
Online Hardware Task Scheduling and
Placement Algorithm on Partially

Reconfigurable Devices

Thomas Marconi, Yi Lu, Koen Bertels, and Georgi Gaydadjiev

Computer Engineering Laboratory, EEMCS
TU Delft, The Netherlands

{thomas,yilu}@ce.et.tudelft.nl, k.l.m.bertels@tudelft.nl,
g.n.gaydadjiev@ewi.tudelft.nl

http://ce.et.tudelft.nl

Abstract. In this paper, we propose an online hardware task scheduling
and placement algorithm and evaluate it performance. Experimental re-
sults on large random task set show that our algorithm outperforms the
existing algorithms in terms of reduced total wasted area up to 89.7%,
has 1.5 % shorter schedule time and 31.3% faster response time.

1 Introduction

Reconfigurable devices with partial reconfigurable capabilities allow partial up-
date of their hardware resources without interrupting the overall system oper-
ation [1]. Embedded applications which have exploited this capability include:
neural network implementation [2], video communication [3], cryptography [4],
crossbar switches [5], image processing [6], and more. Such functionality also
allows multitasking applications on a single chip. However to fully exploit the
advantages of such platforms the scheduling and placement problems are to be
considered. This is to use the limited hardware resources as efficient as possible.

Our approach focusses on a number of shortcomings of existing algorithms
in order to improve the FPGA resources utilization and improve the overall
execution times. The main contributions of this paper are:

– a novel online scheduling and placement algorithm, called ”Intelligent
Stuffing”;

– careful experimental evaluation of our and other existing algorithms based
on statistically large 100k task sets randomly generated;

– improvements of up to 89.7% in terms of reduced total wasted area, 1.5% in
schedule time and 31.3% shorter response time.

The remainder of this paper is organized as follows. The problems of schedul-
ing and placement in dynamic reconfigurable devices is introduced in Section 2.
In Section 3, we briefly discuss the previous art. Details of our algorithm are
depicted in Section 4. In Section 5, we present the evaluation of the algorithm.
Finally, we conclude the paper in Section 6.

R. Woods et al. (Eds.): ARC 2008, LNCS 4943, pp. 306–311, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Online Hardware Task Scheduling and Placement Algorithm 307

2 Problem of Scheduling and Placement in Dynamic
Reconfigurable Devices

Given a task set representing a multitasking application with their arrival times
ai, execution times ei and widths wi

1 , online scheduling and placement algo-
rithms have to determine placements and starting times for the task set such as
there are no overlaps both in space and time among all tasks. The goals of the
algorithms are: a) to utilize effectively the available FPGA resources (referred as
minimize wasted area in this paper); b) to run the overall application on FPGA
faster (minimize schedule time); c) to shorten waiting time of the tasks to be
executed on the FPGA (minimize response time) and d) to keep the runtime
overhead low (minimize the algorithm execution time).

Space(Column)
Arrival time of T3

Starting time of T3

Total Wasted Area

T
ot

al
 s

ch
ed

ul
e

tim
e

T1

T3

T2

T4

Response time of T3

Time

(a)

Space(Column) Space(Column)

Low SUR Low SUR
tasktask

(leftmost) (rightmost)

High SUR task
(leftmost)

High SUR task
(leftmost)

Time TimeStuffing Classified

(b)

Space(Column) Space(Column)

T3

T2

T1 T1

T2
T3

Time TimeStuffing Classified

Case 1

(c)

Space(Column) Space(Column)

T1

T2

T3

T1

T2

T3

Time TimeStuffing Classified

Case 2

(d)

Fig. 1. Performance parameters and previous algorithms

We define total wasted area as the overall number of space-time units that
are not utilized as shown in Figure 1(a). Total schedule time is the total num-
ber of time units for the execution of all tasks. Response time is the differ-
ence between starting and arrival times for each task (in time units). Total
response time is the sum of response times for all tasks. The overall algorithm
execution time is the cumulative time needed to schedule and place all the
tasks.

