
Transparent Reconfigurable Acceleration for Heterogeneous Embedded
Applications

Antonio Carlos S. Beck1,2, Mateus B. Rutzig1, Georgi Gaydadjiev2, Luigi Carro1
1 Universidade Federal do Rio Grande do Sul, Instituto de Informática – Porto Alegre/Brazil

2 Delft University of Technology, Computer Engineering – Delft/The Netherlands
caco@inf.ufrgs.br, mbrutzig@inf.ufrgs.br, g.n.gaydadjiev@ewi.tudelft.nl, carro@inf.ufrgs.br

Abstract
Embedded systems are becoming increasingly complex. Besides
the additional processing capabilities, they are characterized by
high diversity of computational models coexisting in a single
device. Although reconfigurable architectures have already shown
to be a potential solution for such systems, they just present
significant speedups of very specific dataflow oriented kernels.
Furthermore, reconfigurable fabric is still withheld by the need of
special tools and compilers, clearly not sustaining backward
software compatibility. In this paper, we propose a new technique
to optimize both dataflow and control-flow oriented code in a
totally transparent process, without the need of any modification
in the source or binary codes. For that, we have developed a
Binary Translation algorithm implemented in hardware, which
works in parallel to a MIPS processor. The proposed mechanism
is responsible for transforming sequences of instructions at run-
time to be executed on a dynamic coarse-grain reconfigurable
array, supporting speculative execution. Executing the MIBench
suite, we show performance improvements of up to 2.5 times,
while reducing 1.7 times the required energy, using trivial
hardware resources.

1. Introduction

While the number of embedded systems is growing, a new
trend can be observed: the presence of multi-functional devices,
which perform a wide range of different applications with diverse
behaviors, e.g. present day portable phones or PDAs. As a
consequence, simple processors are not enough to handle the
computational requirements of these new systems anymore, thus
forcing designers to create novel solutions to increase their
performance, while maintaining power dissipation as low as
possible. Approaches like superscalar processors are readily
present in the market, but the limited and time-varying instruction
level parallelism (ILP) available in applications [1][2], combined
with the area and power costs for the search of the parallelism
itself, preclude the employment of these processors as an effective
organization to be used in low-energy devices.

Thanks to the advance of the manufacturing technologies, the
availability of silicon area for new designs is increasing. In this
scenario, reconfigurable architectures appear to be an attractive
solution. By translating a sequence of code into combinational
logic, one can have huge performance gains with energy savings,
at the price of extra area [3][4]. At the same time that
reconfigurable computing can explore the ILP of the applications,
it can also speed up sequences of data dependent instructions,
which is its main advantage when comparing to traditional
architectures. Furthermore, as reconfigurable architectures are

highly based on regular circuits, another advantage emerges: it is
common sense that as the more the technology shrinks to 65
nanometers and below, the harder it will be to print the geometries
employed today, directly affecting the yield [5]. Moreover,
because circuit customization is a very expensive process, regular
circuits customized in the field are also considered as the new low
cost solution.

However, reconfigurable systems have two main drawbacks.
The first one is that they are designed to handle very data
intensive or streaming workloads. This means that the main
design strategy is to consider the target applications as having
very distinct kernels for optimization. By speeding up small parts
of the software, huge gains would be achieved. In contrast, as
commented before, the number of applications that a single
embedded device must handle is growing. Nowadays, it is very
common to find embedded systems with ten or more functions
with radically different behaviors.

The second problem is that the process of mapping pieces of
code to reconfigurable logic usually involves some kind of
transformation, manual or using special languages or tool chains.
These transformations modify somehow the source or the binary
code, precluding the wide spread usage of reconfigurable systems.
As the old X86 ISA has been showing, sustaining binary
compatibility, allowing legacy code reuse and traditional
programming paradigms are key factors to reduce the design cycle
and maintain backward compatibility.

Based on these two main concerns discussed above, our work
proposes the use of a technique called Dynamic Instruction
Merging (DIM), which is a Binary Translation (BT) method
implemented in hardware. It is used to detect and transform
sequences of instructions at run time to be executed in a
reconfigurable array. DIM is a totally transparent process: there is
no need for changing the code before its execution at all, allowing
full binary code reuse. Moreover, the employed reconfigurable
unit is a coarse-grained array, composed of simple functional units
and multiplexers. Being not limited to the complexity of fine-
grain configurations and using the special BT mechanism, the
proposed system can also speeds up control-flow oriented
software, without any distinct kernel subject of optimization.

