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Abstract. Loops are an important source of optimization. In this pa-
per, we address such optimizations for those cases when loops contain
kernels mapped on reconfigurable fabric. We assume the Molen machine
organization and Molen programming paradigm as our framework. The
proposed algorithm computes the optimal unroll factor u for a loop that
contains a hardware kernel K such that u instances of K run in parallel
on the reconfigurable hardware, and the targeted balance between perfor-
mance and resource usage is achieved. The parameters of the algorithm
consist of profiling information about the execution times for running K
in both hardware and software, the memory transfers and the utilized
area. In the experimental part, we illustrate this method by applying it
to a loop nest from a real-life application (MPEG2), containing the DCT
kernel.

1 Introduction

Reconfigurable Computing (RC) is becoming increasingly popular and the com-
mon solution for obtaining a significant performance increase is to identify the
application kernels and accelerate them on hardware. As loops represent an im-
portant source of performance improvement, we investigate how existing loop
optimizations can be applied when hardware kernels exist in the loop body.
Assuming the Molen machine organization [1] as our framework, we focus our
research in the direction of parallelizing applications by executing multiple in-
stances of the kernel in parallel on the reconfigurable hardware.

Optimal is defined in this paper as the largest feasible unroll factor, given
area constraints, performance requirements and memory access constraints, ta-
king into account also that multiple kernels may be mapped on the area. The
contributions of this paper are: a) an algorithm to automatically determine the
optimal unroll factor, based on profile information about memory transfers, avail-
able area, and software/hardware execution times; b) experimental results for a
well known-kernel — DCT (Discrete Cosine Transformation), showing that the
optimal unroll factor is 6, with a speedup of 9.55x and utilized area of 72%.

The paper is organized as follows. Section 2 introduces the background and
related work. In Section 3, we give a general definition of the problem and present



the target architecture and application. We propose a method for solving the
problem in Section 4 and show the results for a specific application in Section 5.
Finally, concluding remarks and future work are presented in Section 6.

2 Background and related work

The work presented in this paper is related to the Delft WorkBench (DWB)
project. The DWB is a semi-automatic toolchain platform for integrated hard-
ware-software co-design in the context of Custom Computing Machines (CCM)
which targets the Molen polymorphic machine organization [1]. More specifi-
cally, the DWB supports the entire design process, as follows. The kernels are
identified in the first stage of profiling and cost estimation. Next, the Molen
compiler [2] generates the executable file, replacing function calls to the kernels
implemented in hardware with specific instructions for hardware reconfiguration
and execution, according to the Molen programming paradigm. An automatic
tool for hardware generation (DWARV [3]) is used to transform the selected
kernels into VHDL code targeting the Molen platform.

Several approaches — [4], [5], [6], [7], [8], [9] are focused on accelerating kernel
loops in hardware. Our approach is different, as we do not aggressively optimize
the kernel implementation, but we focus on the optimization of the applica-
tion for any hardware implementation, by executing multiple kernel instances in
parallel.

PARLGRAN [10] is an approach that tries to maximize performance on re-
configurable architectures by selecting the parallelism granularity for each indi-
vidual data-parallel task. However, this approach is different than ours in several
ways: (i) they target task chains and make a decision on the parallelism granu-
larity of each task, while we target loops (loop nests) with kernels inside them
and make a decision on the unroll factor; (ii) in their case, the task instances
have identical area requirements but different workloads, which translates into
different executions time (a task is split into several sub-tasks); in our algorithm,
all instances have the same characteristics in both area consumption and execu-
tion time; (iii) their algorithm takes into consideration the physical (placement)
constraints and reconfiguration overhead at run-time, but without taking into
account the memory bottleneck problem; we present a compile-time algorithm,
which considers that there is no latency due to configuration of the kernels (static
configurations), but takes into account the memory transfers.

3 Problem statement

Loops represent an important source of optimization, and there are a number of
loop transformations (such as loop unrolling, software pipelining, loop shifting,
loop distribution, loop merging, loop tiling, etc) that are used to maximize the
parallelism inside the loop and improve the performance. The applications we
target in our work have loops that contain kernels inside them. One challenge



we address is to improve the performance for such loops, by applying standard
loop transformations such as the ones mentioned above.

