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Abstract. Over the last years, we have witnessed the increased use of
Application-Specific Instruction-Set Processors (ASIPs). These ASIPs
are processors that have a customizable instruction-set, which can be
tuned towards specific requirements. The identification, definition and
implementation of those operations that provide the largest performance
improvement and that should be hardwired, extending in this way the
Instruction-Set, constitutes a major challenge. The purpose of this paper
is to investigate and study the issues regarding the customization of an
Instruction-Set in function of the specific requirements of an application.
Additionally, the paper provides an overview of all relevant aspects of
the problem and compensates the lack of a general view of the problem
in the existing literature.

1 Motivation

Electronic devices are very common in everyday life. It’s enough to think about
mobile phones, digital cameras, etc. This great variety of devices can be im-
plemented using different approaches and technologies. Usually these function-
alities are implemented using either General Purpose Processors (GPPs), or
Application-Specific Integrated Circuits (ASICs), or Application-Specific Instruc-
tion-Set Processors (ASIPs). GPPs can be used in many different applications in
contrast to ASICs which are processors designed for a specific application such
as the processor in a TV set top box.

The main difference between GPPs and ASICs is in terms of flexibility. The
programmability of GPPs supports a broad range of possible applications but
usually leads to more power consumption due to the inefficient units consump-
tion. On the other hand, ASICs are able to satisfy specific constraints such as
size, performance and power consumption using an optimal architecture for the
application, but today designing and manufacturing an ASIC is a long and ex-
pensive process [I]. This design complexity grows exponentially due to shrinking
geometries and the high mask and testing costs constitute a significant part of
the manufacturing cost.
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Over the last years, we have witnessed the increased use of GPPs that are
combined with ASIPs. These ASIPs are processors situated in between GPPs
and ASICs that have a customizable instruction-set, which can be tuned towards
specific requirements. Time-to-market and reduced development costs have be-
came increasingly important and have paved the way for reconfigurable archi-
tectures. These combine the flexibility of SW with the performance of HW. The
higher cost/performance ratio for ASIPs have led researchers to look for methods
and properties to maximize the performance of these processors. Each partic-
ular configuration can then be seen as an extension of the instruction-set. The
identification, definition and implementation of those operations that provide
the largest performance improvement and that should be hardwired, constitutes
a major challenge.

The issues involved at each step are various and range from the isomorphism
problem and the covering problem, well known computationally complex prob-
lems, to the function’s study necessary for the guide function and the cost func-
tion, involved in the generation step and in the selection step respectively. Beside
these, all the issues involved in this problem will be analyzed and studied in detail.

The customization of an instruction-set can be categorized in two main ap-
proaches. As the name suggests, complete customization involves the whole in-
struction-set which is tuned towards the requirements of an application [2I34l[5],
while partial customization involves the extension of an existing instruction-set
by means of a limited number of instructions [G[78IQITOITIT2(T314]. In both
cases the goal is to design an Instruction-Set containing the most important
operations needed by the application to maximize the performance. Besides pro-
viding an overall account, we also address considerations such as scalability, how
to deal with overlapping instructions and how to address the complexity of the
problem at hand.

The instruction-set customization problem represents a well specified topic
where results and concepts from many different fields, such as engineering and
graph theory are required. Especially the latter is the dominant approach and
seems to provide the right analytical framework. Every application is thus rep-
resented by a directed graph and the required new complex instructions are seen
as subgraphs having particular properties. The problem then translates into
recognizing isomorphic subgraphs. Equally important are the covering and the
selection problem. These are addressed by different techniques such as branch-
and-bound, dynamic programming, etc. The proposed solutions are either exact,
mathematical models whenever appropriate and possible or, given that the prob-
lem involved is known to be computationally complex, heuristics that are used
in those cases where the mathematical solution is not computable.