In this work we show why our approach is suitable for this new
class of heterogeneous embedded systems, demonstrating the BT
implementation, the structure of the reconfigurable hardware and
how they interact with each other. This paper is organized as
follows. Section 2 shows a review of the existing reconfigurable
processors and some other approaches regarding dynamic
translation of instructions. Section 3 discusses what our
contribution is considering the whole context. Section 4
demonstrates the system, looking at the structure of the

978-3-9810801-3-1/DATE08 © 2008 EDAA

reconfigurable array and the algorithm itself. Section 5 presents
the simulation environment and results. Finally, the last section
draws conclusions and introduces future work.

2. Related work
2.1 Reconfigurable architectures

Careful classification study in respect to coupling, granularity
and instructions type is presented in [6]. In accordance with this
study, in this section we discuss only the most relevant work. For
instance, processors like Chimaera [7] have tightly coupled
reconfigurable array in the processor core, limited to
combinational logic only. The array is, in fact, an additional
functional unit (FU) in the processor pipeline, sharing the
resources with all normal FUs. This simplifies the control logic
and diminishes the communication overhead between the
reconfigurable array and the rest of the system. The GARP
machine [8] is a MIPS compatible processor with a loosely
coupled reconfigurable array. The communication is done using
dedicated move instructions.

More recently, new reconfigurable architectures, very similar
to the dataflow approaches, were proposed. For instance, TRIPS is
based on a hybrid von-Neumann/dataflow architecture that
combines an instance of coarse-grained, polymorphous grid
processor core with an adaptive on-chip memory system [9].
TRIPS uses three different execution modes, focusing on
instruction-, data- or thread- level parallelism. Wavescalar [10],
on the other hand, totally abandons the program counter and the
linear von-Neumann execution model that is limiting the amount
of exploited parallelism. In agreement with the previous
examples, Piperench [11] and Molen [12] are also reconfigurable
machines relying on compiler driven resource allocation.
2.2 Dynamic detection and reconfiguration

In order to avoid recompilation, recent work proposed a
reconfigurable system unifying two ideas: Binary Translation
(BT) [15], where a system (implemented in hardware or software)
is responsible for monitoring, analyzing and transforming parts of
the binary code of a running program to provide means to enhance
the performance; and Trace Reuse [16], which relies on the idea
that sequences of instructions with the same operands will be
repeated a large number of times during program execution. As a
result, the reconfigurable process is transparent, since there is no
need for any modifications in the program binary code.
Consequently, such approach does not require extra designer
effort and causes no disruption to the standard tool flow used
during the software development.

Stitt et al. [4] [13] presented the first studies about the benefits
and feasibility of dynamic partitioning using reconfigurable logic,
showing good results for a number of popular embedded system
benchmarks. This approach, called warp processing, is based on a
complex SoC. It is composed by a microprocessor to execute the
application software, another microprocessor where a simplified
CAD algorithm runs, local memory and a dedicated FPGA array.
Firstly, the microprocessor executes the original binary code
while a profiler monitors the instructions in order to detect critical
regions. Next, the CAD software decompiles the application to a
control flow graph, synthesizes it and maps the circuit onto a
simplified FPGA structure. At last the binary code is modified to
use the generated hardware blocks. However, even if the CAD
system used is very simplified, it requires significant resources: up
to 8 MB of memory are necessary for its execution. Another

deficiency is related to the FPGA: besides the long latency and
consumed area, it is also power inefficient due to the excessive
switches and the considerable amount of static power. Moreover,
because of the memory footprint required for keeping
configurations, this technique is just limited to critical parts of the
software, working at its best just in very particular programs, such
as the filters based ones.

In [14] a coarse-grain array, composed by simple functional
units and tightly coupled to an ARM processor, is presented. This
array is called Configurable Compute Array (CCA). Feeding the
CCA involves two steps: the discovery of which subgraphs are
suitable for running on the CCA, and their replacement by
microops in the instruction stream. Two alternative approaches
are presented: static and dynamic. Static discovery finds
subgraphs for the CCA at compile time. Those are marked in the
machine code by using two additional instructions, so that a
replacement mechanism can insert the appropriate CCA microops
dynamically. In this case, as the code is changed, the backward
compatibility is lost. Dynamic discovery, in turn, assumes the use
of a trace cache to perform sub-graph discovery on the retiring
instruction stream. This technique uses a very complex graph
analysis, based on RePlay [20], leading to a huge memory
overhead. Because of that, just high-level simulations using the
Simplescalar Toolset are reported. No measurements are given in
terms of area overhead, power consumption and timing and there
are no details about how a CGF is transformed to an array’s
configuration. The overheads, the detection and reconfiguration
delays are not discussed at all. Moreover, the CCA does not
support memory operations or shifts, limiting its field of
application and, as a consequence, it supports only limited number
of inputs and outputs.

