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Abstract 
Embedded systems are becoming increasingly complex. Besides 
the additional processing capabilities, they are characterized by 
high diversity of computational models coexisting in a single 
device. Although reconfigurable architectures have already shown 
to be a potential solution for such systems, they just present 
significant speedups of very specific dataflow oriented kernels. 
Furthermore, reconfigurable fabric is still withheld by the need of 
special tools and compilers, clearly not sustaining backward 
software compatibility. In this paper, we propose a new technique 
to optimize both dataflow and control-flow oriented code in a 
totally transparent process, without the need of any modification 
in the source or binary codes. For that, we have developed a 
Binary Translation algorithm implemented in hardware, which 
works in parallel to a MIPS processor. The proposed mechanism 
is responsible for transforming sequences of instructions at run-
time to be executed on a dynamic coarse-grain reconfigurable 
array, supporting speculative execution. Executing the MIBench 
suite, we show performance improvements of up to 2.5 times, 
while reducing 1.7 times the required energy, using trivial 
hardware resources. 
 
1. Introduction 

While the number of embedded systems is growing, a new 
trend can be observed: the presence of multi-functional devices, 
which perform a wide range of different applications with diverse 
behaviors, e.g. present day portable phones or PDAs. As a 
consequence, simple processors are not enough to handle the 
computational requirements of these new systems anymore, thus 
forcing designers to create novel solutions to increase their 
performance, while maintaining power dissipation as low as 
possible. Approaches like superscalar processors are readily 
present in the market, but the limited and time-varying instruction 
level parallelism (ILP) available in applications [1][2], combined 
with the area and power costs for the search of the parallelism 
itself, preclude the employment of these processors as an effective 
organization to be used in low-energy devices.  

Thanks to the advance of the manufacturing technologies, the 
availability of silicon area for new designs is increasing. In this 
scenario, reconfigurable architectures appear to be an attractive 
solution. By translating a sequence of code into combinational 
logic, one can have huge performance gains with energy savings, 
at the price of extra area [3][4]. At the same time that 
reconfigurable computing can explore the ILP of the applications, 
it can also speed up sequences of data dependent instructions, 
which is its main advantage when comparing to traditional 
architectures. Furthermore, as reconfigurable architectures are 

highly based on regular circuits, another advantage emerges: it is 
common sense that as the more the technology shrinks to 65 
nanometers and below, the harder it will be to print the geometries 
employed today, directly affecting the yield [5]. Moreover, 
because circuit customization is a very expensive process, regular 
circuits customized in the field are also considered as the new low 
cost solution.  

However, reconfigurable systems have two main drawbacks. 
The first one is that they are designed to handle very data 
intensive or streaming workloads. This means that the main 
design strategy is to consider the target applications as having 
very distinct kernels for optimization. By speeding up small parts 
of the software, huge gains would be achieved. In contrast, as 
commented before, the number of applications that a single 
embedded device must handle is growing. Nowadays, it is very 
common to find embedded systems with ten or more functions 
with radically different behaviors.  

The second problem is that the process of mapping pieces of 
code to reconfigurable logic usually involves some kind of 
transformation, manual or using special languages or tool chains. 
These transformations modify somehow the source or the binary 
code, precluding the wide spread usage of reconfigurable systems. 
As the old X86 ISA has been showing, sustaining binary 
compatibility, allowing legacy code reuse and traditional 
programming paradigms are key factors to reduce the design cycle 
and maintain backward compatibility. 

Based on these two main concerns discussed above, our work 
proposes the use of a technique called Dynamic Instruction 
Merging (DIM), which is a Binary Translation (BT) method 
implemented in hardware. It is used to detect and transform 
sequences of instructions at run time to be executed in a 
reconfigurable array. DIM is a totally transparent process: there is 
no need for changing the code before its execution at all, allowing 
full binary code reuse. Moreover, the employed reconfigurable 
unit is a coarse-grained array, composed of simple functional units 
and multiplexers. Being not limited to the complexity of fine-
grain configurations and using the special BT mechanism, the 
proposed system can also speeds up control-flow oriented 
software, without any distinct kernel subject of optimization.  