1 We use 1-D model for the FPGA as more representative for the current technology.

308 T. Marconi et al.

3 Previous Algorithms

In [7] [8], Steiger et al. proposed the Stuffing. It schedules tasks to arbitrary free
areas that will exist in the future, including areas that will be used later by tasks
currently in its reservation list. It always places a task on the leftmost of its free
space as shown in the left of Figure 1(b). Because the Stuffing algorithm always
places tasks on the leftmost edge of the available area, it places tasks T1 and
T2 as shown in the left of Figure 1(c). These placements block task T3 to be
scheduled earlier. In this case, it fails to place task T3 earlier.

In [9], Chen and Hsiung proposed the Classified Stuffing to solve the drawback
of the Stuffing in case 1 (Figure 1(c)). The main difference between the algorithm
and the Stuffing is the classification of tasks. It can place a task on the leftmost
or rightmost of its free space based on the task Space Utilization Rate (SUR).
SUR is the ratio between the number of columns required by the task and its
execution time. High SUR tasks (SUR > 1) are placed starting from the leftmost
available columns of the FPGA space, while low SUR tasks (SUR ≤ 1) are placed
from the rightmost available columns as shown in the right of Figure 1(b). In
case 1, it can recognize the difference between tasks T1 (high SUR task) and
T2 (low SUR task), so it places successfully tasks on different placements. This
makes task T3 earlier scheduling possible. However in case 2 (Figure 1(d)), it fails
to solve the problem of the Stuffing. Because it doesn’t recognize the difference
between tasks T1 and T2 (both of the tasks are low SUR tasks), it fails to place
tasks on different placements. These placements block task T3 to be scheduled
earlier. Therefore in case 2, both of the previous algorithms fail to schedule task
T3 earlier. Total wasted area, total schedule time, and total response time will
increase as a consequence.

4 The Proposed Algorithm

Figure 2(a) (top) shows an empty FPGA and a leftmost alignment status is de-
fined, e.g. a new free space always will be allocated at the leftmost position. At
this point, the free space list SL contains only a single free space (FS1) defined by
its leftmost column (CL1), its rightmost column (CR1) and free time FT1.

When a new task T 1 arrives, the algorithm searches the free space list SL and
places it on the leftmost edge of FS1 (according to its alignment status). This
action reduces the size of FS1 as shown in the middle of Figure 2(a), toggles
the alignment status of FS1 from leftmost to rightmost, and creates a new free
space FS2. FS2 has (CL2, CR2) dimension and its free time is FT2 and leftmost
alignment status.

Assume there is another task T 2 simultaneously arriving with T 1 the free
space list SL will be processed again. Because the alignment status of FS1 was
changed to rightmost, T 2 will be placed on rightmost edge of FS1. This action
reduces the FS1 size as shown in Figure 2(a) (bottom) and again toggles the
alignment status of FS1 to leftmost. The size of FS2 is also adjusted and a new
free space FS3 (CL3,CR3) is created with free time FT3 and leftmost alignment

Online Hardware Task Scheduling and Placement Algorithm 309

FT1
CL1 CR1

Column
FS1

Time

FT1 CL1
FS1

CR1

T1

FT2
CL2 FS2 CR2

Time

FT1

Column

Column
CL1 CR1

FS1
T1

T2
FT2

CL2 FS2 CR2

FT3
CL3 FS3 CR3

Time

(a)

T1

T2
T3

Time

Space(Column)

Space(Column)

Case 2

T1

T3 T2

Time

Case 1

(b)

{

1. search pointer=top of space list
2. while conflict do

 3. find pointer=find free space from search pointer
 4. check conflict

}
12. schedule and place task in the free space on location

13. update the free space size and toggle the free space

14. update the affected free space sizes
15. add new free space on free space list (sorted in order

16. add new task on task list (sorted in order of increasing

 11. search pointer=next of find pointer

5. if "quality" mode do
{

{

{
10. toggle the free space aligment status

}
}

}

6. if conflict and the free space size > task width do

7. toggle the free space aligment status
8. check conflict
9. if conflict do

 according to the free space alignment status

 alignment status

 of increasing free times)

 start times)

(c)

Fig. 2. Our algorithm

status. By keeping tasks T 1 and T 2 on the edges, the largest space possible is
created, so future tasks can be scheduled earlier and we can address the problem
of previous algorithms for both case 1 and case 2 as shown in Figure 2(b).