Despite all the aforementioned drawbacks, works in [4] and
[20] show the potential of dynamically transforming parts of the
software to reconfigurable logic execution.
3. Proposed approach

Our work is based on a special BT hardware called Dynamic
Instruction Merging (DIM). DIM is designed to detect and
transform instruction groups for reconfigurable hardware
execution. As can be observed in Figure 1, this is done
concurrently while the main processor fetches other instructions.
When a sequence of instructions is found, following given
policies that will be explained later, a binary translation is applied
to it. Thereafter, this configuration is saved in a special cache, and
indexed by the program counter (PC).

The next time the saved sequence is found, the dependence
analysis is no longer necessary: the processor loads the previously
stored configuration from the special cache, the operands from the
register bank, and activate the reconfigurable hardware as
functional unit. Then, the array executes that configuration in
hardware (including write back of the results), instead of normal
processor instructions. Finally, the PC is updated, in order to
continue with the execution of the normal (not translated)
instructions. This way, repetitive dependence analysis for the
same sequence of instructions is avoided. Depending on the size
of the special cache used to store the configurations, the
optimization can be extended to the entire application, not being
limited to very few hot spots. Moreover, both the DIM engine and
the reconfigurable array are designed to work in parallel to the
processor and do not introduce any delay overhead or penalties
for critical path of the pipeline structure.

Comparing to the techniques cited in section 2, our approach
makes use of a coarse grain reconfigurable unit allowing
implementation in any technology, not being limited to FPGAs
only. In addition, we use binary translation to avoid source code
recompilation or the utilization of extra tools, making the
optimization process totally transparent to the programmer.
Adding to the fact that our array is not limited to the complexity
of fine-grain configurations, the binary code detection and
translation algorithm is very simple. It can be implemented using
trivial hardware resources, in contrast to the complex on-chip
CAD software or graph analyzers used in the related work.

4. Description of the system
4.1 Architecture of the array

The reconfigurable unit is a dynamic coarse-grain array tightly
coupled to the processor. It works as an additional functional unit
in the execution stage of the pipeline, using similar approach as
Chimaera [7]. This way, no external accesses (in respect to the
processor) to the array are necessary.

An overview of its general organization is shown in Figure 2.
The array is two dimensional, and each instruction is allocated in
an intersection between one row and one column. If two
instructions do not have data dependences, they can be executed
in parallel, in the same row. Each column is homogeneous,
containing a determined number of ordinary functional units of a
particular type, e.g. ALUs, shifters, multipliers etc. Depending on
the delay of each functional unit, more than one operation can be
executed within one processor equivalent cycle. It is the case of
the simple arithmetic ones. On the other hand, more complex
operations, such as multiplications, usually take longer to be
finished. The delay is dependent of the technology and the way
the functional unit was implemented. Load/store (LD/ST) units
remain in a different group of the array. The number of parallel
units in this group depends on the amount of ports available in the
memory. The current version of the reconfigurable array does not
support floating point operations.

For the input operands, there is a set of buses that receive the
values from the registers. These buses will be connected to each
functional unit, and a multiplexer is responsible for choosing the
correct value (Figure 2a). As can be observed, there are two
multiplexers that will make the selection of which operand will be
issued to the functional unit. We call them input multiplexers.
After the operation is completed, there is a multiplexer for each
bus line that will choose what result will continue through that
line. These are the output multiplexers (Figure 2b). As some of
the values of the input context or old results generated by previous
operations can be reused by other functional units, the first input
of each output multiplexer always holds the previous result of the
same bus line. Furthermore, note that in the example used in

Figure 2, the first group supports up to two loads to be executed in
parallel, while in the second group four simple logic/arithmetic
operations are allowed.

Figure 2 – An example of an array’s configuration

4.2 The binary translation algorithm
The binary translation hardware starts working on the first

instruction found after a branch execution, and stops the
translation when it detects an unsupported instruction or another
branch (when no speculative execution is supported). If more than
three instructions were found, a new entry in the cache (based on
FIFO) is created and the data of a special buffer, used to keep the
temporary translation, is saved. This translation relies on a set of
tables, used to keep the information about the sequence of
instructions that is being processed, e.g. the routing of the
operands as well as the configuration of the functional units.
Other intermediate tables are also needed; however, they are used
only in the detection phase. This information is not saved in the
cache since it is not needed during the reconfiguration phase.