The purpose of this paper is to investigate and study the issues regarding
the customization of an instruction-set in function of the specific requirements
of an application. The main goal of the paper is to provide a critical and de-
tailed overview of all the aspects involved in instruction-set customization. The
contribution of the paper is twofold: firstly, it provides an overview of all rele-
vant aspects of the problem. Secondly, it compensates for the lack of a general
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view of the problem in the existing literature which only consists of sporadic
comparison limited to isolated issues involved.

The paper is structured as follows. In Section 2, an introduction to the prob-
lem is presented. Section 3, 4 and 5 present the subproblems involved in the
instruction-set customization, namely instruction generation and selection and
the guide/cost function respectively. Section 6 presents an analysis of the type
of instructions which is possible to generate. Concluding remarks and an outline
of research conducted are given in Section 7.

2 Introduction to the Problem

Typically we start with a high level code, like C, that specifies the application
and we manually specialize the embedded processor in a way that performance
and cost constraints are satisfied. Irrespective of the type of customization, com-
plete or partial, we can distinguish two approaches related to the level of ab-
straction on which we operate, i.e. the granularity at which code is considered:
fine-grained and coarse-grained. The first one works at the operation level and
implements small clusters of operations in HW [7IT0IT2IT3IT4/4359/44]; the sec-
ond one operates at the loop or procedure level and identifies critical loops or
procedures in the application, and displaces them from SW to HW as a whole
[IET7IT8IT920/2T]. The main differences are in terms of speedups and flexibility:
although a coarse-grained approach could produce a large speedup, its flexibility
is limited, given that this approach is often performed on a per application basis
and it is difficult that other applications have the same loop or procedure as
critical part. Consequently many authors prefer either a fine-grained approach,
even if it limits the achievable speedup compared to the coarse-grained one, or a
mix of coarse and fine-grained techniques, since they operate at different levels
and do not interfere with each other.

Basically the target is the identification of the operations that should be
implemented in HW and the ones that have to be left for SW execution to
achieve the requirements of the application. For this reason many authors natu-
rally define this problem as a HW-SW codesign problem or HW-SW partitioning
[2212312412526] which consists of concurrently balance at design time, the pres-
ence of HW and SW. The operations implemented in HW are incorporated in
the processor either as new instructions and processor capabilities, in the form
of special functional units integrated on the processor or implemented as periph-
eral devices. The interface between these systems parts is usually in the form
of special purpose instructions embedded in the instruction stream. These HW
components are more or less tightly coupled to the processor and involve different
synchronization costs. Thus it becomes necessary also to select an appropriate
communication and synchronization method within the architecture. The imple-
mentation of clusters of operations in HW as new complex operations, whatever
nature they have, will benefit the overall performance only if the time the HW
platform takes to evaluate them is less than the time required to compute the
same operations in SW. As a result, compilation time and initialization time of
the reconfigurable resources have to be considered as well.
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At first, we profile the application SW looking for computation intensive seg-
ments of the code which, if mapped on HW, increases performance. The proces-
sor is then manually tailored to include the new capabilities. Although human
ingenuity in manual creation of custom capabilities creates high quality results,
performance and time-to-market requirements as well as the growing complexity
of the design space, can benefit from an automatic design flow for the use of these
new capabilities [28129IT2I3003TI32IT3IT4U60]. Moreover the selection of multiple
custom instructions from a large set of candidates involves complex tradeoff and
can be difficult to be performed manually.

There is a huge number of different interpretations and possible solutions to
the instruction-set extension problem. Many authors adopt a graph theoretical
approach in their work. Graph theory has became the dominant approach and
seems to provide the right analytical framework. In this context the code of the
application is represented with a directed graph, called the subject graph, and
the intensive segments of the code to map on HW are subgraphs of the subject
graph [12]14]. Depending on the level of abstraction on which we operate, nodes
represent basic operations as well as entire procedures, functions or loops; edges
represent data dependencies.