In this paper, we focus on loop unrolling and present the assumptions and
parameters for our model. Loop unrolling is a transformation that replicates the
loop body and reduces the iteration number. Traditionally it is used to eliminate
the loop overhead, thus improving the cache hit rate and reducing branching,
while in reconfigurable computing it is used to expose parallelism.

The problem definition is: find the optimal unroll factor u of the loop (loop
nest) with a kernel K, such that u identical instances of K run in parallel on the
reconfigurable hardware, leading to the best balance between the performance
and area utilization. The method proposed in this paper addresses this problem,
given a C implementation of the target application and a VHDL implementation
of the kernel.

We target the Molen framework, which allows multiple applications to run si-
multaneously on the reconfigurable hardware. The algorithm computes (at com-
pile time) the optimal unroll factor, taking into consideration the memory trans-
fers, the execution times in software and hardware, the area requirements for the
kernel, and the available area (without physical details, P&R, etc). Thus, be-
cause of the reconfigurable hardware’s flexibility, the algorithm’s output depends
on the hardware configuration at a certain time.

The main benefits of this algorithm are that it can be integrated in an auto-
matic toolchain and it can use any hardware implementation of the kernel. Thus,
performance can be improved even when the kernel is already optimized. Our
assumptions regarding the application and the framework are presented below.

Target architecture. The Molen machine organization has been implemented on
Vitex-IT Pro XC2VP30 device, utilizing less than 2% of the available resources
of the FPGA. The memory design uses the available on-chip memory blocks of

the FPGA.
The factors taken into consideration by the proposed method are:

area utilized by one kernel running on FPGA;

available area (other kernels may be configured in the same time);
execution time of the kernel in software and in hardware (in GPP cycles);
the number of cycles for memory transfer operations for one kernel instance
running in hardware;

e available memory bandwidth.

General and Molen-specific assumptions for the model:

1. There are no data dependencies between different iterations of the ana-
lyzed loop. Practical applications that satisfy this assumption exist, for
example MPEG2 multimedia benchmark.

2. The loop bounds are known at compile time.

3. Inside the kernel, all memory reads are performed in the beginning and
memory writes in the end. This does not reduce the generality of the
problem for most applications.
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. The placement of the specific reconfiguration instructions is decided by a

scheduling algorithm which runs after our algorithm, such that the con-
figuration latency is hidden.

Only on-chip memory is used for program data. This memory is shared
by the GPP and the CCUs.

All data that are necessary for all kernel instances are available in the
shared memory.

The PowerPC and the CCU run at the same clock.

All transfers to/from the shared memory are performed sequentially.
Kernel’s local variables/arrays are stored in the FPGA’s local memory,
such that all computations not involving the shared memory transfers can
be parallelized.

As far as running multiple applications on the reconfigurable hardware is
concerned, for now we take into consideration only the area constraints.
The area constraints do not include the shape of the design.

Additional area needed for interconnecting Molen with the kernels grows
linearly with the number of kernels.

Motivational example. Throughout the paper, we will use the motivational ex-
ample in Fig. 1(a). It consists of a loop with two functions — one function is
executed always in software (C'Par), and the other is the application kernel (K)
— implicitly, the execution time for C'Par is much smaller than for K. In each
iteration 4, data dependencies between CPar and K exist, as C'Par computes
the parameters for the kernel instance to be executed in the same iteration. The
example has been extracted from the MPEG2 encoder multimedia benchmark,
where the kernel K is DCT.

for (i =0;i < N;i++ ) { for i=0;i< N;i+=u) {
/*Compute parameters for CPar (i 4 0, blocks);
CPar (4, blocks); CPar (i +u — 1, blocks);
/*Kernel function*/ /*u instances of K() in parallel*/
K (blocksli]); #pragma parallel
K (blocks[i + 0]);

K (blocks[i + u — 1]);
#end parallel

}

(a)Loop containing a kernel call (b)Loop unrolled with a factor u

Fig. 1. Motivational example



4 Proposed methodology

In this section we present a method to determine the optimal unroll factor hav-
ing as input the profiling information (execution time and number of memory
transfers) area usage for one instance of the kernel. We illustrate the method by
unrolling with factor u the code from Fig. 1(a). Figure 1(b) presents a simplified
case when N mod u = 0. Each iteration consists of u sequential executions of the
function C'Par() followed by the parallel execution of u kernel instances (there
is an implicit synchronization point at the end of the parallel region).