The BT algorithm takes advantage of the hierarchal structure
of the reconfigurable array: for each incoming instruction, the first
task is the verification of RAW (read after write) dependences.
The source operands are compared to a bitmap of target registers
of each line (which compose the dependence table). If the current
line and all above do not have that target register equal to one of
the source operands of the current instruction, it can be allocated
in that line, in a column at the first available position from the left,
depending on the group (using the resource table). When this
instruction is allocated, the dependence table is updated in the
correspondent line. Summarizing the dependence information for
each line, our technique increases the size of the window of
instructions, which is one of the major limiting factors of ILP in
superscalar processors, exactly due to the number of comparators
necessary [17]. Finally, the source/target operands from/to the
context bus (the input/output tables) are configured for that
instruction.

For each line there is also the information about what registers
can be written back or saved to the memory (context table).
Hence, it is possible to write results back in parallel to the
execution of other operations. Figure 2c shows an example of how
a sequence of instructions would be allocated in array after
detection and translation.

The algorithm supports functional units with different delays
and functionalities. Moreover, it handles false data dependencies,
and it also performs speculative execution. In this case, each
operand that will be written back has an additional flag indicating
its depth concerning speculation. When the branch relative to that
basic block is taken, it triggers the writes of these correspondent
operands. The speculative policy is based on bimodal branch

Figure 1 – The proposed approach

 1st time Next times

Rec. Cache

Processor

Execute

Load
configuration

BT

Reconfigurable
Array

Save

Load
operands

PC = 0x50 PC = 0x50 PC = 0x50

Translate

Execute Write
Back

1

3
2 5

8

7 6

4

(a)

(b)

(c)

predictor [21]. For each level of the tree of basic blocks, the
counter must achieve the maximum or minimum value (indicating
the way of the branch). When the counter reaches this value, the
instructions corresponding to this basic block are added to that
configuration of the array. The configuration is always indexed by
the first PC address of the whole tree. If a miss speculation
happens a predefined number of times for a given sequence,
achieving the opposite value of the respective counter, that entire
configuration is flushed out and the process is repeated.
4.3 Reconfiguration and execution

The reconfiguration phase involves: the loading of the
configuration bits for the multiplexers, functional units and
immediate values, from the special cache; and fetching of the
operands that will be used by that configuration from the register
bank. A given configuration is indexed in the cache using the PC
of its first instruction, and this address is obtained in the first stage
of the pipeline (through the PC register). This way, since the array
is supposed to start execution in the fourth stage (the execution
stage in our case), there are three cycles available for the array
reconfiguration. In cases three cycles are not enough (for
example, there is a great number of operands to be fetched from
the register bank) the processor will be stalled and wait for the end
of the reconfiguration process.

After the reconfiguration is finished, execution begins.
Memory accesses are done by the LD/ST units, and their access
addresses can be calculated by ALUs located in previous lines,
during execution, allowing memory operations even with those
addresses that are not known at compile time. The operations that
depend on the result of a load are allocated considering a cache hit
as the total load delay. Then, if a miss occurs, the whole array
operation stops until the miss is resolved. Finally, when the
operands are not used anymore for that configuration, they are
written back either in the memory or in the local registers. For
instance, if there are two writes to the same register in a given
configuration, just the last one will be performed, since the first
one was already consumed inside the array by other instructions.

5. Results
In our study we are using an improved VHDL version of the

Minimips processor [26], which is based on the R3000 version.
For area evaluation, we are using the Mentor Leonardo Spectrum
[19] and, for power estimations, Synopsis PowerCompiler [25],
both with the TSMC 0.18u library. The system was evaluated with
the Mibench Benchmark Suite [18]. This suite has been chosen
because it has a larger range of different application behaviors
when compared against other benchmark sets, such as SPEC2000
[18]. We are using all benchmarks with no representative floating
point computations and that could be compiled successfully to the
target architecture.
5.1 Benchmarks evaluation

First, we characterize the algorithms regarding the number of
instructions executed per branch (classifying them as control or
dataflow oriented). As it can be observed in Figure 3b, the
RawAudio (decoding) algorithm is the most control flow oriented
one (a small number of instructions executed per branch) while
the Rijndael (encoding) is the quite opposite. For reconfigurable
architectures in general, the more instructions a basic block (BB)
has, the better, since there is more room for exploiting parallelism.
Furthermore, more branches mean additional paths that can be

taken, increasing the execution time and the area consumed by a
given configuration, when implemented in reconfigurable logic.