In this work we show why our approach is suitable for this new 
class of heterogeneous embedded systems, demonstrating the BT 
implementation, the structure of the reconfigurable hardware and 
how they interact with each other. This paper is organized as 
follows. Section 2 shows a review of the existing reconfigurable 
processors and some other approaches regarding dynamic 
translation of instructions. Section 3 discusses what our 
contribution is considering the whole context. Section 4 
demonstrates the system, looking at the structure of the 

978-3-9810801-3-1/DATE08 © 2008 EDAA 

 



reconfigurable array and the algorithm itself. Section 5 presents 
the simulation environment and results. Finally, the last section 
draws conclusions and introduces future work. 

2. Related work 
2.1 Reconfigurable architectures 

Careful classification study in respect to coupling, granularity 
and instructions type is presented in [6]. In accordance with this 
study, in this section we discuss only the most relevant work.  For 
instance, processors like Chimaera [7] have tightly coupled 
reconfigurable array in the processor core, limited to 
combinational logic only. The array is, in fact, an additional 
functional unit (FU) in the processor pipeline, sharing the 
resources with all normal FUs. This simplifies the control logic 
and diminishes the communication overhead between the 
reconfigurable array and the rest of the system.  The GARP 
machine [8] is a MIPS compatible processor with a loosely 
coupled reconfigurable array. The communication is done using 
dedicated move instructions.  

More recently, new reconfigurable architectures, very similar 
to the dataflow approaches, were proposed. For instance, TRIPS is 
based on a hybrid von-Neumann/dataflow architecture that 
combines an instance of coarse-grained, polymorphous grid 
processor core with an adaptive on-chip memory system [9]. 
TRIPS uses three different execution modes, focusing on 
instruction-, data- or thread- level parallelism. Wavescalar [10], 
on the other hand, totally abandons the program counter and the 
linear von-Neumann execution model that is limiting the amount 
of exploited parallelism. In agreement with the previous 
examples, Piperench [11] and Molen [12] are also reconfigurable 
machines relying on compiler driven resource allocation.  
2.2 Dynamic detection and reconfiguration 

In order to avoid recompilation, recent work proposed a 
reconfigurable system unifying two ideas: Binary Translation 
(BT) [15], where a system (implemented in hardware or software) 
is responsible for monitoring, analyzing and transforming parts of 
the binary code of a running program to provide means to enhance 
the performance; and Trace Reuse [16], which relies on the idea 
that sequences of instructions with the same operands will be 
repeated a large number of times during program execution. As a 
result, the reconfigurable process is transparent, since there is no 
need for any modifications in the program binary code. 
Consequently, such approach does not require extra designer 
effort and causes no disruption to the standard tool flow used 
during the software development.  

Stitt et al. [4] [13] presented the first studies about the benefits 
and feasibility of dynamic partitioning using reconfigurable logic, 
showing good results for a number of popular embedded system 
benchmarks. This approach, called warp processing, is based on a 
complex SoC. It is composed by a microprocessor to execute the 
application software, another microprocessor where a simplified 
CAD algorithm runs, local memory and a dedicated FPGA array. 
Firstly, the microprocessor executes the original binary code 
while a profiler monitors the instructions in order to detect critical 
regions. Next, the CAD software decompiles the application to a 
control flow graph, synthesizes it and maps the circuit onto a 
simplified FPGA structure. At last the binary code is modified to 
use the generated hardware blocks. However, even if the CAD 
system used is very simplified, it requires significant resources: up 
to 8 MB of memory are necessary for its execution. Another 

deficiency is related to the FPGA: besides the long latency and 
consumed area, it is also power inefficient due to the excessive 
switches and the considerable amount of static power. Moreover, 
because of the memory footprint required for keeping 
configurations, this technique is just limited to critical parts of the 
software, working at its best just in very particular programs, such 
as the filters based ones. 