The extension of an instruction-set with new complex instructions can for-
mally be divided into instruction generation and instruction selection. Given the
application code, instruction generation consists of clustering of basic operations
(such as add, or, load, etc.) or of mixed operations into larger and more com-
plex operations. These complex operations are identified by subgraphs which can
cover entirely or partially the subject graph. Once the subgraphs are identified,
these are considered as single complex operations and they pass through a se-
lection process. Generation and selection are performed with the use of a guide
function and a cost function respectively, which take into account constraints
that the new instructions have to satisfy to be implemented in HW. We now
analyze instruction generation and instruction selection in more detail.

3 Instruction Generation

Instruction generation is mainly based on the concept of template. We call tem-
plate a set of program statements that is a candidate for implementation as a
custom instruction. Therefore a template is equivalent to a subgraph represent-
ing the list of statements selected in the subject graph, where nodes represent
the operations and edges represent the data dependencies.

Instruction generation can be performed in two non exclusive ways: using
existing templates or creating new templates. A collection of templates consti-
tutes a library of templates. Many authors assume the existence of templates
which are given as an input and which are identified inside the subject graph
[B3U6U3T], however this is not always the case and many authors develop their
own templates [TOITTI34I7ITOIB5IT44359].

In the first case, instruction generation is nothing more than the identification
of recurrences of specific templates from the library within the application. It
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is similar to the graph isomorphism problem [36/37062]. In this case instruction
generation can be considered as template identification. In the second case
templates are identified inside the graph using a guide function. This function
considers a certain number of parameters (often called constraints) and starting
from a node taken as a seed, grows a template which respects all the parameters.
Once a certain number of templates is identified the graph is usually reanalyzed
to detect recurrences of the built templates.

The analysis of the application to identify instructions is often called design
space exploration. We can detect a certain number of problems involved in in-
struction generation: (1) the complexity of the exploration, (2) the shape of the
graph and (3) the overlapped templates.

A graph with n nodes contains 2" subgraphs. Theoretically this means that
there is an exponential number of possible new complex operations which can
be selected inside a graph. This turns into an exponential complexity in the de-
sign space exploration. This problem can be avoided in two ways: reducing the
design space explored, for example using heuristic instead of exact algorithms,
or introducing more parameters into the guide function and introducing efficient
bounding techniques. The use of heuristics, even though it reduces the design
space explored, turns into the generation of non optimal solution or feasible ones,
and they are often used with no theoretical guarantee. The introduction of addi-
tional parameters in the guide function can reduce the number of candidates for
HW implementation, but has the drawback that every time a node is evaluated
for a possible inclusion or not in the cluster, every parameter has to be satisfied
and therefore the reduction of candidates turns into an increase of complexity
of the approach due to the multiple analysis of the nodes.

A way to solve exactly covering problem is by using a branch-and-bound
approach. This approach starts with a search space potentially exponential in
size, and reduce step by step the search space using effective bounds and pruning
techniques [38J39]. Other covering approaches use dynamic programming which
is a way of decomposing certain hard to solve problems into equivalent formats
that are more amenable to solution. A drawback of dynamic programming is
that it can only operate on tree-shaped subject graph and patterns, excluding
directed graph with cycles. Thus the non-tree-shaped graph has to be decom-
posed into sets of disjoint trees. Other approaches, like [I0], are based on dynamic
programming, without the requirement that the subject graph and the patterns
are trees.

The second difficulty concerns the shape of the graph. First of all graphs
can be divided in cyclic and acyclic graphs. Usually only acyclic graphs are
considered during the analysis. This follows from the fact that acyclic graph can
be easily sorted, for example by a topological ordering, whereas cyclic graph
cannot. Therefore the trouble of defining a one-to-one order of the nodes to the
complexity of the problem is added. Moreover a cyclic graph can be transformed
into an acyclic one if, for example, the cycles are unrolled. An other problem is
given by the management of disconnected graphs. Even though the study of the
problem including disconnected graphs in the analysis allows for exploiting the
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parallelism provided by considering each connected components at the same time
[40UT2JT4], in many cases the authors have taken up only the study of connected
graphs [T0J282513T182/4T], shifting the study of disconnected graph in the study
of k graphs, where k is the number of connected components.