Area. Taking into account only the area constraints and not the shape of the
design, an upper bound for the unroll factor is set by

U — \\ Area’(a'uailable)

, where:
AT’ea(K) + A'rea(interconnect)J

o Area(qvailable) i the available area, taking into account the resources uti-
lized by Molen and by other configurations;

o Area(interconnect) 15 the area necessary to connect one kernel with the rest
of the hardware design (we made the assumption that the overall intercon-
nect area grows linearly with the number of kernels);

o Area(r) is the area utilized by one instance of the kernel, including the
storage space for the values read from the shared memory. All kernel in-
stances have identical area requirements.

Memory accesses. In the ideal case, all data are available immediately and
the degree of parallelism is bounded only by the area availability. However,
for many applications, the memory bandwidth is an important bottleneck in
achieving the ideal parallelism. We consider that Ty, Tyw, respectively T are the
times for memory read, write, and computation on hardware for kernel K. Then,
the total time for running K in hardware is Ty + Tw + Tc. Without reducing
the generality of the problem for most applications, we assume that the memory
reads are performed at the beginning and memory writes in the end. Then, as
illustrated in Fig. 2, where we consider Tyw < Ty < Te and Ty 4+ Tw > T¢, a
new instance of K can start only after a time Ty (we denote kernel instances by
KM K@ ete)l.

The condition that memory access requests from different kernel instances
do not overlap sets another bound (um) for the degree of unrolling on the re-
configurable hardware!:

T

The time for running u instances of K on the reconfigurable hardware is':

T (’U,) . Tc+Tr+Tw+(u—1) 'Hl&X(Tr,Tw) ifu< um ( )
K (hw) v (T + Tw) if u > um



Since we are interested only in the case u < um, from (2) we derive the time
for u instances of K in hardware as:

Ty () (@) = Te + min(Tr, T) + - max(Ty, Ty) (3)
Memory Memory
KO K® transfers KO KD KP transfers
T K - read T K" - read
T T, K? - read T T, K - read
c o c
TV\/ Tc i
I, K™ - write
T
T K- write e
\ t W K2 - write
T K® - write

T T
@u< ﬁJrlﬂTk(hw)(u):TchTeru-Tr (b)u > ﬁ+1ﬂTk(hw)(u):u~(Tr+Tw)

Fig. 2. Parallelism on reconfigurable hardware

Note that when applied to the example in Fig. 2, the case u < um corresponds
to Fig. 2(a) and the case u > um corresponds to Fig. 2(b). In our example,
Tw < Ty, thus max(Ty, Tw) = Ty and min(7y,Tw) = Tw. In Fig. 2(a), the
time for running in parallel two kernel instances (K" and K(®) is given by the
time for K (Te + Ty 4+ Tyw) plus the necessary delay for K to start (7}).
In Fig. 2(b), K (1) writing to memory is delayed because of K®) reading from
memory; in this case, the actual kernel computation is hidden by the memory
transfers and the hardware execution time depends only on the memory access

times (u - (Ty + Tw))-

Speedup. In order to compute the optimal unroll factor, we use the following
notations:

N- initial number of iterations (before unrolling);

N (u) - number of iterations after unrolling with factor u: N(u) = [N/u];
Tsw - number of cycles for that part of the loop body that is always
executed by the GPP (in our example, the C'Par function);

TK(SW) / TK(hw) - number of cycles for one instance of K() running in

software /hardware;

! (1) and (2) are derived from an exhaustive analysis of all possible cases with different
relations between T¢, Tr, and Tw. Fig. 2 represents only one of the 8 possible cases
(Tw <Tr <T1¢ and Tw + Tt > Tc)



e 7, op(sw) /T, op(hw) number of cycles for the loop nest with K() run-

ning in software/hardware (considering that the unroll factor satisfies the
condition u < um):

Tloop(sw) = (Tsw + TK(SW)) NV (4)
Tloop(hw) = (TSW + max(Tr, Tw)) . N + (Tc + min(Tp Tw)) . N(u) (5)
_ Tloop(sw) ©)

The speedup at loop nest level is: Sloop(u) =7
loop(hw)

For v < um, (hw) 18 & monotonic decreasing function; as Tloop(sw) is

Tloop
constant, it means that Sloop(“) is a monotonic increasing function for v < um.

