merging (re-
lease memory) and splitting (allocate memory) NERs, the
DC technique directly combines the NERs (NERs A, B, and
C) to create a bigger NER (NER D) (bottom left of Figure
3). The resulting NER can be used to place the new task
(bottom right of Figure 3). To increase the placement qual-
ity, the DC technique will always directly combine NERs to
form a bigger NER before placing a task when possible. We
call this Combine Before Placing (CBP) strategy. For exam-
ple if the size of task T2 on Figure 3 is smaller than NER A,
the DC technique will not directly place the task on NER A.
To prevent fragmentation, our DC technique will combine
these three empty NERs (NERs A, B, and C) before plac-
ing the task on this new combination NER. Therefore this
CBP strategy decreases the fragmentation of empty areas
and increases the placement quality.

3.4. IM algorithm

To speedup the execution time of Bazargan’s algorithm
without loosing its good placement quality, we propose to
dynamically combine the above three techniques for small
to medium task sizes. If the task is too large, the possibility
that the task can be placed without merging decreases, so in
this case our techniques will not work. Therefore IM will
activate the techniques depending on the task sizes.

If the task is not too large, IM will do CBP or MON. If
IM fails to find placement after doing CBP or MON, IM will
do PM. If IM also fails to find placement after doing PM,
IM will reject the task. If IM can find placement using CBP,
IM will place the task using DC placement. If IM can find
placement using MON, IM will place the task using normal
placement.

If the task is too large, IM will do total merging before



finding placement (just like the original Bazargan). If IM
can find placement after total merging, IM will place the
task using normal placement, otherwise IM will reject the
task.

4. Evaluation

4.1. Experimental setup

We have constructed a discrete-time simulation frame-
work in ANSI-C to evaluate the performance of the pro-
posed techniques and algorithm and compare it to related
art. Our measurements have been conducted on a Pentium-
IV 3.4 GHz PC. Each task is placed at its arrival time and
if the placement fails, it is assumed rejected; it is no-queue
scheduling. A single new task arrives at each time unit. Fur-
thermore, our scheduling scheme is non-preemptive – once
a task is loaded onto the device it runs to completion.

We model an FPGA with size of 100x100 reconfigurable
units and use tasks with randomly generated sizes and life-
times. To our best knowledge, there are no standard bench-
marks available to evaluate online placement algorithm. We
therefore generate our own synthetic benchmark sets. To
represent real-life scenarios, we generate randomly 13 task
sets as depicted in Table 1 ranging from short life-time tasks
(50 time units) till long life-time tasks (200 time units)
and also from small size tasks (4 reconfigurable units) till
large size tasks (400 reconfigurable units). The last task set
(MTS) is mixed task set of TS1 to TS12.

Wmin, Wmax, Hmin, Hmax, Ltmin, and Ltmax denote
minimum task width, maximum task width , minimum task
height, maximum task height, minimum life-time, maxi-
mum life-time, respectively. Every task set consists of 1000
tasks assuming uniformly distributed life-times and task
sizes.

Using this simulation framework, we compared our al-
gorithm with Bazargan’s algorithm. For Bazargan’s algo-
rithm, we use the First Fit (FF) heuristic for choosing NERs
and Shorter Segment (SSEG) heuristic for splitting deci-
sion, because these heuristics have the best performance,
as mentioned in [2].

Our study is based on two performance parameters, those
are the average percentage of accepted tasks (%) and the
average algorithm execution time(µs). The average per-
centage of accepted tasks represents the placement quality,
while the average algorithm execution time is a metric for
the algorithm performance. The average value is the result
of 1000 iterations of the algorithm for every task set.

To study the impact of the different techniques proposed
in this paper, we performed experiments with five different
cases:

• BFFSSEG: Bazargan’s algorithm using FF and SSEG
heuristics [2];

Table 1. Task sets for simulation

Task Set Wmin Wmax Hmin Hmax Ltmin Ltmax
TS1 2 5 2 5 50 100
TS2 2 5 2 5 100 150
TS3 2 5 2 5 150 200
TS4 5 10 5 10 50 100
TS5 5 10 5 10 100 150
TS6 5 10 5 10 150 200
TS7 10 15 10 15 50 100
TS8 10 15 10 15 100 150
TS9 10 15 10 15 150 200
TS10 15 20 15 20 50 100
TS11 15 20 15 20 100 150
TS12 15 20 15 20 150 200
MTS 2 20 2 20 50 200

• MON: algorithm using MON technique;

• MON+PM: algorithm using combination of MON and
PM techniques;

• MON+PM+DC: algorithm using combination of
MON, PM, and DC techniques;

• IM: our Intelligent Merging algorithm.

4.2. Experimental result

The average percentage of accepted tasks for each task
set is depicted in Figure 4. The effect of each technique
on the number of accepted tasks is depicted in Figure 5.
A positive value means the technique increases the number
of accepted tasks, while the negative value means the tech-
nique decreases the number of accepted tasks. The average
algorithm execution time over 1000 runs for each task set
is depicted in Figure 6. The effect of each technique on
algorithm execution time is shown in Figure 7.