The last problem is the management of overlapped template [32/42]. This
problem is mainly related to the case when templates are provided. Usually, when
a template is grown, the nodes included in the template are removed from the
nodes subject to further analysis and therefore two disjointed templates can not
overlap. This problem which, for instance, can be solved with the replications of
the common nodes between the overlapped template, is very important. By the
replication of few nodes, the cost of the replicated nodes can be paltry compared
to the gain in performance which it is possible to get implementing in HW all the
overlapped templates, especially under tight area constraint. Although mainly
related to instruction generation, overlapped templates are a problem which
affects also instruction selection.

4 The Guide Function and the Cost Function

Instruction generation as well as instruction selection make use of a function to
identify or select the most profitable instructions to hardwire. These functions
are called guide function and cost function respectively. They are strictly
related one another and both are used to help the search of new instructions.

The aim of the guide function in template generation is to help the identifica-
tion of a certain number of templates inside the graph. The output of the guide
function is a set P defined as follows: P = {T; C G, with i € N}, where G is the
subject graph and T; are the templates identified in G.

Instruction selection makes use of a cost function. This function, similar to
the guide function, is used to prune the set of candidates P generated during
instruction generation. The main goal of the cost function is the identification
of an optimal subset Po,: C P of templates. These templates satisfy a certain
number of constraints. This is usually reflected into a reduction of the execution
time of the application, and/or into a properly filling of the available area on
the reconfigurable component, and/or into a minimization of the delay, and/or
of reduction the power consumption, etc. Clearly the bigger is the size of P, i.e.
the greater is the number of templates identified inside the subject graph, the
harder is the selection of Poyy € P. Although this can be seen as an additional
problem, it is not always the case. A big size of P in terms of candidates for HW
implementation becomes useful when the constraints are changed, shrunk or re-
laxed allowing different choices of the subset Pop: satisfying the new constraints.
As a consequence, the reconfigurability of the approach benefits.

The guide function usually includes physical constraints as parameters like
the number of inputs and outputs. Apart from that, the guide function can
include more generally constraints which, if respected, allows the implementation

! For example two subgraphs with set of nodes {1,2,4} and {1,3,5} respectively
overlap at node 2 and then only one of them is enumerated.
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in HW. A cost function, however, reduces a big set and leaves those elements
which increase performance. The two functions are often considered together
since they have a similar use. When the functions are considered independently,
a right division of the parameters taken into account by the functions can reduce
the complexity of the approach limiting the number of checks. For example [12]
describes an approach for the generation of convex MIMO operations. The new
operations are grown from a single operation/node taken as a seed and the
adjacent nodes are evaluated for inclusion in the cluster. Every time a node is
analyzed for inclusion in the cluster, the node passes through a triple check:
inputs, outputs and convexity. Using this approach to identify convex MISO
operations the complexity can be reduced. This because a MISO operation is
naturally a convex operation [1443J44] and therefore a check on single outputs
of the final cluster naturally implies that the cluster is convex.

The main metrics which usually are all or part of the parameters used by the
guide and cost functions are the following :

— number of inputs and outputs, usually related to the type of architecture
used. Although limitations on input and output result in reduced perfor-
mance, many architectures impose severe limitations on the characteristic of
the final cluster to implement in HW.

— area, although it is hardly related to the single instructions, each instruction
occupies a certain area, hence the total area of the cluster is an important
factor;

— ezecution time, even though not possible to obtain accurate estimates of the
system’s cycle time in all cases. Therefore cycle count is often used as a
substitute for the execution time;

— power consumption.