Our algorithm maintains two linked lists: a free space list (SL) and a task
list (TL). The SL contains all free spaces FSi with their previous pointers PPi,
dimensions (CLi and CRi), free times FTi, alignment statuses ASi and next
pointers NPi. The free time is the time when the corresponding free space can
be used. The alignment status is a boolean determining the placement location
of the task (leftmost or rightmost) within this free space segment. The new list
entries of SL are inserted in order of increasing free times.

The TL stores all scheduled tasks with their previous pointers PPj , start times
STj, task dimensions (CLj , CRj), task execution times ETj and next pointers
NPj . The start time is the time that the task initiates execution on the FPGA.
The column left (CLj) and right (CRj) determine the FPGA area that is used by
the task. The new list entries of TL are inserted in order of increasing of start times.

There are two operating modes: speed and quality. In the speed mode, the algo-
rithm execution time is more important than the quality of scheduling and place-
ment.While thequalitymode is designed for higher utilizationof the resources.The
pseudocode of our algorithm is presented in Figure 2(c). When a new task arrives,
our algorithm walks through the SL to find a first fit free space avoiding conflicts
with the scheduled tasks in the TL (line 1 to 11). The first fit free space has the
earliest free time which enough columns of reconfigurable units to fit the task.

If quality mode is chosen, lines 6 to 10 are executed for better quality (in speed
mode those lines are skipped to reduce the algorithm execution time). In lines 6
to 8, a placement of the task at the opposite position to the alignment status is
attempted. This action increases the quality, but it requires additional algorithm
time. If the task still conflicts with the currently scheduled tasks in the TL (line 9),
the alignment status of the corresponding free space is set to its initial condition
(line 10).

310 T. Marconi et al.

In line 12, the first fit free space without conflicts with the TL list is found,
however this space may be wider than that the task requirements. The task is
placed on the FSi edge according to its alignment status. As mentioned earlier,
every placement changes the size and toggles the alignment status of the used free
space (line 13). This action can also affect the other free space sizes (line 14) and
adds a new free space in the SL (line 15) in addition to the new scheduled task in
the TL (line 16).

The main difference between our algorithm and previously proposed algorithms
is the additional alignment status of the free space segments and its handling. This
status guides our algorithm to make the correct decision on task placement posi-
tion in order to maximize the free space area and allow earlier placing of further
tasks. In addition, our algorithm does not need to compute SUR, therefore it runs
faster than the Classified Stuffing.

5 Evaluation

We implemented four different algorithms (the Stuffing [7] [8] (STF), the Classi-
fied Stuffing [9] (CTF) and our algorithm using speed mode (ISS) and quality mode
(ISQ)) in ANSI-C and run them on a Pentium-IV 3.4 GHz PC using the same
task sets. The simulated device consists of 96 columns to model Xilinx XCV1000
(96x64 reconfigurable units). The task widths and execution times are uniformly
distributed in [1,96] columns of reconfigurable units and [1,1000] time units. We
generate randomly 20 tasks for each task set and run all algorithms using 100,000
task sets. The evaluation is based on four performance parameters: total wasted
area (TWA), total schedule time (TST), total response time (TRT), and total al-
gorithm execution time (TAT) (μs).

Table 1. Experimentation results using 100,000 task sets

Performance parameters STF CTF ISS ISQ
TWA 1035449499 783069435 367934139 106709691
TST 651128773 648499814 644175488 641454400
TRT 335229077 317655028 276949454 230250447

TAT(μs) 2076694 2184614 2074848 2168651

Table 1 shows that even in speed mode our algorithm utilizes the FPGA better
(decreasing the wasted area compared to the Stuffing by 64.5 %) with only 0.1 %
algorithm time overhead used for saving the alignment status bit. In addition, it
makes the overall application execution 1.1 % faster and has 17.4 % shorter waiting
time. The speed mode is not only faster than the Classified Stuffing (5 % shorter
algorithm execution time) but also utilizes the FPGA more effective by decreasing
the wasted area by 53 %. Furthermore the application execution is reduced by 0.7
% with 12.8 % shorter total waiting time.