In [14] a coarse-grain array, composed by simple functional 
units and tightly coupled to an ARM processor, is presented. This 
array is called Configurable Compute Array (CCA). Feeding the 
CCA involves two steps: the discovery of which subgraphs are 
suitable for running on the CCA, and their replacement by 
microops in the instruction stream. Two alternative approaches 
are presented: static and dynamic. Static discovery finds 
subgraphs for the CCA at compile time. Those are marked in the 
machine code by using two additional instructions, so that a 
replacement mechanism can insert the appropriate CCA microops 
dynamically. In this case, as the code is changed, the backward 
compatibility is lost. Dynamic discovery, in turn, assumes the use 
of a trace cache to perform sub-graph discovery on the retiring 
instruction stream. This technique uses a very complex graph 
analysis, based on RePlay [20], leading to a huge memory 
overhead. Because of that, just high-level simulations using the 
Simplescalar Toolset are reported. No measurements are given in 
terms of area overhead, power consumption and timing and there 
are no details about how a CGF is transformed to an array’s 
configuration. The overheads, the detection and reconfiguration 
delays are not discussed at all. Moreover, the CCA does not 
support memory operations or shifts, limiting its field of 
application and, as a consequence, it supports only limited number 
of inputs and outputs.  

Despite all the aforementioned drawbacks, works in [4] and 
[20] show the potential of dynamically transforming parts of the 
software to reconfigurable logic execution.  
3. Proposed approach 

Our work is based on a special BT hardware called Dynamic 
Instruction Merging (DIM). DIM is designed to detect and 
transform instruction groups for reconfigurable hardware 
execution. As can be observed in Figure 1, this is done 
concurrently while the main processor fetches other instructions. 
When a sequence of instructions is found, following given 
policies that will be explained later, a binary translation is applied 
to it. Thereafter, this configuration is saved in a special cache, and 
indexed by the program counter (PC). 

The next time the saved sequence is found, the dependence 
analysis is no longer necessary: the processor loads the previously 
stored configuration from the special cache, the operands from the 
register bank, and activate the reconfigurable hardware as 
functional unit. Then, the array executes that configuration in 
hardware (including write back of the results), instead of normal 
processor instructions. Finally, the PC is updated, in order to 
continue with the execution of the normal (not translated) 
instructions. This way, repetitive dependence analysis for the 
same sequence of instructions is avoided. Depending on the size 
of the special cache used to store the configurations, the 
optimization can be extended to the entire application, not being 
limited to very few hot spots. Moreover, both the DIM engine and 
the reconfigurable array are designed to work in parallel to the 
processor and do not introduce any delay overhead or penalties 
for critical path of the pipeline structure. 



 
 
 
 
 
 
 
 
 
 
 

Comparing to the techniques cited in section 2, our approach 
makes use of a coarse grain reconfigurable unit allowing 
implementation in any technology, not being limited to FPGAs 
only. In addition, we use binary translation to avoid source code 
recompilation or the utilization of extra tools, making the 
optimization process totally transparent to the programmer.  
Adding to the fact that our array is not limited to the complexity 
of fine-grain configurations, the binary code detection and 
translation algorithm is very simple. It can be implemented using 
trivial hardware resources, in contrast to the complex on-chip 
CAD software or graph analyzers used in the related work.  

4. Description of the system 
4.1 Architecture of the array 

The reconfigurable unit is a dynamic coarse-grain array tightly 
coupled to the processor. It works as an additional functional unit 
in the execution stage of the pipeline, using similar approach as 
Chimaera [7]. This way, no external accesses (in respect to the 
processor) to the array are necessary.  

An overview of its general organization is shown in Figure 2. 
The array is two dimensional, and each instruction is allocated in 
an intersection between one row and one column. If two 
instructions do not have data dependences, they can be executed 
in parallel, in the same row.  Each column is homogeneous, 
containing a determined number of ordinary functional units of a 
particular type, e.g. ALUs, shifters, multipliers etc. Depending on 
the delay of each functional unit, more than one operation can be 
executed within one processor equivalent cycle. It is the case of 
the simple arithmetic ones. On the other hand, more complex 
operations, such as multiplications, usually take longer to be 
finished. The delay is dependent of the technology and the way 
the functional unit was implemented.  Load/store (LD/ST) units 
remain in a different group of the array. The number of parallel 
units in this group depends on the amount of ports available in the 
memory. The current version of the reconfigurable array does not 
support floating point operations. 