Figure 3 – (a) How many BBs are necessary to cover a
certain execution rate considering total execution time

(b) Average size of the Basic Block
Figure 3a shows the results of our investigation on the number

of BBs responsible for a certain percentage of the total number of
basic block execution figures. For instance, in the CRC32
algorithm, just 3 basic blocks are responsible for almost 100% of
all the program execution time. Again, for typical reconfigurable
systems, this type of algorithm suits best: one just needs to
concentrate the design effort on that specific group of basic
blocks, implementing them to reconfigurable logic.

However, other algorithms, such as the widely used JPEG
decoder, have no distinct execution kernels at all. In this
algorithm, to achieve an execution rate of 50% of the total number
of BBs, 20 different BBs are necessary. Hence, if one wished to
have a JPEG speedup of two times, considering ideal
assumptions, all those basic blocks should be implemented into
reconfigurable logic. This situation becomes even more evident if
one considers the wide range of applications embedded processors
are involved nowadays. In a scenario when an embedded system
runs RawAudio decoder, JPEG encoder and decoder, and the
StringSearch, the designer would have to transform approximately
45 different BBs into the reconfigurable logic to achieve 2x
performance improvement. This is why a system with adaptive
characteristics that can explore smaller granularities in a large
number of basic blocks is envisioned as important.
5.2 Performance

In Table 1, we show three different configurations for the array
used in the experiments. For each one we also vary the size of the
reconfiguration cache: 16, 64 and 512 slots, and evaluate the
impact of performing speculation, up to three basic blocks.

Table 1 – Different configurations for the Array

Table 2 (at the end of this work) shows the speed up of the

reconfigurable array for the same three configurations. It is
ordered to show the most dataflow algorithms at the top and the

7.65
4.89
6.25
16.09
3.79
4.04
15.28
22.27
25.45
4.67
7.20
6.51
15.60
7.63
11.24
6.52
6.83
4.81

of BBs

100%

80%

60%

40%

20%

0

% of execution time
#instructions/branch

(a) (b)

C #1 C #2 C #3
#Lines 24 48 150
#Columns 11 16 20
#ALU / line 8 8 12
#Multipliers / line 1 2 2
#Ld/st / line 2 6 6

most control flow ones at the bottom. In Configuration #3 with
speculation, an average performance improvement of more than
2.5 times is demonstrated. Moreover, gains are shown regardless
of the instruction/branch rate, even for very control oriented
algorithms such as RawAudio Decoder and Quicksort, as well as
those which do not have distinct kernels, such as Susan Corners.
Together with these results, we show an extra table at the right,
demonstrating the overall optimization assuming infinite hardware
resources for the array. As it can be observed, with the best
configuration it is possible to get very close to this theoretical
speedup. In fact, the algorithms that can most benefit from
hardware infinite resources are exactly the dataflow ones, since
they demand more lines in the array. They have as most executed
kernels basic blocks with a huge number of instructions, mainly
when speculation is used. On the other hand, in algorithms which
have no distinct kernels, the most important resource to be
increased is the number of slots available in the cache memory.
Figure 4 summarizes the results of Table 2.

Figure 4 – Speed up presented with different configurations

5.3 Power consumption
In this section we analyze the power and energy consumed by

the system. Figure 5 demonstrates the average power consumed
by cycle in the MIPS processor coupled to Array with
configurations #1 and #3 (shown as C#1 and C#3), considering 64
cache slots, and executing the algorithms Rijndael E., Rawaudio
D. and JPEG E., the most control and data flow ones, and a mid-
term, respectively; the same figure also shows the MIPS processor
without the reconfigurable array. The consumption is shown
separated for the core, data and instruction memories,
reconfigurable array and cache, and BT hardware.

Figure 5 – Power consumed by 3 different algorithms in
conf. 1 and 3, with and without speculation, 64 cache slots

In Figure 6 we repeat the same experiment, but now analyzing

the total energy consumption. As the power consumed per cycle is
very similar when executing MIPS+array and just MIPS, but for
the number of cycles is reduced in the first case, energy savings

are demonstrated. Making a deeper analysis, three are the main
reasons for these savings:
• The execution of the instructions in a more effective way in

combinational logic, instead of using the processor path.
• Avoidance of repeated parallelism analysis. As commented

before, there is no necessity of performing the analysis again
and again for the same sequence of code, since DIM saves this
information in its special cache. This is a very important
characteristic, since almost half of the number of pipeline
stages of the Pentium 4 processor [23]; and half of the power
spent the Alpha 21264 processor are related to the extraction of
dependence information among instructions [24].