Usually a subset of the above metrics is used to identify and select an optimal set
of new instructions. An exhaustive outline of metrics can be seen in [2, Chap.4].
One of the main goals when designing an instruction-set is to make the design
appropriate for an implementation on many different technologies.

The coming of new technologies, and especially the increased use of recon-
figurable technologies in the last decade can therefore lead researchers to think
about the design of an instruction-set technology independent and suitable for
multiple reuses. Theoretically exact, this concept has to deal with the effective
implementation of an instruction-set which includes compilation time, initializa-
tion time as well as time for loading and reading parameters from memory or
registers. Since these metrics are strictly dependent on the effective implementa-
tion, the design of an optimal instruction-set cannot be completely independent
of the effective architecture on which it is implemented. Additional metrics can
be identified in specific properties that the final cluster has to satisfy, as graph
properties (like convexity, a property which guarantees a proper scheduling, etc.).
Additional properties can be seen as a metric but in this survey we make a dis-
tinction between metrics and graph properties like connection, convexity, etc.
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5 Instruction Selection

The main goal of instruction selection is the identification of a set of optimal
new instructions to hardwire from a superset of candidates generated by the
instruction generation step. One of the main problem during the selection of
the best candidates is the covering of the design space: exact algorithms can be
too expensive in terms of computational cost. Heuristics alone do not guarantee
optimality, or even feasibility of the solution. The selection can follow different
policies. The elements of POpE can be selected attempting to minimize the
number of distinct templates that are used [7], or the number of instances of each
template, or the number of nodes left uncovered in the graph [45/46], or in such
a way that the longest path through the graph should have minimal delay. Other
approaches select instructions based on regularity, i.e. the repeated occurrence
of certain templates [47/48/49/40], or resource sharing [50/51], or considering the
frequency of execution, or the occurrence of specific nodes [I152]. Instruction
selection, guided by the cost function, can take one or more of these targets as
parameters for an optimal choice of the instructions.

A way to address instruction selection is by using Integer Linear Program-
ming (ILP) and more generally Linear Programming (LP) in combination with
efficient LP solver. Basically each instruction is associated to a variable which
can have integer value (Integer Linear Programming, ILP), non integer value
(Linear Programming, LP), or boolean value (0-1 Linear Programming). The
instructions, and then the variables, have to satisfy a certain number of con-
straints which are expressed with a system of linear inequalities and the optimal
solution is the one that maximize or minimize the, so called, objective function.
Example of instruction selection by using LP can be seen in [53122IT3I14].

A way to solve exactly covering problem is by using dynamic programming
or branch-and-bound methods. Exact solutions are proposed in [54/55]. Clearly
a method is efficient if it is possible to prevent the exploration of unsuccessful
branches at earlier stages of the search, and this relies on efficient bounding
techniques [38/39156/57].

6 The Type of Instructions

Basically, there are two types of clusters that can be identified, based on the
number of output values: Multiple Input Single Output (MISO) and Multiple
Input Multiple Output (MIMO). Clearly the set of MIMO graphs includes the
subset of MISO graphs. We identify these two types of graphs for a specific
reason: the sequence of instructions to shift from SW to HW can be seen as a
multivalued function: given n > 1 input the function produces m > 1 outputs:
(Outy, ..., Outy,) = f(Inq, ..., In,), which can be written in a short way using a
vector notation as OQut = f(In).

Accordingly, there are two types of algorithms for instruction set extensions
which are briefly presented in this section.

2 In case an optimal solution is not feasible, Poypt contains elements which are close-
to-optimal.
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For the first one, a representative example is introduced in [58/28] which ad-
dresses the generation of MISO instructions of maximal size, called MAXMISO.
The proposed algorithm exhaustively enumerates all MAXMISOs. Its complex-
ity is linear with the number of nodes. The reported performance improvement
is of some processor cycles per newly added instruction. Access to memory, i.e.
load/store instructions, are not considered.