For the input operands, there is a set of buses that receive the 
values from the registers. These buses will be connected to each 
functional unit, and a multiplexer is responsible for choosing the 
correct value (Figure 2a). As can be observed, there are two 
multiplexers that will make the selection of which operand will be 
issued to the functional unit. We call them input multiplexers. 
After the operation is completed, there is a multiplexer for each 
bus line that will choose what result will continue through that 
line. These are the output multiplexers (Figure 2b). As some of 
the values of the input context or old results generated by previous 
operations can be reused by other functional units, the first input 
of each output multiplexer always holds the previous result of the 
same bus line. Furthermore, note that in the example used in 

Figure 2, the first group supports up to two loads to be executed in 
parallel, while in the second group four simple logic/arithmetic 
operations are allowed.  

 
 
 
 
 
 
 
 
 
 

Figure 2 – An example of an array’s configuration 

4.2 The binary translation algorithm 
The binary translation hardware starts working on the first 

instruction found after a branch execution, and stops the 
translation when it detects an unsupported instruction or another 
branch (when no speculative execution is supported). If more than 
three instructions were found, a new entry in the cache (based on 
FIFO) is created and the data of a special buffer, used to keep the 
temporary translation, is saved. This translation relies on a set of 
tables, used to keep the information about the sequence of 
instructions that is being processed, e.g. the routing of the 
operands as well as the configuration of the functional units. 
Other intermediate tables are also needed; however, they are used 
only in the detection phase. This information is not saved in the 
cache since it is not needed during the reconfiguration phase. 

The BT algorithm takes advantage of the hierarchal structure 
of the reconfigurable array: for each incoming instruction, the first 
task is the verification of RAW (read after write) dependences. 
The source operands are compared to a bitmap of target registers 
of each line (which compose the dependence table). If the current 
line and all above do not have that target register equal to one of 
the source operands of the current instruction, it can be allocated 
in that line, in a column at the first available position from the left, 
depending on the group (using the resource table). When this 
instruction is allocated, the dependence table is updated in the 
correspondent line. Summarizing the dependence information for 
each line, our technique increases the size of the window of 
instructions, which is one of the major limiting factors of ILP in 
superscalar processors, exactly due to the number of comparators 
necessary [17]. Finally, the source/target operands from/to the 
context bus (the input/output tables) are configured for that 
instruction.  

For each line there is also the information about what registers 
can be written back or saved to the memory (context table). 
Hence, it is possible to write results back in parallel to the 
execution of other operations. Figure 2c shows an example of how 
a sequence of instructions would be allocated in array after 
detection and translation. 

The algorithm supports functional units with different delays 
and functionalities. Moreover, it handles false data dependencies, 
and it also performs speculative execution. In this case, each 
operand that will be written back has an additional flag indicating 
its depth concerning speculation. When the branch relative to that 
basic block is taken, it triggers the writes of these correspondent 
operands. The speculative policy is based on bimodal branch 

Figure 1 – The proposed approach 
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predictor [21]. For each level of the tree of basic blocks, the 
counter must achieve the maximum or minimum value (indicating 
the way of the branch). When the counter reaches this value, the 
instructions corresponding to this basic block are added to that 
configuration of the array. The configuration is always indexed by 
the first PC address of the whole tree. If a miss speculation 
happens a predefined number of times for a given sequence, 
achieving the opposite value of the respective counter, that entire 
configuration is flushed out and the process is repeated. 
4.3 Reconfiguration and execution 

The reconfiguration phase involves: the loading of the 
configuration bits for the multiplexers, functional units and 
immediate values, from the special cache; and fetching of the 
operands that will be used by that configuration from the register 
bank. A given configuration is indexed in the cache using the PC 
of its first instruction, and this address is obtained in the first stage 
of the pipeline (through the PC register). This way, since the array 
is supposed to start execution in the fourth stage (the execution 
stage in our case), there are three cycles available for the array 
reconfiguration. In cases three cycles are not enough (for 
example, there is a great number of operands to be fetched from 
the register bank) the processor will be stalled and wait for the end 
of the reconfiguration process. 

After the reconfiguration is finished, execution begins. 
Memory accesses are done by the LD/ST units, and their access 
addresses can be calculated by ALUs located in previous lines, 
during execution, allowing memory operations even with those 
addresses that are not known at compile time. The operations that 
depend on the result of a load are allocated considering a cache hit 
as the total load delay. Then, if a miss occurs, the whole array 
operation stops until the miss is resolved. Finally, when the 
operands are not used anymore for that configuration, they are 
written back either in the memory or in the local registers. For 
instance, if there are two writes to the same register in a given 
configuration, just the last one will be performed, since the first 
one was already consumed inside the array by other instructions. 