• As it can be observed in Figure 5, when using DIM, more
power is spent in the core, because of the BT hardware,
reconfigurable array and its cache. On the other hand, there is
no need for fetching instructions, which were already translated
to an array configuration from the main memory, since now
they reside in the reconfigurable cache.

Figure 6 – Repeating the data of Figure 6, for energy
consumption

For configuration #2, with 64 cache slots, the proposed system
consumes 1.73 times less energy on average than the standalone
MIPS core. Moreover, assuming that the MIPS itself would be
enough to handle real time constraints necessary for a given
application, one could reduce the system clock frequency to
achieve exactly the same performance level of the processor - thus
decreasing even more the power and energy consumptions.
5.4 Area evaluation

Table 3a shows the number of functional units and
multiplexers necessary to implement configuration #1 of Table 1,
and what is the number of gates they consume. In the same table
one can also find the area occupied by the DIM hardware. Table
3b shows the number of bits necessary to store one configuration
in the reconfigurable cache. Note that, although 256 bits are
necessary for the Write Bitmap Table, they are not added to the
final total, since it is temporary and used just during detection.
Finally, in Table 3c, the number of Bytes needed for different
cache sizes is presented.

According to [22], the total number of transistors of the old

MIPS R10000 core is 2.4 million. As presented in table 3a, the

N
o

sp
ec

u
la

ti
on

 Specu
lation

16

64

256

cache slots

Speedup

Rijndael Raw D. JPEG E. Rijndael Raw D. JPEG E.

N
o

sp
ec

u
la

ti
on

Sp
ec

u
la

ti
on

M
IP

S

mJ

Unit # Gates
ALU 192 300,288
LD/ST 36 1,968
Multiplier 6 40,134
Input Mux 408 261,936
Output Mux 216 58,752
DIM Hardware 1,024
Total 664,102

Table 3 – Area evaluation for the reconfigurable array

(c)
(a)

(b)

Table #bits
Write Bitmap Table 256
Resource Table 786
Reads Table 1632
Writes Table 576
Context Start 40
Context Current 40
Immediate Table 128
Total 3,202

#Slots #Bytes
2 833
4 1,601
8 3,300
16 6,404
32 13,012
64 25,616

128 51,304
256 102,464

W

Rijndael Raw D. JPEG E. Rijndael Raw D. JPEG E.

N
o

sp
ec

u
la

ti
on

Sp
ec

u
la

ti
on

M
IP

S

array together with the hardware detection occupies 664,102
gates. Considering that one gate is equivalent to 4 transistors,
which would be the amount necessary to implement a NAND or
NOR gates, the whole system would take nearly 2.66 million
transistors to be implemented.

6. Conclusions and future work
This work demonstrated that it is possible to use a

reconfigurable architecture to improve system performance with a
wide range of distinct applications, in a totally transparent process
and with trivial hardware resources. Using speculation, we have
obtained energy savings of up 55% on average and a mean
speedup of more than 2.5 times in the most aggressive
configuration. Currently, we are working on finding the ideal
shape for the reconfigurable array and techniques to switch off
functional units when they are being not used.

7. References
[1] Wall, D. “Limits of instruction-level parallelism”. In Proceedings of

the 4th international conference on Architectural support for
programming languages and operating systems, p.176-188, 1991

[2] Xu, B. Albonesi, D.H. “Methodology for the analysis of dynamic
application parallelism and its application to reconfigurable
computing”. In Proceedings of SPIE, Vol. 3844, p. 78-86, 1999

[3] Venkataramani. G.. Najjar. W.. Kurdahi. F.. Bagherzadeh. N.. Bohm
W.. “A Compiler Framework for Mapping Applications to a Coarse
grained Reconfigurable Computer Architecture”. In Conf. on
Compilers, Architecture and Synthesis for Embedded Systems
(CASES). 2001

[4] Lysecky, R., Stitt, G., Vahid, F., "Warp Processors". In ACM
Transactions on Design Automation of Electronic Systems
(TODAES), pp. 659-681, July 2006

[5] Or-Bach, Z. “Panel: (when) will FPGAs kill ASICs?”. In 38th
Design Automation Conference (DAC), 2001.