When multiple kernels are mapped on the reconfigurable hardware, the goal
is to determine the optimal unroll factor for each kernel, which would lead to
the maximum performance improvement for the application. For this purpose,
we introduce a new parameter to the model: the calibration factor F', a positive
number decided by the application designer, which determines a limitation of
the unroll factor according to the targeted trade-off. (For example, you would
not want to increase the unrolling if the gain in speedup would be with a factor
of 0.5%, but the area usage would increase with 15%.) The simplest relation to
be satisfied between the speedup and necessary area is:

AS(u+1,u) > AA(u+ 1,u) - F

where AS(u+1,u) is the relative speedup increase between unroll factors u and
u+ 1:
Su+1)—S(u)
S(u)

and AA(u+1,u) is the area increase. Since all kernel instances are identical, the
total area grows linearly with the number of kernels and AA(u + 1,u) is always
equal to the area utilized by one kernel instance (Areag))[%]).

Thus, F' is a threshold value which sets the speedup bound for the unroll
factor (ug). The speedup bound is defined as:

AS(u+1,u) = -100 [%] (7)

ug = min(u) such that AS(u+1,u) < F - Areak).

Note that when the analyzed kernel is the only one running in hardware,
it might make sense to unroll as much as possible, given the area and memory
bounds (ug and upm), as long as there is no performance degradation. In this
case, we set F' =0 and ug = um.

Local optimal values for the unroll factor © may appear when w is not a divisor
of N, but u+1 is. To avoid this situation, as S is a monotonic increasing function
for u < um, we add another condition for us: AS(us +2,us +1) < F' - Area (k.

By using (4) and (5) in (6) and the notations

TC + min(Tr, Tw)

= (max(Tr, Tw) + Tsw) -N and y=

Tsw + TK(SW)
maX(Tr7 Tw) + TSW ’




the total speedup is computed by: Sloop(u) = %N() (®)
x - (%

On the base of (8) and given the fact that the maximum unrolling factor is known
— being the number of iterations N —, binary search can be used to compute in
O(log N) time the value of ug that satisfies the conditions AS(ug + 1,ug) <
F - Areaky and AS(us +2,us + 1) < F - Area k).

Integrated constraints. In the end, speedup, area consumption and memory
accesses need to be combined in order to find the feasible unroll factor, given
all constraints. If ug < min(ug,um), then the optimal unroll factor is min(u)
such that us < w < min(ug,um); else, we choose it as max(u) such that u <
min(ug, um).

5 Experimental results

The purpose of this section is to illustrate the presented method which computes
automatically the unroll factor taking into account the area constraints and
profiling information. The result and also the performance depend on the kernel
implementation. The order of magnitude of the achieved speedup in hardware
compared to software is not relevant for the algorithm, although it influences its
output. Instead, we analyze the relative speedup obtained by running multiple
instances of the kernel in parallel, compared to running a single one.

The loop from Fig. 3, containing the DCT kernel (2-D integer implementa-
tion), was extracted from MPEG2 encoder multimedia benchmark and executed
on the VirtexIl Pro board. We used the following parameters: width = 64,
height = 64, block_count = 6 (the picture size is 64 x 64, leading to N = 96
iterations).

for (j =0,k = 0; j <height; j=j+16) {
for (i = 0; ¢ <width; i=i+16 ) {
for (n = 0; n <block_count; n++ ) {
/*Compute parameters for K()*/
CPar (n, i, j, k, blocks);
/*Kernel function*/
DCT (blocks[k*block_count+n]);
}
}
}

Fig. 3. MPEG2 loop with DCT kernel.