5. Results 
In our study we are using an improved VHDL version of the 

Minimips processor [26], which is based on the R3000 version. 
For area evaluation, we are using the Mentor Leonardo Spectrum 
[19] and, for power estimations, Synopsis PowerCompiler [25], 
both with the TSMC 0.18u library. The system was evaluated with 
the Mibench Benchmark Suite [18]. This suite has been chosen 
because it has a larger range of different application behaviors 
when compared against other benchmark sets, such as SPEC2000 
[18]. We are using all benchmarks with no representative floating 
point computations and that could be compiled successfully to the 
target architecture.  
5.1 Benchmarks evaluation 

First, we characterize the algorithms regarding the number of 
instructions executed per branch (classifying them as control or 
dataflow oriented). As it can be observed in Figure 3b, the 
RawAudio (decoding) algorithm is the most control flow oriented 
one (a small number of instructions executed per branch) while 
the Rijndael (encoding) is the quite opposite. For reconfigurable 
architectures in general, the more instructions a basic block (BB) 
has, the better, since there is more room for exploiting parallelism. 
Furthermore, more branches mean additional paths that can be 

taken, increasing the execution time and the area consumed by a 
given configuration, when implemented in reconfigurable logic.  

 
 

 
 
 

 
 
 
 
 
 
 
 

 
Figure 3 – (a) How many BBs are necessary to cover a 
certain execution rate considering total execution time          

(b) Average size of the Basic Block 
Figure 3a shows the results of our investigation on the number 

of BBs responsible for a certain percentage of the total number of 
basic block execution figures. For instance, in the CRC32 
algorithm, just 3 basic blocks are responsible for almost 100% of 
all the program execution time. Again, for typical reconfigurable 
systems, this type of algorithm suits best: one just needs to 
concentrate the design effort on that specific group of basic 
blocks, implementing them to reconfigurable logic.  

However, other algorithms, such as the widely used JPEG 
decoder, have no distinct execution kernels at all. In this 
algorithm, to achieve an execution rate of 50% of the total number 
of BBs, 20 different BBs are necessary. Hence, if one wished to 
have a JPEG speedup of two times, considering ideal 
assumptions, all those basic blocks should be implemented into 
reconfigurable logic. This situation becomes even more evident if 
one considers the wide range of applications embedded processors 
are involved nowadays. In a scenario when an embedded system 
runs RawAudio decoder, JPEG encoder and decoder, and the 
StringSearch, the designer would have to transform approximately 
45 different BBs into the reconfigurable logic to achieve 2x 
performance improvement. This is why a system with adaptive 
characteristics that can explore smaller granularities in a large 
number of basic blocks is envisioned as important. 
5.2 Performance 

In Table 1, we show three different configurations for the array 
used in the experiments. For each one we also vary the size of the 
reconfiguration cache: 16, 64 and 512 slots, and evaluate the 
impact of performing speculation, up to three basic blocks. 

Table 1 – Different configurations for the Array 

 

 
 
 

 
Table 2 (at the end of this work) shows the speed up of the 

reconfigurable array for the same three configurations. It is 
ordered to show the most dataflow algorithms at the top and the 
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most control flow ones at the bottom. In Configuration #3 with 
speculation, an average performance improvement of more than 
2.5 times is demonstrated. Moreover, gains are shown regardless 
of the instruction/branch rate, even for very control oriented 
algorithms such as RawAudio Decoder and Quicksort, as well as 
those which do not have distinct kernels, such as Susan Corners. 
Together with these results, we show an extra table at the right, 
demonstrating the overall optimization assuming infinite hardware 
resources for the array. As it can be observed, with the best 
configuration it is possible to get very close to this theoretical 
speedup. In fact, the algorithms that can most benefit from 
hardware infinite resources are exactly the dataflow ones, since 
they demand more lines in the array. They have as most executed 
kernels basic blocks with a huge number of instructions, mainly 
when speculation is used. On the other hand, in algorithms which 
have no distinct kernels, the most important resource to be 
increased is the number of slots available in the cache memory. 
Figure 4 summarizes the results of Table 2. 