[6] Compton K., Hauck, S., “Reconfigurable computing: A survey of
systems and software”. In ACM Computing Surveys, vol. 34, no. 2,
pp. 171-210, June 2002.

[7] Hauck, S., Fry, T., Hosler, M., Kao, J., “The Chimaera
reconfigurable functional unit”. In Proc. IEEE Symp. FPGAs for
Custom Computing Machines, Napa Valley, CA, pp. 87–96, 1997.

[8] Hauser, J. R., Wawrzynek, J., “Garp: a MIPS processor with a
reconfigurable coprocessor”. In Proc. 1997 IEEE Symp. Field
Programmable Custom Computing Machines, pp. 12–21, 1997.

[9] Sankaralingam, k., Nagarajan, R., Liu, H., Kim, C. , Huh, J. , Burger,
D. , Keckler, S. W., Moore C. R., “Exploiting ILP, TLP and DLP
with the Polymorphous TRIPS Architecture”. In Proc. of the 30th Int.
Symp. on Computer Architecture, pp. 422-433, June 2003.

[10] Swanson, S., Michelson, K., Schwerin, A., Oskin. M. “WaveScalar”.
In MICRO-36, Dec. 2003

[11] Goldstein, S. C., Schmit, H., Budiu, M., Cadambi, S., Moe, M.,
Taylor, R.R., "PipeRench: A Reconfigurable Architecture and
Compiler". In IEEE Computer, pp. 70-77, April, 2000

[12] Vassiliadis, S., Gaydadjiev, G. N., Bertels, K.L.M., Panainte, E. M.,
“The Molen Programming Paradigm”. In Proceedings of the Third
International Workshop on Systems, Architectures, Modeling, and
Simulation, pp. 1-10, Greece, July 2003

[13] Lysecky, R., Vahid F., Tan, S., A Study of the Scalability of On-Chip
Routing for Just-in-Time FPGA Compilation"". In IEEE Symposium
on Field-Programmable Custom Computing Machines (FCCM), pp.
57-62, 2005

[14] Clark, N., Kudlur, M., Park, H. Mahlke, S., Flautner, K.,
"Application-Specific Processing on a General-Purpose Core via
Transparent Instruction Set Customization". In International
Symposium on Microarchitecture (MICRO-37), pp. 30-40, Dec. 2004

[15] Gschwind, M., Altman, E., Sathaye, P., Ledak, Appenzeller, D.
“Dynamic and Transparent Binary Translation”. In IEEE Computer,
vol. 3 n. 33, (2000) 54-59

[16] González, A., Tubella, J., Molina, C., “Trace-Level Reuse”. In Int’l
Conf. on Parallel Processing, Sep. 1999

[17] Burns, J.; Gaudiot, J.-L, “SMT layout overhead and scalability”. In
Parallel and Distributed Systems, IEEE Transactions on
On page(s): 142-155, Volume: 13, Issue: 2, Feb 2002

[18] Guthaus, M.R., Ringenberg, J.S., Ernst, D., Austin, T.M., Mudge T.,
Brown, R.B., “MiBench: A Free, Commercially Representative
Embedded Benchmark Suite. 4th Workshop on Workload
Characterization”, Austin, TX, Dec. 2001

[19] Leonardo Spectrum, available at homepage: http://www.mentor.com
[20] Patel S. J., Lumetta, S. S. “rePLay: A Hardware Framework for

Dynamic Optimization”. In IEEE Trans. Comput., vol. 50, no. 6, pp.
590–608, 2001

[21] Smith, J. E. “A study of branch prediction strategies”. In Proceedings
of the 8th annual symposium on Computer Architecture, p.135-148,
May 12-14, 1981

[22] Yeager, K.C. “The Mips R10000 Superscalar Microprocessor,”;
IEEE Micro, pp. 28-40, Apr. 1996

[23] Intel Pentium 4 Homepage -
http://www.intel.com/products/processor/pentium4/index.htm

[24] Wilcox K., Manne, S. "Alpha processors: A history of power issues
and a look to the future". CoolChips Tutorial An Industrial
Perspective on Low Power Processor Design in conjunction with
Micro-33, 1999.

