A Framework for the Automatic Generation of
Instruction-Set Extensions for Reconfigurable
Architectures

Carlo Galuzzi and Koen Bertels*

Delft University of Technology, The Netherlands
{C.Galuzzi,K.L.M.Bertels}@ewi.tudelft.nl

Abstract. In this paper we present a framework for the automatic iden-
tification and selection of convex MIMO instruction-set extensions for
reconfigurable architecture. The framework partitions the analysis of the
problem into phases of different computational complexity and it gen-
erates instruction-set extensions of different granularity. The framework
is retargetable and additional clustering policies can be added with just
small modification on the design.

1 Introduction

In the past decade we have witnessed a general shifting from the use of general-
purpose computing systems to systems able to perform only a limited number of
tasks but more efficiently. Although general-purpose systems can execute a broad
range of applications making them extremely flexible, the power consumption
is relatively high. A good trade-off between flexibility and power consumption
is represented by reconfigurable systems. A simple reconfigurable system can
be realized, for instance, by coupling a General Purpose Processor (GPP) and
a reconfigurable hardware like an FPGA. When an application is executed on
a general system, a certain number of instructions are executed in hardware,
namely the ones that belongs to the Instruction-Set, whereas the rest of the
instructions is executed in software. If the same application is executed on a
reconfigurable system, we can use the reconfigurable hardware to execute addi-
tional more complex instructions, application-dependent, so that to extend the
Instruction-Set and speed up the execution of the application on the system.
The identification of those instructions suitable for hardware implementation
represents the so called Instruction-Set Extension (ISE) problem [2].

Taking into account the data-flow or control-flow graph of an application, it is
easy to understand that the parts of the application suitable for hardware imple-
mentations correspond to subgraphs of the graph representing the application.
The subgraph enumeration problem is a well known problem which is computa-
tionally complex and requires exponential time to provide an exhaustive enumer-
ation of all the subgraphs. Since not all subgraphs are suitable for a hardware

* This work was supported by the European Union in the context of the MORPHEUS
project Num. 027342.

R. Woods et al. (Eds.): ARC 2008, LNCS 4943, pp. 280-286] 2008.
© Springer-Verlag Berlin Heidelberg 2008

A Framework for the Automatic Generation of Instruction-Set Extensions 281

i
I
I
I
|
| |
|
i ISE ISE '
I Identification Selection : Implementation
| 1
! |
I
1

a) b) <) d)

Fig. 1. The main parts of the ISE creation process: a) application to analyze, b) ex-
tension identification ¢) extension selection and d) hardware implementation of the
selected new instructions

implementatiorﬂ, the problem becomes the design of efficient algorithms for the
identification of only instructions suitable for a hardware implementation.

Figure [depicts a general flow for ISE identification: once the application is
selected (Figure[Th), the application is analyzed to discover a certain number of
candidate instructions for hardware implementation (Figure [Ib), the identified
instructions pass through a selection process which identify the most suitable
ones to hardwire usually based on hardware limitations (Figure [Ik) and finally
the selected instructions are implemented in hardware (Figure [IH).

In this context, we present a framework for the automatic identification and
selection of Multiple Input Multiple Output Instruction-Set extensions. The pro-
posed design targets the Molen organization [I] which allows for a virtually un-
limited number of new instructions without limiting the number of input/output
values of the new instruction to be executed on the reconfigurable hardware.
More specifically the main contributions of this paper are the below listed:

— a framework for the automatic identification and selection of Instruction-Set
extensions which partitions the analysis into phases of different granularity
and computational complexity;

— an analysis of the main issues to export the presented framework, designed
for the Molen architecture, to general reconfigurable architectures.

The reminder of the paper is the following: in Section Bl a description of the
framework in detail together with a computational complexity analysis and an
analysis of the issues to improve the presented framework and extend it to a gen-
eral reconfigurable architectures are presented. Finally, in Section [B] we present
concluding remarks and an outline of future work.

2 Description of the Framework

In Figure 2l we present an overview of the framework proposed in this paper. For
more technical details about definitions and concepts addressed in the following,

! Depending on the target architecture, the new instructions can have limitations
on the total number of inputs and/or outputs, or on the area they occupy when
implemented on the reconfigurable hardware, etc.

282 C. Galuzzi and K. Bertels

Fine-Grain Coarse-Grain
Selector Selector

N
1 _—{ouwsTt
L I
! \
DAG 2 MM ; : CLUST2 ouTPUT

! |
! \
! \
!
!