 
Figure 4 – Speed up presented with different configurations 

5.3 Power consumption 
In this section we analyze the power and energy consumed by 

the system. Figure 5 demonstrates the average power consumed 
by cycle in the MIPS processor coupled to Array with 
configurations #1 and #3 (shown as C#1 and C#3), considering 64 
cache slots, and executing the algorithms Rijndael E., Rawaudio 
D. and JPEG E., the most control and data flow ones, and a mid-
term, respectively; the same figure also shows the MIPS processor 
without the reconfigurable array. The consumption is shown 
separated for the core, data and instruction memories, 
reconfigurable array and cache, and BT hardware.  
 
 
 
 
 
 
 
 
 
 
 

Figure 5 – Power consumed by 3 different algorithms in 
conf. 1 and 3, with and without speculation, 64 cache slots 

 
In Figure 6 we repeat the same experiment, but now analyzing 

the total energy consumption. As the power consumed per cycle is 
very similar when executing MIPS+array and just MIPS, but for 
the number of cycles is reduced in the first case, energy savings 

are demonstrated. Making a deeper analysis, three are the main 
reasons for these savings: 
• The execution of the instructions in a more effective way in 

combinational logic, instead of using the processor path.  
• Avoidance of repeated parallelism analysis. As commented 

before, there is no necessity of performing the analysis again 
and again for the same sequence of code, since DIM saves this 
information in its special cache. This is a very important 
characteristic, since almost half of the number of pipeline 
stages of the Pentium 4 processor [23]; and half of the power 
spent the Alpha 21264 processor are related to the extraction of 
dependence information among instructions [24].  

• As it can be observed in Figure 5, when using DIM, more 
power is spent in the core, because of the BT hardware, 
reconfigurable array and its cache.  On the other hand, there is 
no need for fetching instructions, which were already translated 
to an array configuration from the main memory, since now 
they reside in the reconfigurable cache. 

 
 
 
 
 

 
 

Figure 6 – Repeating the data of Figure 6, for energy 
consumption 

For configuration #2, with 64 cache slots, the proposed system 
consumes 1.73 times less energy on average than the standalone 
MIPS core. Moreover, assuming that the MIPS itself would be 
enough to handle real time constraints necessary for a given 
application, one could reduce the system clock frequency to 
achieve exactly the same performance level of the processor - thus 
decreasing even more the power and energy consumptions. 
5.4 Area evaluation 

Table 3a shows the number of functional units and 
multiplexers necessary to implement configuration #1 of Table 1, 
and what is the number of gates they consume. In the same table 
one can also find the area occupied by the DIM hardware. Table 
3b shows the number of bits necessary to store one configuration 
in the reconfigurable cache. Note that, although 256 bits are 
necessary for the Write Bitmap Table, they are not added to the 
final total, since it is temporary and used just during detection. 
Finally, in Table 3c, the number of Bytes needed for different 
cache sizes is presented. 

 
 
 
 
 
 
 

 
 
 
According to [22], the total number of transistors of the old 

MIPS R10000 core is 2.4 million. As presented in table 3a, the 
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Unit # Gates 
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LD/ST 36 1,968 
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Table 3 – Area evaluation for the reconfigurable array 
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array together with the hardware detection occupies 664,102 
gates. Considering that one gate is equivalent to 4 transistors, 
which would be the amount necessary to implement a NAND or 
NOR gates, the whole system would take nearly 2.66 million 
transistors to be implemented. 

6. Conclusions and future work 
This work demonstrated that it is possible to use a 

reconfigurable architecture to improve system performance with a 
wide range of distinct applications, in a totally transparent process 
and with trivial hardware resources. Using speculation, we have 
obtained energy savings of up 55% on average and a mean 
speedup of more than 2.5 times in the most aggressive 
configuration. Currently, we are working on finding the ideal 
shape for the reconfigurable array and techniques to switch off 
functional units when they are being not used.  
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Algorithm 
Speed Up – Configuration #1 Speed Up – Configuration #2 Speed Up – Configuration #3 

No Speculation Speculation No Speculation Speculation No Speculation Speculation 
16 64 256 16 64 256 16 64 256 16 64 256 16 64 256 16 64 256 