4.3. Effect of task size and life-time

As the task size increases, the average percentage of ac-
cepted tasks decreases because it is more difficult to find
available free space that can accommodate the task. The
longer life-time task decreases the average percentage of ac-
cepted tasks, because the task will stay longer on the FPGA.
It is thus more difficult to find available free space that can
accommodate the other tasks.

Large tasks negatively influence the algorithm execution
time. This is to be expected, because when the task size
is bigger, the possibility that the task can be placed on one
of NERs or combined NERs on the FPGA without merg-
ing becomes smaller. A similar observation holds for the



Figure 4. Average percentage of accepted
tasks (%)

Figure 5. Effect of techniques on accepted
tasks(%)

Figure 6. Average algorithm execution
time(µs)

Figure 7. Effect of techniques on algorithm
execution time(%)

life-time of tasks where the execution time is negatively in-
fluenced as tasks will stay longer on the FPGA. Therefore
the probability that next tasks can be placed on one of the
NERs without merging becomes smaller.

4.4. Evaluation of algorithm using MON
technique

The algorithm using MON technique is up to 1.9 times
faster than the Bazargan’s algorithm with similar accepted
task percentage as the result of intelligently avoiding total
merging. On the average, the number of accepted tasks is
reduced by 0.95 %. However for mixed task set, this is only
0.18 %.

4.5. Evaluation of algorithm using combina-
tion of MON and PM techniques

Among these algorithms, the algorithm using combina-
tion of MON and PM techniques (MON+PM) performs the
best in terms of algorithm execution time on average. The
algorithm is up to 2.9 times faster than the Bazargan’s al-
gorithm with similar accepted tasks as the result of intelli-
gently avoiding total merging and exploiting its merge-on-
demand capability. On the average, the decreasing of ac-
cepted tasks is 1.24 %. However for mixed task set, the
decreasing is only 0.36 %.

4.6. Evaluation of algorithm using combina-
tion of MON, PM, and DC techniques

The algorithm using combination of MON, PM, and DC
techniques (MON+PM+DC) is up to 3 times faster than the
Bazargan’s algorithm with similar accepted tasks as the re-
sult of intelligently avoiding total merging and exploiting
its merge-on-demand and direct combine capability. On the
average, the decreasing of accepted tasks is 0.95 %. How-
ever for mixed task set, the decreasing is only 0.36 %.

4.7. Evaluation of IM algorithm

IM can effectively exploit the advantages of our three
techniques especially when the tasks are not too large, be-
cause the possibility that the tasks can be placed without
merging become large.

The IM algorithm is up to 3 times faster than the
Bazargan’s algorithm with similar accepted tasks by intel-
ligently exploiting the proposed three techniques. On the
average, the decreasing of accepted tasks is 0.89 %. How-
ever for mixed task set, the decreasing is only 0.36 %.

On the basis of these results, we can state that our algo-
rithm produces comparable results as Bazargan with a slight
minor difference for the worst case but similar placement
quality in the best case.



4.8. Effect of MON technique

The MON technique can decrease the algorithm execu-
tion time for small task sets. When the tasks are small, the
possibility that the tasks can be placed on one of NERs with-
out merging becomes bigger, so in this case MON can pre-
vent total merging effectively.

The MON technique decreases up to 47 % algorithm ex-
ecution time by intelligently avoiding total merging. On
the average, the MON technique decreases 0.95 % accepted
tasks. However for mixed task set, the decreasing in only
0.18 %.

4.9. Effect of PM technique

The PM technique can effectively decrease the execution
time for all task sets thanks to its merge-on-demand capa-
bility.

The PM technique decreases up to 47.4 % algorithm ex-
ecution time due to its merge-on-demand capability. On the
average, the PM technique decreases 0.29 % accepted tasks.
However for mixed task set, the decreasing in only 0.18 %.

4.10. Effect of DC technique

The DC technique decreases algorithm execution time
for small task sets, as the possibility that the tasks can be
placed on one of combined NERs without merging becomes
bigger, so DC technique can combine NERs effectively.

We see that the DC technique increases the number of
accepted tasks for almost all task sets except TS4 as the
result of its CBP strategy.

The DC technique decreases up to 2.94 % algorithm exe-
cution time by intelligently avoiding merging and splitting.
On the average, the DC technique decreases 0.29 % ac-
cepted tasks. However for mixed task set, it does not affect
on accepted tasks.

5. Conclusions

In this paper, we have proposed the Intelligent Merging
(IM) algorithm an improved version of Bazargan in terms of
execution speed. Our experiments show that our algorithm
is 1.72 times faster while loosing only 0.89 % of accepted
tasks on average.

Our algorithm does not yet consider I/O communication
and heterogeneous FPGAs. We plan to take into account
these additional constraints in our future work. We also
aim at the creation of standard benchmarks representing real
world applications and workloads.
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