The approach presented in [32] targets the generation of general MISO instruc-
tions. The exponential number of candidate instructions turns into an exponen-
tial complexity of the solution in the general case. In consequence, heuristic and
additional area constraints are introduced to allow an efficient generation. The
difference between the complexity of the two approaches in [32I58] is due to the
properties of MISOs and MAXMISOs: while the enumeration of the first is simi-
lar to the subgraph enumeration problem (which is exponential) the intersection
of MAXMISOs is empty and then once a MAXMISO is identified, it is removed
generating a linear enumeration of them. A different approach is presented in [44]
where, with an iterative application of the MAXMISO clustering presented in [58],
MISO instructions called SUBMAXMISOs are generated with linear complexity
in the number of processed elements. The iterative application of this algorithm
allows the generation of MISO instructions of smaller size at each iteration when,
for instance, tight limitations on the total number of inputs are applied.

The algorithms of second type are more general and provide more significant
performance improvements. However they also have exponential complexity. For
example, in [12] the identification algorithm detects optimal convex MIMO sub-
graphs based on Input/Output constraints but the computational complexity is
exponential. A similar approach described in [41] proposes the enumeration of
all the instructions based on the number of inputs, outputs, area and convexity.
The selection problem is not addressed. Contrary to [12] which has scalability
issues if the data-flow graph is very large or the micro-architectural constraints
are too fine, this approach is quite scalable and can be applied on large data-
flow graphs with relaxed micro-architectural constraints. The limitation to only
connected instructions has been removed in [61], where the authors address the
enumeration of the disconnected instructions.

In [13] the authors target the identification of convex clusters of operations
given input and output constraints. The clusters are identified with a ILP based
methodology. The main characteristic is that they iteratively solve ILP problems
for each basic block. Additionally, the convexity is verified at each iteration
increasing in this way the overall complexity of the approach.

In [14] the authors address the generation of convex MIMO operations in a man-
ner similar to [I3] although the identification of the new instructions is rather dif-
ferent. The authors construct convex MIMO based on MAXMISOs clustering in
order to maximally exploit the MAXMISO level parallelism. The main difference
between this approach and [I3] is that the latter iteratively solves ILP problems
for each basic block, while the former has one global ILP problem for the entire
procedure. Additionally the convexity is addressed differently: in [I3] the convex-
ity is verified at each iteration, while in [14] it is guaranteed by construction.
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An extension of the work in [14] is presented in [43]. In [43], the authors
present a heuristic of linear complexity which address the generation of convex
MIMO instruction. The key difference between the two solutions presented in
[14] and [43] is the combination per levels. Since single MAXMISO execution
in HW does not provide huge improvements in performance, the main idea is
to combine, per levels, MAXMISOs available at the same level in the reduced
graph, into a convex MIMO that is executed as a single instruction in HW where
convexity is theoretically guaranteed. The idea of combining MAXMISO per
level(s) has been further extended in [44/59] where linear complexity algorithms
based on the notion of MAXMISO are presented.

7 Conclusions

In this paper, we presented an overview of the Instruction-Set extension prob-
lem providing an analysis of all relevant aspects involved in the problem. It
compensates the lack of a general view of the problem in the existing literature
which only consists of sporadic comparisons that address only a limited number
of the issues involved. Additionally, we provided an in-depth analysis of all the
subproblems involved. Therefore, our study benefits different kinds of readers
ranging from the one simply interested in the issues involved in the problem, to
the one interested in advancing the state-of-the-art and needs to know in detail
the existing approaches and the open issues.