L
INPUT |
— e il L]

3 e MM SMM ¥ CLUST3
Tl T ™
Fine-Grain Stage | Selectors | N Coarse-Grain Stage
a) b)

Fig. 2. The Framework for the Automatic Generation of Instruction-Set extensions

the interested reader can refer to [BJGI4[7]. The main idea behind the design of
such a framework is the generation of convex MIMO instruction-set extensions
with multiple steps of different granularity and complexity. More specifically the
design can be split in two parts: the first part concerns a fine-grain clustering
(Figure [2h) and the second one concerns a coarse-grain clustering (Figure 2b).
The framework has three main stages: the fine-grain stage, the selector stage
and the coarse-grain stage described in the following. We assume the Molen
architecture as the target reconfigurable architecture. Some issues concerning
how to export the framework to general reconfigurable architecture and possible
extensions and improvements for the framework are addressed later in the paper.
One of the strengths of such a framework is the convexity guarantee of the
clusters generated. Traditional methods for convex instruction identification usu-
ally perform a check for the convexity of the cluster at each inclusion of a node
in the cluster. This affects the overall complexity of the solution which increases.
With our clusterings, the selected nodes do not have to be tested for convexity
since the convexity of the cluster is theoretically guaranteed by construction.

STEP 1: Fine-Grain Stage. The input of the framework is given by the DAG
G = (V, E) that represents the application to be analyzed where the nodes rep-
resent primitive operations and the edges represent the data dependencies. The
focus of the analysis is on which parts of the code are suitable for a software
implementation and which ones are suitable for a hardware implementation to
increase the overall performance of execution of the application onto the recon-
figurable architecture. We have three different paths that the input can follow
before arriving to the selector stage:

— PATH 1: The nodes of G are convoyed directly to the selector step;

— PATH 2: The nodes of G are partitioned in MAXMISOs [3];

— PATH 3: The nodes of G are firstly partitioned in MAXMISOs and subse-
quently every MAXMISO is partitioned in SMMs [4].

A Framework for the Automatic Generation of Instruction-Set Extensions 283

In PATH 3, from the definition of SMM [4], we know that the SMM partition-
ing depends on the choice of the bereaved nodd? and this node can be selected
in n different ways, where n is the order of G. In all the cases the output is a
minimal cover of convex non-overlapping MISO clementdd. We remind that a
minimal cover is a cover for which removal of one member destroys the covering
property of the graph. We note that in all cases convexity is guaranteed theoret-
ically by construction while in general, other approaches perform an additional
analysis on the clusters to test the convexity. We remark that, in PATH 3, the
algorithm for SMM generation can also be used iteratively to generate MISO
instructions of relatively smaller size when tight constraints on the inputs are
imposed.

STEP 2: Coarse-Grain Stage. Based on the output of the fine-grain stage
(more specifically on the input selected by the fine-grain selector) there are three
possible ways to generate convex MIMO instructions depending on the shape of
the graph in terms of depth and width of the grap}ﬂ

CASE 1: w > d. (CLUST 1, Figure 2]) Let us consider a partitioning of the
nodes of GG in levels. When two nodes nqy and no with latency in hardware [; an Iy
at the same level are selected for hardware execution, if they are implemented as
separate instructions we have a performance loss, which can be roughly estimated
as l1 + 1o —max(l1, l2). An optimal selection of which nodes to select at the same
level to implement in parallel in hardware can then provide a considerable speed
up estimated as) _, I; —max;(l;). An algorithm for the optimal selection of convex
MIMO ISE based on an ILP formulation, more suitable for graphs wider than
deeper, has been proposed in [5]. Although the algorithm has been designed for
an optimal selection through the levels of MAXMISOs at the same level, it is
possible to generalize the result to every minimal cover with non-overlapping
elements.

CASE 2: w < d. (CLUST 2, Figure 2)) When a graph is deeper than wider, a
heuristic clustering algorithm of linear complexity in the number of processed
elements is proposed in [6]. Similarly to the previous case, the result is applicable
to every minimal cover with non-overlapping elements. This algorithm starts
from a node at a certain level and moving vertically through the levels it identifies
nodes to include in the cluster. Clustering is performed up to when there is
available area left on the reconfigurable hardware.

CASE 3: w « d. (CLUST 3, Figure [2) When clustering is performed on graph
with comparable width and depth, an extended version of the algorithms pro-
posed in the previous cases is presented in [7]. This paper present a clustering
method of linear complexity based on a spiral search through the levels of a

2 The choice of the node can be random or directed by specific properties defined by
the user.

3 We note that a single node is trivially a convex subgraph and a MISO.

4 The depth, d, of a graph is defined as the maximum number of the levels of its node,
while the width, w, of a graph is defined as the maximum number of nodes belonging
to the same level through the levels.

284 C. Galuzzi and K. Bertels

graph. Contrary to the previous two algorithms which select nodes favoring a
specific direction (horizontal CASE 1 and vertical CASE 2), this algorithm clus-
ters nodes following a spiral search centered in the initial node selected and
expanding the search through the levels in both directions: vertical and horizon-
tal. Also in this case clustering is performed up to when there is available area
left on the reconfigurable hardware. Similarly to the previous cases, the result is
extendible to every minimal cover with non-overlapping elements.