[25] Synopsis PowerCompiler, datasheet available at homepage:
http://www.synopsys.com/products/power/power_ds.pdf

[26] Minimips VHDL available at http://www.opencores.org

 D
at

a
Fl

ow

 C
on

tr
ol

 F
lo

w

Algorithm
Speed Up – Configuration #1 Speed Up – Configuration #2 Speed Up – Configuration #3

No Speculation Speculation No Speculation Speculation No Speculation Speculation
16 64 256 16 64 256 16 64 256 16 64 256 16 64 256 16 64 256

Rijindael E. 1.05 1.20 1.21 1.05 1.24 1.24 1.05 1.71 1.73 1.06 1.55 1.55 1.05 3.46 3.60 1.06 2.68 2.68
Rijindael D. 1.07 1.21 1.21 1.07 1.25 1.25 1.07 1.63 1.64 1.07 1.55 1.55 1.07 3.32 3.33 1.07 2.32 2.32

GSM E. 1.63 1.65 1.68 2.01 2.05 2.13 1.63 1.65 1.68 2.03 2.07 2.17 1.63 1.65 1.69 2.03 2.07 2.19
JPEG E. 1.95 2.04 2.07 1.79 1.88 1.89 2.50 2.72 2.77 3.55 4.27 4.37 2.50 2.72 2.77 3.55 4.27 4.37

SHA 1.90 1.90 1.90 3.81 3.84 3.84 1.90 1.91 1.91 4.80 4.84 4.84 1.90 1.91 1.91 4.80 4.84 4.84
Susan Smothing 1.49 1.60 1.65 2.70 2.99 3.31 1.49 1.61 1.65 2.83 3.14 3.52 1.49 1.61 1.65 2.83 3.14 3.52

CRC 1.53 1.53 1.53 1.92 1.92 1.92 1.53 1.53 1.53 1.92 1.92 1.92 1.53 1.53 1.53 1.92 1.92 1.92
JPEG D. 1.92 2.03 2.04 1.64 1.78 1.78 2.05 2.21 2.22 2.02 2.54 2.55 2.05 2.21 2.22 2.03 2.62 2.63
Patricia 1.49 1.84 1.93 1.58 2.05 2.23 1.49 1.86 1.95 1.64 2.17 2.37 1.49 1.86 1.95 1.64 2.17 2.37

Susan Corners 1.22 1.49 1.72 1.31 1.47 1.91 1.38 1.79 2.17 1.56 1.79 2.64 1.38 1.79 2.17 1.56 1.79 2.64
Susan Edges 1.23 1.42 1.64 1.29 1.48 1.83 1.43 1.70 2.20 1.47 1.74 2.43 1.43 1.70 2.20 1.53 1.81 2.58

Dijkstra 1.59 1.71 1.71 2.03 2.21 2.22 1.59 1.72 1.72 2.04 2.24 2.24 1.59 1.72 1.72 2.04 2.24 2.24
GSM D. 1.28 1.28 1.29 1.27 1.28 1.29 1.62 1.62 1.65 1.48 1.50 1.52 2.79 2.79 2.93 2.37 2.49 2.58
Bitcount 1.76 1.76 1.76 1.83 1.83 1.83 1.76 1.76 1.76 1.83 1.83 1.83 1.76 1.76 1.76 1.83 1.83 1.83

Stringsearch 1.38 1.61 1.86 1.56 2.22 2.77 1.38 1.62 1.89 1.57 2.30 2.96 1.38 1.62 1.89 1.57 2.30 2.96
Quicksort 1.37 1.74 1.74 1.69 2.32 2.33 1.37 1.77 1.77 1.80 2.66 2.67 1.37 1.77 1.77 1.80 2.66 2.67

RawAudio E. 1.60 1.61 1.61 1.98 1.99 2.00 1.60 1.61 1.61 1.98 1.99 2.00 1.60 1.61 1.61 1.98 1.99 2.00
RawAudio D. 1.64 1.64 1.64 1.79 1.79 1.79 1.64 1.64 1.64 1.79 1.79 1.79 1.64 1.64 1.64 1.79 1.79 1.79

Average 1.51 1.63 1.68 1.80 1.98 2.09 1.58 1.78 1.86 2.03 2.33 2.49 1.65 2.04 2.13 2.08 2.50 2.67

Table 2 – Speedups using the reconfigurable array coupled to the MIPS processor

Ideal
No

Spec Spec

5.10 8.05
4.68 7.42
1.70 2.19
2.22 2.64
1.91 4.87
1.65 3.52
1.53 1.92
2.77 4.39
2.19 3.07
2.17 2.66
2.21 2.60
1.72 2.25
3.31 3.68
1.76 1.83
1.89 2.97
1.77 2.67
1.61 2.00
1.64 1.79
2.32 3.36

	Main
	DATE08
	Front Matter
	Table of Contents
	Author Index

