
Merged Computation for Whirlpool Hashing

Ricardo Chaves1,2, Georgi Kuzmanov2, Leonel Sousa1, and Stamatis Vassiliadis2

1 Instituto Superior Técnico/INESC-ID. Portugal. http://sips.inesc-id.pt/
2 Computer Engineering Lab, TUDelft. The Netherlands. http://ce.et.tudelft.nl/

Abstract
This paper presents an improved hardware structure for

the computation of the Whirlpool hash function. By merging
the round key computation with the data compression and
by using embedded memories to perform part of the Galois
Field (28) multiplication, a core can be implemented in just
43% of the area of the best current related art while achiev-
ing a 12% higher throughput. The proposed core improves
the Throughput per Slice compared to the state of the art
by 160%, achieving a throughput of 5.47 Gbit/s with 2110
slices and 32 BRAMs on a VIRTEX II Pro FPGA. Results
for a real application are also presented by considering a
polymorphic computational approach.

1 Introduction
Currently, the need for digital authentication and digi-

tal documents validation is of vital importance in most data
transmission systems and secure environments. One class
of algorithms used in such applications is designated by
hash functions. In the near past, the most common hash
functions were the MD5 and SHA-1; however, collision at-
tacks have been reported for both. While for SHA-1 these
attacks still require massive computations and are consid-
ered practically unfeasible for the time being [10], the MD5
hash function is now considered unsafe since collision at-
tacks can be made on a standard desktop computer [5]. To
overcome the weaknesses of SHA-1, a 256 to 512-bit hash
function, SHA-2, is becoming more generally used. How-
ever, the SHA-2 is computational similar to SHA-1 and fu-
ture attacks can be expected. In 2003, the Whirlpool hash
function was introduced in the New European Schemes for
Signatures, Integrity, and Encryption (NESSIE). This new
hash function has a similar security level to SHA-2 (with
512 nits), while at the same time suggesting a better perfor-
mance [6].

In this paper a novel, compact, hardware implementation
of the Whirlpool hash function is presented. The computa-
tional structure is improved by:

• Merging the S-Boxes with the Galois Field (28) multi-
plication in embedded memories;

• Merging the round key computation with the data
hashing.

In order to validate and test the structure, the proposed core
has been implemented on a XILINX VIRTEX II Pro FPGA.
Implementation results suggest a throughput of 5.47 Gbit/s,
using 2110 slices and 32 BRAMs, resulting on a Through-
put/Slice metric of 2.59 Mbit/s per Slice.

Comparative analysis with current state of the art sug-
gests an efficiency improvement in Throughput/Slice, com-
pared to related art of 162%. That is, a 12% higher through-
put, achieved with only 43% of the reconfigurable logic
used by the best related works.

The remainder of the paper is organized as follows. Sec-
tion 2 describes the Whirlpool hash function and the main
characteristics of the algorithm. Section 3 presents the pro-
posed structure, where part of the computation is performed
in lookup tables and the key computation and the data com-
pression are merged. The obtained experimental results are
used in section 4 for a comparative evaluation with the re-
lated art. Section 5 concludes the paper with some final
remarks.

2 Whirlpool Hash Function

Whirlpool is a collision-resistant 512-bit hash function
operating on messages up to 2256 bit long. It is based on
a Miyaguchi-Preneel hash compression function and on the
Rijndael algorithm [3].

The core computation of the Whirlpool hash function
consists of 3 computation layers and one key addition, as
depicted in Figure 1. These calculations are repeated for 10
rounds. The 512 bit input value is treated as an 8 by 8 byte
matrix. The first computation layer is the non-linear layer
(γ), where a byte substitution is performed for each byte of
the 512 bit input [8]. In the second computation layer (π),
the replaced bytes of layer γ are rotated. Since these per-
mutations are fixed, they can be hardwired in a hardware
implementation. The third computational layer is the diffu-
sion layer θ. This layer consists of a modular multiplication
applied to each row of the input matrix. The calculation of
the first output byte (b00) from θ is presented in (1) where

1

a0i are the output bytes from the cyclical permutation layer.

b00 =a00 ⊕ [a01 ⊗ 09] ⊕ [a02 ⊗ 02] ⊕ [a03 ⊗ 05]

⊕ [a04 ⊗ 08] ⊕ a05 ⊕ [a06 ⊗ 04] ⊕ a07 (1)

Finally the expanded key is added, in GF(28), correspond-
ing to the XOR bitwise logical operation. These operations
are depicted in Figure 1.

512

Round
Key

512

512

64

64

64

64

512512

x4

512

[]u

u x8
x5
x2
x9

S

S

S

.

.

.

8 8

8 8

Figure 1: w[] Whirlpool operations.

The output of one round is used as the input of the next
round. After 10 rounds the output value is added, to the
partial Digest Message (DM). This generates the new partial
DM (Hi), has presented in (2). Di is the i-th 512-bit block
of the input message. The final DM is given by the last
partial digest message (Ht) after all input blocks have been
processed.

Hi = W [Di ⊕ Hi−1] ⊕ Di ⊕ Hi−1 ;

DM = Ht . (2)

Key schedule expansion: As depicted in Figure 1, each
round of the digest message calculation requires a round
key. The key schedule expands the initial 512-bit key, also
designated by Initialization Vector (IV), into a sequence of
round keys K

j

i where j is the round and i corresponds to
the data block being computed. This key expansion is per-
formed by applying the Whirlpool core computation to the
key, as depicted in (3). The input value for each round is the
value of the partial digest message Hi calculated in (2). For
the first round, the IV is used.

K0

i = Hi−1 for i ≥ 1 ;

K
j

i = W [Kj−1

i] for j ≥ 1 . (3)

For the round keys computation, a predefined round de-
pendent constant is used [8]. For the computation of each
Whirlpool round, two w[] operations have to be performed.

3 Proposed Whirlpool Design

In this section, a hardware structure for the Whirlpool
hash function implementations is presented. By exploring
some of the computational and mathematical characteristics
of this algorithm a faster and more efficient hardware im-
plementation is achieved. A lookup table based Whirlpool

implementation is described as well as the computational
merging of the key computation with the data compression.

Lookup table implementation of Whirlpool: Identi-
cally to the AES algorithm, where a more efficient hardware
can be achieved by using T-Boxes [2], in the Whirlpool
function the non-linear layer γ and the diffusion layer θ

can also be merged. This is possible, since the operations
are performed at the byte level and the cyclical permuta-
tion π layer can be performed before the non-linear layer γ.
With this modification, the main computational part of the
Whirlpool calculation, which resides in the substitution op-
eration of layer γ and part of the GF (28) polynomial mul-
tiplication of layer θ, can be computed by lookup tables, as
depicted in Figure 2. For the 512-bit message, 64 lookup
tables of 8-bit input and 64-bit output are required.

8 64
S8 8

x4
x8
x5
x2
x9

Figure 2: Whirlpool Lookup table (pW).

The output of the lookup table is the individual input
bytes multiplied by the required coefficients. To conclude
the computation of layer θ, the corresponding bytes of
the polynomial multiplication are added. To complete the
Whirlpool core operation, only the round key has to be
added.

In order to reduce the size of the lookup tables by half,
a less granular computational structure can be used. 32 bit
output lookup tables can be employed, by analyzing and
reducing the polynomial expression outputted by the lookup
table. The 8 coefficients of the multiplied polynomial are:

(01, 01, 04, 01, 08, 05, 02, 09). (4)

The first and trivial reduction, lays in the removal of the
computational redundancy of the three multiplications by
01. The second reduction lays in the computation of some
of the coefficients outside the lookup table. This external
computation reduces the size of the lookup table but has to
be properly chosen in order not to significantly affect the
critical path of the overall computation. Analyzing the co-
efficients, it becomes clear that the most efficient option
is the computation of multiplication by 02 from the com-
puted multiplication by 01. Identically, the multiplication
by 08 can be computed from the multiplication by 04. With
this computational structure, a good compromise between
a coarse grain and a fine grain implementation of the algo-
rithm is achieved.

Merging computational blocks: The core computation
of Whirlpool, described in Figure 1, is used in both the

2

data and the round key computation. This additional com-
putation is advantageous for the safety of the algorithm,
also making its implementation more resistant to Differen-
tial Power Analysis (DPA) attacks [8]. However, as a con-
sequence, this additional computational cost represents an
increase in the required silicon area, for a hardware im-
plementation. This however can be minimized. Since the
computation performed to obtain the round key is exactly
the same as the computation for the data compression. A
significant gain in terms of area can be achieved, by merg-
ing this computation into a single hardware structure. To
allow both computations to coexist and maintain approxi-
mately the same performance, a pipeline structure can be
used. By merging the computation some additional multi-
plexing logic is required, as depicted in Figure 3. With this

Hi-1

 ’[]

 ’’[] 512
512

Round
Key M

u
x

M
u
x

0

Round r

M
u
x

0

Ki
j

DM = Hi

Mux

M
u
x

0

0

cr

ROM

Data out

Data inDi

W[Di Hi-1] / Ki
j

Hi-1

Mux

Figure 3: Whirlpool proposed core.

one level pipeline structure, the 10 computational rounds of
the Whirlpool algorithm require 20 clocks cycles. Given
that the round key computation uses the partial digest mes-
sage (Hi−1) of the previous round, one additional clock cy-
cle is required. Due to the fact that the next data round key
computation can only start when the computation of the pre-
vious partial digest message (Hi−1) is concluded, the com-
putation of each data block of 512 bits requires 21 clock cy-
cles in total. Note that a pipelining structure would not be
efficient if the computational merging were not explored.

In order to simplify the data input/output and to reduce
the amount of required hardware, the input registers de-
scribed in Figure 3 within the grey area, also work like shift
registers. These shift registers are used to load the 512-
bit data block, in a more efficient way, with 64-bit data in-
put/output blocks. The Di ⊕Hi−1 addition is performed as
data are loaded, thus only one 64-bit XOR gate is required.

4 Performance analysis and related work
In this section, experimental results on a Xilinx FPGA

realization of the proposed core are presented and com-

pared with current art. A polymorphic implementation of
the Whirlpool core is also realized.

In order to test and evaluate the proposed design, the
Whirlpool core has been realized in a Xilinx VIRTEX II
Pro (XC2VP30-7) FPGA using the Xilinx ISE (6.3) tool.
Additional realizations for a VIRTEX-E and a VIRTEX-4
have also been obtained in order to properly compare with
existing Whirlpool art. For the polymorphic implementa-
tions, the MOLEN processor prototype [9] was used. All
the presented values were obtained after Place and Route,
or after actual measurements on the prototype hardware.

Whirlpool FPGA Realization: By using the embedded
block memories (BRAMs) of the VIRTEX FPGAs, a more
compact implementation can be achieved. These memo-
ries can be directly used to implement the lookup tables de-
scribed in section 3. For the VIRTEX II Pro and VIRTEX-4
FPGAs, BRAMs can be used with outputs up to 32 bits per
BRAM. For the VIRTEX-E family, which only has BRAMs
with outputs up to 16 bits, two block memories have to be
used for each lookup table. The results for the FPGA imple-
mentations are depicted in Table 1. This table also presents
data for the current state of the art.

When compared with the structure proposed in [4], im-
plemented on a VIRTEX-E FPGA, an improvement of
merely 39% is achieved, however the values presented in
the referenced paper are from synthesis only, while ours are
after Place&Route. Furthermore the values presented with a
star (∗) in Table 1 are incoherent when compared with other
papers [6, 7] and our results. For a very fine grain structure,
the number of slices is too small. In addition the maximum
frequency reported in this paper [4] is extremely high es-
pecially when compared with the proposed Whirlpool core
in this paper, which with a better usage of the embedded
components of the FPGA and with a pipeline is only able
to achieve 67 MHz while, the reported frequency in [4] is
75MHz. These erroneous results might be due to the inac-
curacy of the synthesis estimator.

In [7], a compact implementation is presented for a VIR-
TEX II Pro FPGA. The proposed Whirlpool structure re-
quires 45% more slices and 32 BRAM, not used in [7]; how-
ever, it is capable of achieving a throughput more than 13
times higher. In terms of Throughput per Slice, our core is
10 times better than the one proposed by Prams [7]. The
Throughput per Slice metric does not take into account the
BRAM usage, since these are available resources, indepen-
dently if they are used or not. As BRAMs are hardwire
cores in the considered FPGA technology, the silicon area
they occupy on the chip is much smaller than the area of the
slices. Therefore, even if some metric is used to take into
account the BRAM area, into a different throughput per sil-
icon area metric, it is not expected to introduce significant
changes in the figures reported in the last row of Table 1.

Regarding the most recent art [6], implemented on a

3

Table 1: Whirlpool performance comparison
Architecture Kitsos [4] Our Prams [7] Our McLo [6] Our
Device XCV1000-8 XCV1000-8 XC2VP40-7 XC2VP30-7 XC4V XC4V-11
Slices 5585∗ 2138 1456 2110 4956 2118
BRAMS 0 64 0 32 68 32
Freq. (MHz) 75∗ 67 131 224 94 220
TP.(Mbit/s) 4.48∗ 2.38 0.38 5.47 4.79 5.38
TP/Slice 0.8 1.11 0.26 2.59 0.97 2.54

VIRTEX-4, the comparison results suggest that the pro-
posed core is capable of a throughput increase of 12%,
while reducing by 57% the required slices and 50% the re-
quired BRAMs. In terms of global efficiency estimated by
the Throughput per Slice metric, our core is 162% better.

Polymorphic Whirlpool Implementation: In order to
easily integrate the proposed core in software applications
and to easily validate and test it in real hardware, it was in-
tegrated into the MOLEN polymorphic processor [1, 9]. In
this processor, the core is integrated as a CCU that directly
accesses the main memory and communicates with the Gen-
eral Purpose Processor (GPP) via a set of exchange regis-
ters. The core is evoked as an equivalent software function
call, requiring minimal modification of the pure software
implementation. In order to use the proposed Whirlpool
core as a CCU unit for the MOLEN processor, some addi-
tional wrapping logic is required. This additional wrapping
logic does not penalize the critical path of the core. The
CCU for the proposed Whirlpool core requires 2245 slices
(16%) and 32 BRAMs, corresponding to an additional 127
slices, regarding the standalone core. In this functional test,
the Whirlpool CCU is running with the same clock fre-
quency as the main data memory, operating at 100MHz. At
this frequency, throughputs of 2.4Gbit/s are achieved.

5 Conclusions

In this paper, a performance and hardware efficient struc-
ture for the most recent hash function, the Whirlpool, is
presented. In the proposed implementation, the S-Boxes
and part of the GF(28) multiplications are merged into a
single operation, performed by a lookup table. Since the
most complex part of the GF(28) multiplication is com-
puted by a lookup table, a faster and more compact struc-
ture is achieved. Additionally, the merging of the round key
computation and the data compression hardware is also pro-
posed. Implementation results suggest an overall improve-
ment of the Throughput/Slice to related art of about 160%;
having a 12% faster throughput with only 43% of the recon-
figurable area of the previous best proposals. On a VIRTEX
II Pro FPGA, a throughput of 5.47 Gbit/s is achieved, with
2110 slices and 32 BRAMs, resulting in a Throughput per
Slice of 2.59. A real application has been tested on a poly-

morphic prototype running at 100MHz, achieving through-
puts of 2.4 Gbit/s.

Acknowledgments

This work was partially supported by the Dutch Tech-
nology Foundation STW, applied science division of NWO
(project DCS.7533); the Portuguese Foundation for Tech-
nology; and the European Network of Excellence on High-
Performance Embedded Architecture and Compilation.

References

[1] R. Chaves, G. Kuzmanov, L. A. Sousa, and S. Vassiliadis.
Improving SHA-2 hardware implementations. In Workshop
on Cryptographic Hardware and Embedded Systems, CHES
2006, October 2006.

[2] R. Chaves, G. Kuzmanov, S. Vassiliadis, and L. A. Sousa.
Reconfigurable memory based AES co-processor. In Pro-
ceedings of the 13th Reconfigurable Architectures Workshop
(RAW 2006), page 192, April 2006.

[3] J. DAEMEN and RIJMEN. The design of Rijndael. AES-
The Advanced Encryption Standard. Springer-Verlag, 2002.

[4] P. Kitsos and O. Koufopavlou. Efficient architecture and
hardware implementation of the Whirlpool hash function.
IEEE Transactions on Consumer Electronics, 50:208 – 213,
February 2004.

[5] V. Klima. Finding MD5 collisions a toy for a notebook.
Cryptology ePrint Archive, Report 2005/075, 2005.

[6] M. McLoone, C. McIvor, and A. Savage. High-Speed Hard-
ware Architectures of the Whirlpool Hash Function. In G. J.
Brebner, S. Chakraborty, and W.-F. Wong, editors, FPT,
pages 147–162. IEEE, 2005.

[7] N. Pramstaller, C. Rechberger, and V. Rijmen. A compact
FPGA implementation of the hash function Whirlpool. In
S. J. E. Wilton and A. DeHon, editors, FPGA, pages 159–
166. ACM, 2006.

[8] V. Rijmen and P. S. L. M. Barreto. The WHIRLPOOL hash
function. World-Wide Web document, 2001.

[9] S. Vassiliadis, S. Wong, G. N. Gaydadjiev, K. Bertels,
G. Kuzmanov, and E. M. Panainte. The Molen polymorphic
processor. IEEE Transactions on Computers, pages 1363–
1375, November 2004.

[10] X. Wang, Y. L. Yin, and H. Yu. Finding collisions in the
full SHA-1. In V. Shoup, editor, CRYPTO, volume 3621 of
Lecture Notes in Computer Science, pages 17–36. Springer,
2005.

4