These algorithms perform instruction generation and selection at the same time
based on a certain number of parameters: hardware and software latency of the
generated instructions, total area occupied by the generated instructions when
implemented in hardware and total area available on the FPGA. Additionally,
while the first clustering produces an optimal solution, the other clusterings are
heuristics. We remark that although the algorithms are more suitable in specific
cases than others, there is no limitation in the use of any of them for any graph.

Fine- and Coarse-Grain Selector Stage. In Figure 2] two selectors are de-
picted: a fine-grain and a coarse-grain selector. The former, a 3-1 selector, for-
wards the output of one of the PATH 1-3 to the latter, a 1-3 selector, which
directs the data to one of the coarse-grain clustering algorithms. We have 3 x 3
possible combinations, which means that we can have up to 9 possible different
instruction-set extensions of different granularity. Additionally the framework
can be extended with additional algorithms for clustering in both stages, the
fine-grain and the coarse-grain stage, with small adjustments on only the selec-
tors to include more inputs or outputs for the additional clustering algorithms.

The Complexity of the Framework. As described before, the framework
produces an ISE depending on the input and output of the selectors. All the
clustering algorithms presented in the framework but one have linear complexity
in the number of processed elements. Only the clustering algorithm CLUST 1
has exponential complexity but it provides an optimal solution. This means that
when in the coarse-grain stage it is selected the first algorithm for the generation
of convex MIMO instruction set extensions, the overall complexity of the process
is exponential. In the remaining cases the overall complexity is linear in the
number of processed elements.

Additionally, the SMM clustering, CLUST 2 and 3 generate clustering based
on the initial selection of a node, which can be random or directed by specific
properties defined by the user. This means that keeping variable the selection
of the node, for each choice of the node it is possible to generate a different
instruction-set extension with the same computational complexity.

Extensions and improvements for the Framework. The framework pre-
sented in this paper has a flexible design: additional clustering algorithm can be
integrated into the design with modifications of only the selectors in principle.
As mentioned before, our target architecture is the Molen architecture. When
the present design is exported on different architectures, additional constraints
on number of I/O have to be usually introduced during the clustering in the
fine- and coarse-grain clustering step.

A Framework for the Automatic Generation of Instruction-Set Extensions 285

Hardware reuse can be considered to further speed up the overall execution
time of the application onto the reconfigurable architecture, implementing in
hardware only the unique instructions and saving area for additional ones. This
can be done with an isomorphism check strategically positioned into the design.
On one side, an isomorphism check for hardware reuse can save area and increase
the speed up using the saved area for additional new complex operations. On
the other side, no polynomial solution is known for the graph isomorphism prob-
lem. This means that the inclusion into the design of an isomorphism check will
increase the overall complexity of the solution. Efficient algorithms for graph iso-
morphism are available in literature, which represents a good trade-off between
their complexity and the quality of their solution [§].

Additionally, CLUST 2 and CLUST 3 perform selection of the clusters based
on the total available area left. An optimal selection of which are the instruc-
tions suitable for hardware implementation based on latency and area can be
obtained formulating the selection as an ILP problem and using efficient solver
to find the solution. This can be solved as in [5] without the requirements that
the selected clusters belong to specific levels. This will provide a better selection
of the instruction but it will increase the overall complexity of the generation
process as well. This means that all the clusters will be first generated, giving
a minimal cover of the graph and then the ones belonging to the optimal solu-
tion will be implemented in hardware based on the total available area on the
reconfigurable component.

3 Conclusions

In this paper we presented a framework for the automatic identification and selec-
tion of convex MIMO instruction-set extensions for reconfigurable architecture.
The framework partitions the analysis of the problem into phases of different
computational complexity and granularity. The framework is retargetable and
additional clustering policies can be added with just small modification on the
design. In our future work we intend to verify with experimental results the ben-
efit of the insertion of such a framework into the design for automatic instruction
set extension. Preliminary results presented in [5] and [6] have shown the benefit
of the insertion of part of the algorithms presented in this paper.

References

1. Vassiliadis: The molen polymorphic processor. IEEE Trans. on Comp. 53(11) (2004)

2. Galuzzi: The Instruction-Set Extension Problem: A Survey. In: ARC 2008 (2008)

3. Alippi: A dag-based design approach for reconfigurable vliw processors. In: DATE
1999 (1999)

4. Galuzzi: A linear complexity algorithm for the generation of multiple input single
output instructions of variable size. In: SAMOS VII

286 C. Galuzzi and K. Bertels

5. Galuzzi: Automatic selection of application-specific instruction-set extensions. In:
CODES+ISSS 2006 (2006)

6. Galuzzi: A linear complexity algorithm for the automatic generation of convex mul-
tiple input multiple output instructions. In: Inter. J. of Elec. (2008) (to appear)

7. Galuzzi: The spiral search: A linear complexity algorithm for the generation of
convex multiple input multiple output instruction-set extensions. In: ICFPT 2007
(2007)

8. Bonzini: A retargetable framework for automated discovery of custom instructions.
In: ASAP 2007 (2007)

	Introduction
	Description of the Framework
	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