References

1. Keutzer,: From ASIC to ASIP: The next design discontinuity. In: ICCD 2002 (2002)
Holmer: Automatic design of computer instruction sets. PhD thesis (1993)
3. Huang: Generating instruction sets and microarchitectures from applications. In:
ICCAD 1994, (1994)
4. Huang: Synthesis of instruction sets for pipelined microprocessors. In: DAC 1994,
(1994)
5. Van Praet: Instruction set definition and instruction selection for ASIPs. In: ISSS
1994, (1994)
6. Liem: Instruction-set matching and selection for DSP and ASIP code generation.
In: ED & TC 1994, (1994)
7. Choi,: Synthesis of application specific instructions for embedded DSP software.
IEEE Trans. on Comp. 48(6), 603—-614 (1999)
8. Faraboschi,: LX: a technology platform for customizable VLIW embedded process-
ing. ACM SIGARCH Computer Architecture News, Special Issue. In: Proceedings
of the 27th annual international symposium on Computer architecture (ISCA 2000)
28(2), 203-213 (2003)
9. Wang: Hardware/software instruction set configurability for System-on-Chip pro-
cessors. In: DAC 2001 (2001)
10. Arnold: Designing domain-specific processors. In: CODES 2001(2001)
11. Kastner,: Instruction generation for hybrid reconfigurable systems. ACM TO-
DAES 7(4), 605-627 (2002)
12. Atasu: Automatic application-specific instruction-set extensions under microarchi-
tectural constraints. In: DAC 2003 (2003)

N



13.

14.

15.

16.

17.
18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.
34.

35.

36.

37.

38.

The Instruction-Set Extension Problem: A Survey 219

Atasu: An integer linear programming approach for identifying instruction-set ex-
tensions. In: CODES+ISSS 2005 (2005)

Galuzzi: Automatic selection of application-specific instruction-set extensions. In:
CODES+ISSS 2006 (2006)

Alomary: A hardware/software codesign partitioner for ASIP design. In: ICECS
1996 (1996)

Athanas,: Processor reconfiguration through instruction-set metamorphosis. IEEE
Computer 26(3), 11-18 (1993)

Razdan: PRISC software acceleration techniques. In: ICCS 1994 (1994)

Wirthlin: DISC: The dynamic instruction set computer. In: FPGAs for Fast Board
Devel. and Reconf. Comp. vol. 2607, pp. 92-103 (1995)

Geurts: Synthesis of Accelerator Data Paths for High-Throughput Signal Process-
ing Applications. PhD thesis (1995)

Geurts,: Accelerator Data-Path Synthesis for High-Throughput Signal Processing
Applications. Kluwer Academic Publishers, Norwell (1997)

Hauser: GARP: a mips processor with a reconfigurable coprocessor. In: FCCM
1997 (1997)

Niemann: Hardware/software partitioning using integer programming. In: EDTC
1996 (1996)

Niemann,: An algorithm for hardware/software partitioning using mixed integer
linear programming. ACM TODAES, Special Issue: Partitioning Methods for Em-
bedded Systems 2(2), 165-193 (1997)

De Micheli,: Hardware/software co-design. Proc. of IEEE 85(3), 349-365 (1997)
Baleani, Sangiovanni-Vincentelli, A.: HW/SW partitioning and code generation
of embedded control applications on a reconfigurable architecture platform. In:
CODES 2002 (2002)

Araté: Hardware-software partitioning in embedded system design. In: WISP 2003
(2003)

Gschwind: Instruction set selection for ASIP design. In: CCODES 1999 (1999)
Pozzi: Automatic topology-based identification of instruction-set extensions for em-
bedded processors. Technical Report CS 01/377, EPFL, DI-LAP, Lausanne (De-
cember 2001)

Clark: Automatically generating custom instruction set extensions. In: WASP 2002
(2002)

Peymandoust: Automatic instruction set extension and utilization for embedded
processors. In: ASAP (2003)

Clark,: Processor acceleration through automated instruction set customization.
In: MICRO 36

Cong: Application-specific instruction generation for configurable processor archi-
tectures. In: FPGA 2004 (2004)

Rao, S.: Partitioning by regularity extraction. In: DAC 1992 (1992)

Arnold: Automatic detection of recurring operation patterns. In: CODES 1999
(1999)