In quality mode the wasted area is decreased by 89.7 % compared to the Stuffing
with only 4.2 % algorithm execution time overhead (saving the alignment status
bit and finding alternative placements). Moreover it makes the application run-
ning 1.5 % faster with 31.3 % shorter total waiting time. In respect to the Clas-
sified Stuffing the quality mode is not only faster by 0.7 % in terms of algorithm

Online Hardware Task Scheduling and Placement Algorithm 311

execution time but also decreases the FPGA wasted area by 86.4 %. Additionally,
the overall application execution time is reduced by 1.1 % with 27.5 % better total
waiting time.

6 Conclusions

In this paper we proposed a new algorithm for online task scheduling and show
how it outperforms previous art in terms of reduced total wasted area, schedule
time and response time. We also evaluated two different modes of our algorithm:
the quality mode for better placement and scheduling quality and the speed mode
the algorithm execution time is considered more important.

Acknowledgment

This work is sponsored by the hArtes project (IST-035143) supported by the Sixth
Framework Programme of the European Community under the thematic area
“Embedded Systems”.

References

1. Lysaght, P., Dunlop, J.: Dynamic Reconfiguration of FPGAs. In: More FPGAs, pp.
82–94, EE&CS Books, Abingdon (1993)

2. Eldredge, J.G., Hutchings, B.L.: Density Enhancement of a Neural Network Using
FPGAs and Run-Time Reconfiguration. In: Proceeding of IEEE workshop on FPGAs
for custom computing machines, pp. 180–188 (1994)

3. Villasenor, J., Jones, C., Schoner, B.: Video Communications Using Rapidly Recon-
figurable Hardware. IEEE Transactions on circuits and systems for video technol-
ogy 5(6), 565–567 (1995)

4. Vuillemin, J., Bertin, P., Roncin, D., Shand, M., Touati, H., Boucard, P.: Pro-
grammable Active Memories: Reconfigurable Systems Come of Age. IEEE Transac-
tions on VLSI Systems 4(1), 56–69 (1996)

5. Eggers, H., Lysaght, P., Dick, H., McGregor, G.: Fast Reconfigurable Crossbar
Switching in FPGAs. In: Field-Programmable Logic: Smart Applications, New
Paradigms and Compilers, pp. 297–306 (1996)

6. Wirthlin, M.J., Hutchings, B.L.: Sequencing Run-Time Reconfigured Hardware with
Software. In: ACM/SIGDA International Symposium on Field Programmable Gate
Arrays, pp. 122–128 (1996)

7. Steiger, C., Walder, H., Platzner, M.: Heuristics for Online Scheduling Real-Time
Tasks to Partially Reconfigurable Devices. In: Y. K. Cheung, P., Constantinides, G.A.
(eds.) FPL 2003. LNCS, vol. 2778, pp. 575–584. Springer, Heidelberg (2003)

8. Steiger, C., Walder, H., Platzner, M.: Operating Systems for Reconfigurable Embed-
ded Platforms: Online Scheduling of Real-Time Tasks. IEEE transaction on Comput-
ers 53(11), 1393–1407 (2004)

9. Chen, Y., Hsiung, P.: Hardware Task Scheduling and Placement in Operating Systems
for Dynamically Reconfigurable SoC. In: Yang, L.T., Amamiya, M., Liu, Z., Guo, M.,
Rammig, F.J. (eds.) EUC 2005. LNCS, vol. 3824, pp. 489–498. Springer, Heidelberg
(2005)

	Introduction
	Problem of Scheduling and Placement in Dynamic Reconfigurable Devices
	Previous Algorithms
	The Proposed Algorithm
	Evaluation
	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