The DCT implementation operates on 8 x 8 memory blocks, therefore one
kernel performs 64 memory reads and 64 memory writes. The memory blocks in
different iterations do not overlap, thus there are no data dependencies and the
first assumption in Section 3 holds.



The VHDL code was automatically generated with DWARV [3] tool and
synthesized with Xilinx XST tool of ISE 8.1; it is not optimized, each memory
access and each loop are synchronization points. One instance of the DCT ker-
nel uses 12% of the total available area on VirtexII Pro. The execution times
measured using the PowerPC timer registers presented in Table 1 are for one
DCT instance (including the parameter transfer using exchange registers).

Table 1. Initial execution time (cycles)

Hardware| Software|Percent|Speedup

Tx | 37278 106 626 34.96%| 2.86
Tpar | 5292 5292 100%| -
Tioop|4 093 308|10 751 868|38.07%| 2.63

We used the following notations: (i) Tk - the number of cycles for one instance
of the DCT kernel; (ii) Tpqr - the number of cycles for C'Par(); (iii) Tjpep - the
number of cycles for the loop nest.

The experiment was performed with one instance of the kernel running on the
FPGA. We extrapolated these results for all possible unroll factors, computing
the number of cycles for software and hardware execution of the kernel, and also
for the loop nest. We observe that the theoretical (computed) execution time (in
cycles) for the loop nest (Tloop) with the kernel executed in software does not
depend on the unroll factor. Comparing with the measured execution time, there
is an error of approx 0.072%, due to not taking into account the loop overhead;
this error is negligible. Next, we compute the unroll factor applying the method
described in Section 4.

Area. The upper bound that satisfies the area constraints is:

e — \; Area(wml) — Area(Molen) J -3
a Area(DcT) + AT@a(interconnect) '

Memory accesses. For the considered implementation, the shared memory
has an access time of 3 cycles for reading and storing the value into a register
and 1 cycle for writing a value to memory; since there are 64 memory reads
and 64 memory writes, min(Ty, Tw) = 64 cycles. The computation time is T =
TK(hW) — (Ty + Tw) = 37022 cycles. Using these values in (1), = um = 579.

Speedup. To compute the speedup limit ug, we use the data from Table 1. Thus,
Tpar = 5292, Ty, () = 106626, Tc = 37022, max(Ty, Tw) = 192, N = 96, then
20.9
S N
+Stloop(W) ¥ TN 007
Figure 4 presents the speedup for different unroll factors. One is the speedup at
kernel level, and the second at loop level.

x =~ 0.07 and y = 20.9. According to (6)
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Fig. 4. Speedup obtained with loop unrolling

Assuming that we are interested in a relative speedup increase greater than
the area increase (AS(u+1,u) > Area gy and AS(u+2,u+ 1) > Areak) for
two consecutive unroll factors, = ug = 6.

Integrated constraints. The condition ug < min(ua, um) is satisfied, meaning
that u = 6, leading to a loop speedup of 9.55 and 72% area utilization of the
VirtexII Pro total area.

6 Conclusion and future work

In this paper, we presented a method to automatically compute the optimal
number of instances of a kernel K that will run in parallel on reconfigurable
hardware by applying loop unrolling. The algorithm uses only the profiling in-
formation about memory transfers, execution times in software and hardware,
and information about area usage for one kernel instance and area availability. Its
implementation in the compiler decreases the time for design-space exploration
and makes efficiently use of the hardware resources.

One of the main benefits of this algorithm is that it can be used to improve
performance even when given an already optimized VHDL implementation of
the kernel, if there are enough resources available (for instance, when moved
to a different platform). Different results will be obtained for different kernel
implementations, depending on how much optimized they are.

The presented method takes into account the area constraints when running
multiple applications on the reconfigurable hardware, but not the memory con-
straints for this case. This will be addressed in future work. However, as our
approach demonstrates the potential for significant performance improvement



(experimental results for DCT show a speedup with a factor of 9.55, for an au-
tomatically generated VHDL implementation of the kernel), we plan to extend it
by combining loop unrolling with pipelining and considering also transfers from
a slow memory (DRAM).
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