Kastner: Instruction generation for hybrid reconfigurable systems. In: ICCAD 2001
(2001)

Fortin: The graph isomorphism problem. Technical Report TR 96-20, Department
of Computing Science, University of Alberta, Canada (July 1996)

Chen,: Graph isomorphism and identification matrices: Parallel algorithms. IEEE
Trans. on Paral. and Distr. Systems 7(3), 308-319 (1996)

Coudert: New ideas for solving covering problems. In: DAC 1995 (1995)



220

39.
40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

C. Galuzzi and K. Bertels

Coudert: On solving covering problems. In: DAC 1996 (1996)

Brisk: Instruction generation and regularity extraction for reconfigurable proces-

sors. In: CASES 2002 (2002)

Yu: Scalable custom instructions identification for instruction-set extensible pro-

cessors. In: CASES 2004 (2004)

Aleta,: Removing communications in clustered microarchitectures through instruc-

tion replication. ACM TACO 1(2), 127-151 (2004)

Vassiliadis, S., Bertels, K., Galuzzi, C.: A Linear Complexity Algorithm for the

Automatic Generation of Convex Multiple Input Multiple Output Instructions. In:

Diniz, P.C., Marques, E., Bertels, K., Fernandes, M.M., Cardoso, J.M.P. (eds.)

ARCS 2007. LNCS, vol. 4419, pp. 130-141. Springer, Heidelberg (2007)

Galuzzi: A linear complexity algorithm for the generation of multiple input single

output instructions of variable size. In: SAMOS VII Works

Liao: Instruction selection using binate covering for code size optimization. In:

ICCAD 1995 (1995)

Liao,: A new viewpoint on code generation for directed acyclic graphs. ACM TO-

DAES 3(1), 51-75 (1998)

Rao, S.: On clustering for maximal regularity extraction. IEEE Trans, on
CAD 12(8), 1198-1208 (1993)

Rao, S.: Hierarchical design space exploration for a class of digital systems. IEEE

Trans. on VLSI Systems 1(3), 282-295 (1993)

Janssen: A specification invariant technique for regularity improvement between

flow-graph clusters. In: EDTC 1996 (1996)

Huang: Managing dynamic reconfiguration overhead in system-on-a-chip design

using reconfigurable datapaths and optimized interconnection networks. In: DATE
2001 (2001)

Moreano: Datapath merging and interconnection sharing for reconfigurable archi-
tectures. In: ISSS 2002 (2002)

Sun: Synthesis of custom processors based on extensible platforms. In: ICCAD
2002 (2002)

Imai: An integer programming approach to instruction implementation method
selection problem. In: EURO-DAC 1992 (1992)

Grasselli,: A method for minimizing the number of internal states in incompletely
specified sequential networks. IEEE Trans. Electron. Comp. EC-14, 350-359 (1965)
Brayton: Boolean relations and the incomplete specification of logic networks. In:
ICCAD 1989 (1989)

Liao: Solving covering problems using LPR-based lower bounds. In: DAC 1997
1997

£i: Ef)fective bounding techniques for solving unate and binate covering problems.
In: DAC 2005 (2005)

Alippi: A DAG-based design approach for reconfigurable VLIW processors. In:
DATE 1999 (1999)

Galuzzi: The spiral search: A linear complexity algorithm for the generation of
convex multiple input multiple output instruction-set extensions. In: ICFPT 2007
2007

%—Iuynilz An Efficient Framework for Dynamic Reconfiguration of Instruction-Set
Customizations. In: CASES 2007 (2007)

Yu: Disjoint pattern enumeration for custom instructions identification. In: FPL
2007 (2007)

Bonzini: A retargetable framework for automated discovery of custom instructions.
In: ASAP 2007 (2007)



	Motivation
	Introduction to the Problem
	Instruction Generation
	The Guide Function and the Cost Function
	Instruction Selection
	The Type of Instructions
	Conclusions


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice


