Compositional, dynamic cache management for embedded chip multiprocessors

Anca M. Molnos, Marc J.M. Heijligers
NXP Semiconductors / Corporate I&T
HTC 37, Eindhoven, The Netherlands

{anca.molnos, marc.heijligers } @nxp.com

Abstract

This paper proposes a dynamic cache repartitioning tech-
nique that enhances compositionality on platforms executing
media applications with multiple utilization scenarios. The
repartitioning among scenarios requires a cache flush, thus
two undesired effects may occur: (1) the execution of crit-
ical tasks may be disturbed and (2) a performance penalty
is involved. To cope with these effects we propose a method
which: (1) determines, at design time, the cache footprint
of each task, such that it creates the premises for critical
tasks safety, and reduces the amount of required flush, and
(2) enforces these footprints and further decreases the flush
penalty, at run-time. We implement our dynamic cache man-
agement strategy on a CAKE multiprocessor with 4 Trimedia
cores. The experimental workload consists of 6 multimedia
applications, each of which formed by multiple tasks belong-
ing to an extended MediaBench suite. For the repartitioned
cache we found on average that: (1) the relative variations
of critical tasks execution time are less than 0.1%, regard-
less the scenario switching frequency, (2) for realistic sce-
nario switching frequencies the inter-task cache interference
is at most 4% , and (3) the off-chip memory traffic reduces
with 60%, and the performance (in cycles per instructions)
enhances with 10%, when compared with the shared cache.

1 Introduction

Over the last years, the size and complexity of multime-
dia applications have a clear tendency to increase, demand-
ing more and more performance from the underlying hard-
ware. In the embedded field a common practice to boost
performance is to use several processors integrated on a sin-
gle chip, (Chip Multi-Processors - CMP). Nevertheless the
speed gap between the processors and the off-chip memory
widens with 50% every year. Therefore, to mitigate this gap,

a CMP typically comprises a number of memory buffers.
Cache hierarchies represent a possible organization of the

on-chip memory buffers. In this paper we consider a CMP
with a memory hierarchy in which each processor core has
its own level one (L1) cache, and the platform has a large
level two (L2) cache shared among all the cores [10]. Fur-
thermore, we assume that such a CMP executes a software
application consisting of a given tasks set. When used in
conjunction with a CMP architecture, shared caches make
the miss rate prediction difficult because different tasks exe-
cuted in parallel may flush each other’s data at random. Un-

978-3-9810801-3-1/DATE08 © 2008 EDAA

Sorin D. Cotofana
Technical University of Delft
Mekelweg 4, Delft, The Netherlands
s.d.cotofana @ewi.tudelft.nl

predictability constitutes a major problem for media appli-
cations for which the completion of tasks before their dead-
lines is of crucial importance. Ideally, to be able to predict
the overall application performance, the performance of each
task must be preserved if the tasks are executed concurrently
in arbitrary combinations or if additional tasks are added. A
system satisfying this property is addressed as having com-
positional performance.

Cache partitioning among tasks was proposed to dimin-
ish the inter-tasks interference [5, 13]. Existing work targets
applications composed of tasks that all execute for the entire
application’s lifetime. However, a typical multimedia appli-
cation may have multiple utilization scenarios (not all tasks
are continuously active). For example, in a personal digital
assistant device the audio decoding task is active only when
the user listens to music. Thus, tasks may start and stop, de-
pending on the user requests. Therefore, cache management
strategies have to be able to deal with such dynamic behav-
ior, while preserving a certain degree of compositionality.

In this paper we propose a strategy to dynamically repar-
tition the cache at scenario changes, such that the composi-
tionality is enabled. This strategy is based on determining
the best static partition for each possible utilization scenario,
and dynamically changing the partitions at a scenario switch.
In order to keep data correctness, the cache repartitioning
implies flushing, therefore a time penalty. This is especially
critical for tasks which have a low tolerance to perturbations.
To cope with this problem we first propose a design time
method, to determine each task’s cache footprint in each sce-
nario, such that (1) the critical tasks are protected against
cache perturbation, and (2) the number of necessary flushes
is minimized. Furthermore, we propose a partial cache flush
policy that ensures that the statically calculated footprints are
respected and further decreases the penalty by flushing only
what it is necessary, as late as possible, in the eventuality that
the data flush is actually not needed anymore.

In the envisaged architecture the L2 is shared among the
processors, thus it is heavily affected by inter-task conflicts.
Consequently, the cache management method targets the L2.
We exercise the repartitioning on a CAKE platform [14]
with 4 Trimedia cores executing 6 multimedia parallel ap-
plications, and we investigate a wide scenario switching fre-
quency range (from 100Hz to 1Hz). We found that for real-
istic switching frequencies under 10Hz the inter-task cache
interference is at most 4% for the repartitioned cache, in-
dicating that the proposed strategy achieves high composi-
tionality. Overall, the observed cache interference is at most
11%. Moreover, the relative variations of critical tasks exe-
cution times are less than 0.1%, for all the studied case, thus

the critical tasks remain undisrupted. In addition, on aver-
age, the dynamic repartitioning reduces the off-chip mem-
ory traffic with 60%, when compared with the shared cache
and with 25% when compared with a statically partitioned
cache. As a consequence, the average number of cycles per
instruction is decreased with 10%, and 4%, respectively.

This paper is organized as follows. Section 2 intro-
duces the considered multiprocessor architecture, the pos-
sible cache partitioning types, and discusses existing work.
The proposed cache repartitioning method is presented in
Section 3. The experimental results are presented in Section
4, and Section 5 concludes the paper.

2 Background and related work

The envisaged multi-processor architecture (Figure 1),
comprises several media processors and a control processor.
These processors are connected to on-chip memory banks by
a fast, high-bandwidth interconnect. The memory hierarchy
is organized as follows: first there are the L1 caches private
to each processor, then on the next level it is an on chip L2
shared by all processors, and on the last level in the hierar-
chy it is an off-chip main memory. The L1 caches are split
among instructions and data, and the L2 cache is unified. All

MediaProc|
DS | 1% | o o o DS | 15| | Ds BT

MediaPro CrtlProc

D$ | 1$ D$ | 1$ D$ | 1$
[interconnection network j
fffff e B
memory memory memory L2
bank bank bank cache
I ffff ONCHIP

\ DRAM MEMORY |

Figure 1. Multi-processor target architecture

In general, an application A executed on this architecture
consists of a task set 7 = {7;}(—1,2,.. ~) and has a set
S = {S,}(g=1,2,...,z) of possible scenarios. In each scenario
S, only a subset of tasks 7, C 7 are active. Though in this
paper we consider soft real time applications, some task may
be less tolerant to disturbance than others. For example in a
device able to simultaneously record a video stream and play
another stream, a short stall of the video decoder might result
in omitting to display a frame, which may be a reasonable
quality loss. On the contrary, a short stall in the recording
task may result in a large quality loss, depending on which
stream part the device failed to record. We denote tasks that
cannot tolerate disturbances as critical.

In a given scenario, multiple tasks may execute concur-
rently possibly accessing the L2. If no precautions are taken,
for instance, when task 7;’s data are loaded into the cache,
they may flush task T’;’s data, eventually causing a future T;
miss. In this way the system is not compositional and the
predictability cannot be guaranteed. Our work targets this
L2 cache contention, therefore we focus on isolating tasks
such that their number of misses are independent of each
other, even though the scenarios may change. We assume
that the L1s are not subject to the aforementioned inter-task
cache contention. This is a reasonable assumption, as an L1
is private to each task during its execution.

An existing manner to induce compositionality is to as-
sign to each task an exclusive cache part. A conventional
set associative cache is logically organized as a matrix of
sets (rows) and ways (columns). To determine if a datum is
cached, a set is directly addressed by a part of the datum’s ad-
dress, and all the ways of that set are searched. With respect
to conventional cache organization we identify two possible
types of partitioning: (1) associativity based, also called col-
umn caching [1] (Figure 2a): a task gets a number of cache
ways from every set; and (2) set based (Figure 2b): a task
gets a number of cache sets.

WAYO0 WAYM WAY 0 . . WAYM
SET 0 SET 0 for Task 0
SET 1 SET 1
. . for Task 1
SETN SETN
for for
Task 0 Task 1

a. Associativity—based cache partioning b. Set—based cache partioning

Figure 2. Types of cache partitioning

The associativity based partitioning is mostly used in the
literature [12], [13] because its implementation requires only
a small change in the cache replacement policy. However, in
the context of compositionality, the main shortcoming of as-
sociativity based approaches is that the number of allocable
resources is restricted to the number of ways in a set (cache
organization). A state-of-the art L2 cache typically has only
up to 16 ways, while a media applications there might be
more tasks. If there are not enough ways, multiple tasks
would share the same way, leading to unforeseeable cache
interference, hence to an un-compositional system. More-
over, it is known that the performance of a program degrades
when the associativity of its cache decreases.

The set based partitioning is more difficult to implement
as all the addresses of a task have to map exclusively in a re-
stricted cache region, allocated to that task. In the following
we discuss approaches using this type of partitioning. The
authors of [9] propose a compositional cache organization.
The cache is analyzed and a partitioning is decided at com-
pile time and imposed at run-time by specific cache instruc-
tions. This scheme outperforms a conventional cache, while
ensuring compositionality. However the underlying analysis
is difficult in the multiprocessor case, as the detailed tasks’
timing and synchronization has to be known at design time,
which is usually not the case. In [8] the cache is partitioned
among tasks at compile and link time. In [5] the authors
propose to divide the cache among each real-time task. The
authors of [6] propose an operating system controlled cache
partitioning. In [7] a scheme for static set based partitioning
is described. However, none of these proposals can be uti-
lized in our case, as they provide a static solution, while we
are considering dynamic applications which have multiple
execution scenarios depending on the user requests.

In the general ﬁel(g) of multiprocessors several authors
tackle dynamic cache partitioning [3], [11]. In [3] the au-
thors propose a non-uniform cache architecture in which the
amount of cache space that can be shared among the proces-
sors is set dynamically. In [11] the authors explore existing
adaptable caching strategies that balance cache demand of
each task. These proposals bring interesting ideas, however
compositionality and critical tasks performance protection

are not targeted, as the purpose of these schemes is to in-

crease the overall multiprocessor’s throughput.
Due to the fact that typically in a cache there are thou-

sands of sets and only few ways, the set based partitioning
can potentially induce compositionality, therefore this is the
partitioning type we consider and discuss further.

3 Dynamic cache repartitioning

We consider that in scenario S, the cache size of a task
T; € 1, is denoted with ¢; 4. The allocable cache units of
an cache are numbered from 1 to C. We define the cache
footprint of 7T} in the scenario .S, as the contiguous cache
interval allocated to T;, cfiq = [big,biq + Cigq), Where
b; ¢ € [1,C — ¢; 4] represents the cache unit where T; foot-
print begins. The cache footprint of an entire application in
the scenario Sy, is the collection of each task cache foot-
prints icf@q}, with T; € 7.

Cache partitioning isolates the tasks in the cache to en-
hance compositionality. Orthogonal with compositionality,
cache partitioning offers a degree of freedom in optimizing
the application performance (number of misses, throughput,
etc.). Given a set of tasks 7 and the available cache size C,
we identify two optimization problems: (1) the cache allo-
cation problem, CAP (find the sizes ¢;), and (2) the cache
mapping problem, C MP (find the footprints cf;).

tatic partitioning methods consider the cache space as
being uniform, in the sense that the application’s perfor-
mance is influenced only by the tasks’ cache sizes c; and not
by the beginning cache units b;. Thus in the existing static
partitioning methods the problem of interest is the cache al-
location. However, at a scenario switch S; — S,,, the repar-
titioning costs may depend on cf; ; and cf; ... In the case
of set based partitioning, 7; data have to be relocated into
the new 7T;’s cache part at the scenario switch via flushing
or other strategy that typically involves an overhead. In con-
clusion, in dynamic repartitioning the system performance
heavily relies on cf; 4 and cf; ,,, therefore the cache map-
pin’éf becomes important.)

his paper presents a dynamic cache management strat-
egy consisting of two parts. First we propose a method to
solve the cache mapping problem at design time. Already at
this stage the method creates the premises for guaranteed non
disturbance of critical tasks and a minimal cache repartition-
ing penalty. Second, we introduce a run time strategy able
to impose the statically determined footprints and to further
decrease the amount of flushing.

3.1 Cache mapping problem

In this subsection we first investigate the cases when the
cache content can be reused, at scenario change, and then
we propose an heuristic to determine the cache footprints.
We do not assume the existence of a possibility to directly
transfer data from one L2 set to another, nor the existence of
a mechanism (similar to a cache coherence protocol) that can
look in multiple L2 sets to determine where the most recent
data value is. Such mechanisms are in principle possible but
in order to minimize the hardware overhead we do not embed
them in our current proposal. For now we use cache flushing
into the off-chip memory, to ensure data correctness. This
strategy implicitly moves a data item from one cache set to
the other, via the main memory.

Due to implementation reasons, the number of L2 sets a
task can own is a power of two. To illustrate the cache reuse
at a scenario change S; — S,,, we consider a task 7; active
in both scenarios. For simplicity, we assume that in both
footprints cf; 4 and cf; ., begin on the same set (b; ; = b; 4,)
and the cache sizes vary with a factor of 2. Then there are
two possibilities, as follows:

S,) S
sep 7777777 se:1 7777777
se sel

21121 21121
q w
b, ?cq b; T
X, X+ cf i i X
’.\'\X+ciq 1
~—J ~—J

Figure 3. Doubling a task cache

(1) The cache doubles (¢;,,, = 2 X ¢; 4), as in Figure 3.
In S, the data at address X maps in cache in setx = b; 4 +
X%ci,q, the same as the ones at address X + ¢; 4. In S, the
data at address X still maps in setx, but the data at X +¢; 4
maps in set x + ¢; 4. Thus, not all data in the cf; , footprint
would stay in the same location in cf; ,,. Therefore, to keep
correctness, the data that does not map anymore in cf; , has
to be flushed. However, in order to determine which data
fall into this category a search similar to the conventional
cache look-up should be performed at scenario change. We
do not assume the existence of such a mechanism, thus for
the present work the entire cf; , is flushed.

(CP) S
set1 777777 set1 777777
setp |77 7] seto [~ 777
L2 L2
bd bY
i T; w i Ti|low
X c; };X, X+c;" i
e
X+c;" Ci
=—_J

Figure 4. Halving a task cache

(2) The cache halves (¢;; = 2 X ¢;4). As visible in
Figure 4, each data item present in S, in the first ¢; ,, sets
of cf; is mapped in the same place in the S, (for those
data items X %ci,q =X %ciﬁw). However, the data in .S, for
which X%c¢; , > ¢; , (for instance X + ¢; ,, as illustrated
in Figure 4) are relocated in cf; ,,. Thus, in order to keep
data correctness, the second half of cf; , has to be flushed.

A similar rationale applies when a tasks cache size in-
creases or decreases with a factor of 2% in two consecutive
scenarios. In conclusion, on an S, — S, switch, there are
two cases when the cache content of a task 7’; can be reused:
(1) if T} cache footprint stays the same, and (2) if 7; num-
ber of cache sets decreases, and if the starting set of the new
cache footprint b; ., = b; g + 3¢+ Cjw, 22 € N, 30 < €;,4/C -
We denote the footprint set of a critical task as ’sane” if its
content is fully reused at each possible scenario change, thus
Vgq,Yw,cfiq = cfiw,Ti € 1y, T; € Ty, (i.e. acritical task’s
data should be cached always in the same place).

In order to solve the cache mapping problem, we need to
know the cache sizes allocated to each task in each scenario.
To determine these cache sizes we use the method in [7] that

minimizes the total application number of misses. Moreover,
we assume that the allocated cache sizes of the critical tasks
are the same in each scenario. We formulate CMP as fol-
lows: given: (1) an application A having S scenarios, (2) the
transition probability (or the relative frequency) among each
scenario pair pg_.,, and (3) the tasks cache sizes in each
scenario ¢; 4, find the footprints cf; , of each task in each
scenario (cfi g Ncfjq = {2}, VT € Ty, VT, € Ty, #)
such that the cache content reuse is: (1) complete for the crit-
ical tasks and (2) maximized for the other tasks. This prob-
lem is similar with the Dynamic Storage Allocation Problem
DS AP [4], which is an NP-complete problem. Intuitively,
the caches ¢; , correspond to the size of the item to be stored
in DSAP and the scenarios sequence when a task is active
corresponds to the arrival time and departure time of an item.
As the DS AP is an NP-complete problem, we can infer that
CMP is NP-complete, thus in this section we propose an
heuristic to solve it.

As a first step, the CMP for the entire application is split
into several smaller instances of the same problem. If a task
subset ¥ C 7 has its cache size sum constant over all sce-

z

narios (Z > Cig= I‘),VTi € W, then ¥ and 7\ V¥ are
q=1T;€7,

two disjoint task subsets that behave as if each one of them

is an independent application having the cache size I', and

C — T, respectively. The problem can be further recursively

split, obtaining a set of task subsets {V,,}m=12,..0),

U

U9, =7,9,NY, = {g},vm # k. To build
m=1
{¥,,} we have to generate all possible tasks subsets and we
test if they respect the condition that the sum of their cache
sizes is constant over all scenarios. Thus the ngrgber of it-

erations that are executed is C’}V + C’JQV +..Cy * ' where
ck = #’_M, Even though the complexity of building
the {¥,,, } subsets is not polynomial, this does not constitute
a problem in practice, as it is performed at design time, and

typically the number of tasks is at most few tens.
We denote with C'C'R; the cache content reuse of T;:

CCR; = >

Sq—Sw,Ci,q>Ciw
bi w=2¢bi ¢,2EN»x<c; ¢/Ciw

Ci,w * Pg—w (])

Considering that ¥,, contains N,, tasks, the mapping
heuristic is described by Algorithm 1. As a general line,
the heuristic successively places task footprints in the cache
in a decreasing order of their reuse CCR;, starting from the
extremities of the cache toward the middle, giving priority
to critical tasks. At one mapping step we fix the footprint
of a task 7T; in each scenario in which 7T; is active. This
means that, if in S; a task 7} is mapped before a task T}
(T3,T; € 1), also in a scenario S,, 1; is mapped before a
T; (1;,T; € T,). This strategy is based on the observation
that the reuse tends to increase when the tasks have the same
order in the cache in each scenario. C'C'R; depends on the
task position in the cache and it is recalculated at each map-
ping step, with the current values for b; , and b; ,,. Given that
a number of tasks is already mapped in the cache, for the re-
maining tasks we define CCR! and CC R? as the reuse if T;
is placed at the top (respectively at the bottom) of the free

cache extremity. Furthermore, {T5"+°*} C W,), is the sub-

set of critical tasks with a sane footprint if placed at the top
or at the bottom of the free cache space.

Algorithm 1: Finding the cache footprint for all tasks

foreach ¥, € {V,,} do
while ¥,,, # {2} do
for T; € U,, do calc. CC’RZ/b and form {Tﬁf""’k};
foreach {rop, bottom} cache extremities do
if {757k} £ {&} then place the
T; € {TrT°F} with the largest C’C’Rz/b;
else place the T; € V,,, with the largest
CCR!,
end
end
end

If Algorithm 1 cannot sanely place all ¥,,,’s critical tasks,
we rerun it, but at step 5 and 6, instead of picking the task
with the largest reuse we select the task with the second,
third, etc. largest reuse. In the case that after all possible
backtracking no sane solution is found, we merge ¥,, with
the ¥, subset that has the minimum number of critical tasks,
and restart the entire optimization process. If no sane critical
tasks placement is found even after merging all ¥,,,’s, one of
the following should be revised: (1) the cache sizes c; , al-
located to each tasks, and/or (2) the total cache size The first
case actually means that the cache mapping influences cache
allocation (or they are performed simultaneously). This is
an interesting problem by itself, and it is subject to future
research.

3.2 Run-time cache management

In order to control the cache repartitioning, we employ a
software Run-Time Cache Manager (RTCM) running on the
control processor. At S; — .Sy, the RTCM jobs are, in or-
der: (1) to stop the tasks that are not active in .S,, and the
tasks that change their footprints; this strategy allows tasks
that do not change their cache footprint to continue execut-
ing, reducing the flush impact, (2) to initiate a partial cache
flush according to the reuse rules in Subsection 3.1, (3) to up-
date the cache partitioning tables to the new footprints, and
(4) to start the .S,, tasks and to resume the ones that changed
their footprints.

In general, cache flushing implies a penalty that has two
components. First it is the extra time required to write the
content of the flushed lines in the main memory. Second, af-
ter the flush, extra (cold) misses occur when the flushed data
are needed again in the cache. To minimize these overheads
we propose a cache flushing policy is as follows:

8) 1g lush no code. On the CAKE platform the code does
not modify during execution. Thus the main memory con-
tains a valid copy of all the application code.

(2) Late flush. This applies in the case a task T; is not
active in the new scenario. Only when 7 resumes its execu-
tion later in another scenario, its data are flushed out of the
cache, if also T; footprint change). In the mean time some
of the data might have been already swapped out by other
tasks, so some cold misses still occur, but a part of the flush-
ing overhead is avoided. Moreover, if 7; footprint does not
change, it potentially benefits from remained cached data.

(3) Flush only the valid, "owned”, cache lines. If the
cache coherence mechanism marks a cache line as invalid,
the memory hierarchy contains a more recent copy of the
corresponding data, therefore the data correctness is not in-
fluenced by the content of that line. A cache line is consid-
ered as “owned” by a task T3, if that line stores some of 7}
data. Let us assume a scenario switch when all 7;; cache lines
are relocated. To ensure 7;’s data correctness, only the 7;’s
cache lines have to be flushed out of cf; , (data belonging to
other tasks may still be cached in some of cf; 4 lines, from a
previous execution, as allowed by the late flush).

We use the implementation of set based partitioning in-
troduced in [7]. In addition the dynamic cache management
requires each L2 line to have a task id, and the lines caching
code to be distinguished from the ones caching data. Nev-
ertheless, the storage involved in these two issues (task id
plus 1 bit for code/data) is minor when compared to the total
cache size (under 0.2% for an L2 having 512 Bytes cache
lines, when supporting 128 tasks).

4 Experimental results

In this section we investigate two issues related to cache
repartitioning: the compositionality and the performance.
We study them over a scenario switching rate ranging from
100Hz (one switch every 0.01 second) to 1Hz (one switch
every second). The considered workload consists of 6 ap-
plications composed out of various media tasks, from the
MediaBench suite [2]. from which we pruned out the pro-
grams that are relatively small and not memory intensive.
Moreover, to make the benchmarks more representative for
emerging technologies, we added two H.264 video process-
ing programs, an encoder and a decoder. As a result we exer-
cised the following encoders and decoders: H.264, MPEG2,
EPIC, audio, and JPEG, each of which representing a task.
Using different combinations of these tasks, we build 6 dif-
ferent applications. Each application has 7 execution sce-
narios (chosen at random from the total set of possible task
combinations) and one or two critical tasks. These applica-
tions run on a CAKE platform having 4 Trimedia processor
cores and a 512KBytes L2. The access times for the different
memory levels are as follows: 3 cycles for the L1, 12 cycles
for the L2, and 110 cycles for the off-chip memory.

4.1 Compositionality

To evaluate compositionality, we look at the critical task
execution time variations and at the number of inter-task
conflicts. To check the critical task execution time (et®")
variation we simulate each application with random sce-
nario’s order, and different scenario switching rates. In Fig-
ure 5 we present the average et“” variations over all the criti-
cal tasks in each exercised application in three cases: (1) the
cache footprints determined as in Section 3.1 (Critical task
prio), (2) the cache footprints determined as in Section 3.1,
but giving no priority to critical tasks (No critical task prio),
and (3) the shared cache (Shared).

One can observe in Figure 5 that the variations of et"
are very small for the case the critical tasks have mapping
priority. These variations represent at maximum only 0.1%
from the critical tasks execution time, thus they are practi-
cally undisturbed. If no mapping priority is given to the crit-
ical tasks, the et®" variations increase with scenario switch

frequency, reaching a relative value of 11% for a switch rate
of 100Hz. For the shared cache the relative et®” variations
represent 5% from the minimum Shared et®", and we no-
tice no clear dependence among the switching rate and et“".
Furthermore, the et“" is, on average, with 13% larger in the
shared cache case, than in the repartitioned cache one.

M cycles M Critical task prio

500 @ No critical task prio
'V Shared
) '/'\'/"'_v
450
425 //0
400 -
375
350
325
300 T T T T 1
1Hz 5Hz 10Hz 20Hz 50Hz 100Hz

scenario switch frequency

Figure 5. Avg. critical tasks execution time

We define the number of inter-task conflicts of a task 7T;
as the number of 7;;’s L2 lines flushed by another task. For
the repartitioned L2 these conflicts occur as a result of our
late cache flush policy. The number of inter-task conflicts of
an application is the sum of the conflicts of each of A’s tasks.
Due to space limitation the detailed number of conflicts for
each of the 6 applications are not included here. The ex-
periments showed that in a shared cache a large fraction of
the misses represent actually inter-task conflict misses. The
peak value for these misses is 78% and the average for all
applications and all frequencies is 70%. When the L2 is
repartitioned, for a high scenario switching frequency (20 Hz
to 100 Hz), the average relative number of conflicts reach a
value of 8% (with a maximum of 11%). For scenario switch-
ing rates under 10Hz the fraction of inter-task conflicts is at
most 4% for each application. Thus, we can consider that a
high degree of compositionality is achieved.

4.2 Performance

We measure the performance using two metrics: (1) the
number of misses per instruction (MPI) to describe the L2
performance and (2) the processors’ average cycles per in-
struction (CPI) to present the performance of the entire sys-
tem. In general, two phenomena determine the number of
misses’ difference between a shared and a partitioned cache.
If the cache is partitioned, the inter-task cache flushing is
eliminated (which means less misses) but every task can use
less cache space than in the shared case (which means more
misses). Moreover, repartitioning the L2 at run-time requires
parts of the cache to be flushed, which might cause an extra
overhead.

We compare the performance in the following cases: (1)
a set based repartitioned L2 with the cache footprints de-
termined with the Algorithm 1 in Section 3.1 (Algl), (2) a
set based repartitioned L2 with randomly chosen cache foot-
prints (Random), (3) a shared L2 (Shared), (4) a statically
set based partitioned L2 (Static), and (5) an infinite L2. The
comparison with the performance of an infinite cache is in-
teresting because it gives an idea about the maximum im-
provement that can be achieved by tuning the L2 cache. Due
to lack of space, we present only average MPI and CPI val-
ues, in Figures 6 and 7, respectively. The MPI for the infinite
cache is not presented as it equals 0.

When the cache mapping is performed according to our
method, the average number of L2 lines flushed at each sce-
nario switch represent 19% of the total L2 size. When the
cache mapping is performed at random, this percentage in-
creases to 36%. Nevertheless, despite the flushing penalty,
the MPI for the L2 repartitioning using the proposed map-
ping is on average 44% and 60% smaller than the case when
the mapping is random and the case when the L2 is shared,
respectively. This results in a 7% (respectively 10%) better
CPI, representing 35% (respectively 50%) from the possible
improvement measured when having an infinite L2, while
preserving the same cache size.

Alg1 footprints

L2 misses per instruction and footprints

atic
hared

]

mR
0.01200 L] Stati

s

0.01000

0.00800

0.00600

0.00400

0.00200

0.00000

Scenario switch fre quency (Hz)

Figure 6. Performance: L2 MPI

When compared with a statically partitioned cache our
method exhibits, on average, 25% less MPI, leading to 4%
better CPI. The performance differences in MPI and CPI
among the static and dynamic partitioned cache decrease
with the increase of scenario switching frequency. For a sce-
nario switching rate of 100Hz the dynamically partitioned
L2 outperforms the statically partitioned one with 1% for the
CPI metric and 23% for the metric MPI, whereas for a sce-
nario switching rate of 1Hz the improvement is 7% and 47%,
respectively. These figures clearly indicate that the use of the
dynamic partitioning method in applications with multiple
utilization scenarios, especially for low scenario switching
rates (in practice this rate is likely to be even lower than one
switch every second), can be beneficial for performance.

- - W Alg1 footprints M Rand footprints
Average cycles per instruction ‘ O Static Shared

1.60 =l Infinite

1.40

1.20 1

1.00 -

0.80 1

0.60

0.40

0.20

0.00 -4

1 5 10 20 50 100

Scenario switch frequency (Hz)

Figure 7. Performance: CPI

When looking solely at the proposed repartitioning we
can notice that the MPI increases with 40% when the sce-
nario switching frequency is varied from 1Hz to 100Hz. As
a result the CPI increases with 6% in this switching range.
However, for realistic switching ranges (over 10Hz) the dif-
ference in MPI is on average 18% and in CPI is 1%, suggest-
ing that in such cases the flushing penalty is negligible.

5 Conclusions

In this paper we proposed a dynamic cache management
method that enhances compositionality for multimedia ap-
plications with multiple utilization scenarios. Our method
determines at design time the cache footprint of each task,
such that the critical tasks are guaranteed to be undisturbed,
and the repartitioning overhead is minimized. Moreover at
run time it further decreases the repartitioning penalty. we
investigated the compositionality and the performance in-
duced by the L2 repartitioning over a wide range of scenario
switching frequency (100Hz to 1Hz), on a CAKE multipro-
cessor with 4 cores. The workload consisted of six appli-
cations formed by various task from the MediaBench suite
augmented with an H.264 algorithm. For realistic scenario
switching frequencies, we found that, relative to the applica-
tion number of misses, the inter-task cache flushes are under
4% for the repartitioned cache, whereas for the shared cache
it reaches 68%. Moreover, the relative variations of criti-
cal tasks execution time are less than 0.1%, over the entire
scenario switching frequency range studied. With respect
to performance, the dynamic repartitioning reduces the off-
chip memory traffic on average with 60%, when compared
with the shared cache. As a consequence, the average num-
ber of cycles needed to execute an instruction is decreased
with 10%, when compared with the shared cache, under the
circumstances that a maximum of 20% reduction is achiev-
able by using an infinite L2 cache. Therefore, despite the
involved cache flushing, the repartitioned L2 enables high
compositionality and performs better than the shared cache.

References

[1] D. T. Chiou. Extending the reach of microprocessors: Col-
umn and curious caching. PhD thesis Department of EECS,
MIT, Cambridge, MA, 1999.

[2] L. Chunho et al. Mediabench: A tool for evaluating and
synthesizing multimedia and communicatons systems. Proc.,
MICRO, 1997.

[3] H. Dybdahl and P. Stenstrom. An adaptive shared/private
nuca cache partitioning scheme for chip multiprocessors.
Proc. of HPCA, 2007.

[4] M. R. Garey and D. S. Johnson. Computers and Intractabil-
ity: A Guide to the Theory of NP-Completeness. W. H. Free-
man & Co., 1979.

[5]1 D.B. Kirk. Smart (strategic memory allocation for real-time)
cache design. Proc., RTS, 1989.

[6] J. Liedtke er al. Os-controlled cache predictability for real-
time systems. Proceedings, RTAS, June 1997.

[71 A. Molnos et al. Compositional memory systems for multi-
media communicating tasks. Proc., DATE, 2005.

[8] F. Mueller. Compiler support for software-based cache parti-
tioning. ACM SIGPLAN Notices, 30(11), 1995.

[9] H. Muller ef al. Caches with compositional performance.
Proc., Embedded Proc. Design Challenges, 2002.

[10] B. A. Nayfeh and K. Olukotun. Exploring the design space
for a shared-cache multiprocessor. Proc. ISCA, 1994.

[11] A. Settle et al. A dynamically reconfigurable cache for mul-
tithreaded processors. In Jour. of Emb. Comp., 2006.

[12] G.E. Suh et al. Dynamic partitioning of shared cache mem-
ory. The Jour. of Supercomp., 2004.

[13] Y. Tan and V. Mooney. A prioritized cache for multi-tasking
real-time systems. Proc., SASIMI, 2003.

[14] J. T. van Eijndhoven et al. Chapter 4 of Dynamic and robust
streaming between connected CE-devices. Kluwer, 2005.

	Main
	DATE08
	Front Matter
	Table of Contents
	Author Index