Rijindael E. 1.05 1.20 1.21 1.05 1.24 1.24 1.05 1.71 1.73 1.06 1.55 1.55 1.05 3.46 3.60 1.06 2.68 2.68 
Rijindael D. 1.07 1.21 1.21 1.07 1.25 1.25 1.07 1.63 1.64 1.07 1.55 1.55 1.07 3.32 3.33 1.07 2.32 2.32 

GSM E. 1.63 1.65 1.68 2.01 2.05 2.13 1.63 1.65 1.68 2.03 2.07 2.17 1.63 1.65 1.69 2.03 2.07 2.19 
JPEG E. 1.95 2.04 2.07 1.79 1.88 1.89 2.50 2.72 2.77 3.55 4.27 4.37 2.50 2.72 2.77 3.55 4.27 4.37 

SHA 1.90 1.90 1.90 3.81 3.84 3.84 1.90 1.91 1.91 4.80 4.84 4.84 1.90 1.91 1.91 4.80 4.84 4.84 
Susan Smothing 1.49 1.60 1.65 2.70 2.99 3.31 1.49 1.61 1.65 2.83 3.14 3.52 1.49 1.61 1.65 2.83 3.14 3.52 

CRC 1.53 1.53 1.53 1.92 1.92 1.92 1.53 1.53 1.53 1.92 1.92 1.92 1.53 1.53 1.53 1.92 1.92 1.92 
JPEG D. 1.92 2.03 2.04 1.64 1.78 1.78 2.05 2.21 2.22 2.02 2.54 2.55 2.05 2.21 2.22 2.03 2.62 2.63 
Patricia 1.49 1.84 1.93 1.58 2.05 2.23 1.49 1.86 1.95 1.64 2.17 2.37 1.49 1.86 1.95 1.64 2.17 2.37 

Susan Corners 1.22 1.49 1.72 1.31 1.47 1.91 1.38 1.79 2.17 1.56 1.79 2.64 1.38 1.79 2.17 1.56 1.79 2.64 
Susan Edges 1.23 1.42 1.64 1.29 1.48 1.83 1.43 1.70 2.20 1.47 1.74 2.43 1.43 1.70 2.20 1.53 1.81 2.58 

Dijkstra 1.59 1.71 1.71 2.03 2.21 2.22 1.59 1.72 1.72 2.04 2.24 2.24 1.59 1.72 1.72 2.04 2.24 2.24 
GSM D. 1.28 1.28 1.29 1.27 1.28 1.29 1.62 1.62 1.65 1.48 1.50 1.52 2.79 2.79 2.93 2.37 2.49 2.58 
Bitcount 1.76 1.76 1.76 1.83 1.83 1.83 1.76 1.76 1.76 1.83 1.83 1.83 1.76 1.76 1.76 1.83 1.83 1.83 

Stringsearch 1.38 1.61 1.86 1.56 2.22 2.77 1.38 1.62 1.89 1.57 2.30 2.96 1.38 1.62 1.89 1.57 2.30 2.96 
Quicksort 1.37 1.74 1.74 1.69 2.32 2.33 1.37 1.77 1.77 1.80 2.66 2.67 1.37 1.77 1.77 1.80 2.66 2.67 

RawAudio E. 1.60 1.61 1.61 1.98 1.99 2.00 1.60 1.61 1.61 1.98 1.99 2.00 1.60 1.61 1.61 1.98 1.99 2.00 
RawAudio D. 1.64 1.64 1.64 1.79 1.79 1.79 1.64 1.64 1.64 1.79 1.79 1.79 1.64 1.64 1.64 1.79 1.79 1.79 

Average 1.51 1.63 1.68 1.80 1.98 2.09 1.58 1.78 1.86 2.03 2.33 2.49 1.65 2.04 2.13 2.08 2.50 2.67 

Table 2 – Speedups using the reconfigurable array coupled to the MIPS processor 

Ideal 
No 

Spec Spec 

5.10 8.05 
4.68 7.42 
1.70 2.19 
2.22 2.64 
1.91 4.87 
1.65 3.52 
1.53 1.92 
2.77 4.39 
2.19 3.07 
2.17 2.66 
2.21 2.60 
1.72 2.25 
3.31 3.68 
1.76 1.83 
1.89 2.97 
1.77 2.67 
1.61 2.00 
1.64 1.79 
2.32 3.36 
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