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Abstract—In this paper, we present a matrix based method
for efficient Residue to Decimal Conversion. First, we generalize
a previously proposed technique that was restricted to 5-moduli
set such that it becomes applicable to any RNS with the set
of relatively prime integer moduli {mi}i=1,n. Next, we simplify
the computing procedure by maximizing the utilization of the
modulo-mi adders and multipliers present in the RNS functional
units. For an n-digit RNS number X = (x1, x2, x3, ..., xn) the
proposed method takes at most n iterations. Each iteration
requires one parallel subtractions and 2 multiplications except
the first one. This scheme results in an RNS to MRC with an
asymptotic complexity, in terms of arithmetic operations, in the
order of O(n), while the traditional MRC technique exhibits
an asymptotic complexity in the order of O

(
n2
)

. In particular,
the utilization of our technique, for 3-moduli and 10-moduli
RNS results in the reduction of the total number of arithmetic
operations required by the conversion process with 13.33% and
66.05%, respectively, when compared to state of the art MRC.

Index Terms—Residue Number System, Mixed Radix Conver-
sion, Matrix Method, Arithmetic Operations.

I. INTRODUCTION

There is performance degradation in computing hardware
built based on Weighted Number Systems (WNSs) due to
the carry propagation phenomenon inherent to WNSs. The
reduction/elimination of carry chains is the major challenge
in improving computer arithmetic performance. Several ap-
proaches have been proposed, e.g., carry lookahead, prefix
calculations, anticipated calculation, and alternative number
representation systems, e.g., (redundant) signed digit systems,
or Residue Number Systems (RNS). RNS, which is the
theme of this paper has interesting inherent characteristics
such as parallelism, modularity, fault tolerance, and carry free
operations and for this reason it has been utilized in Digital
Signal Processing (DSP) applications such as digital filtering,
convolutions, correlation, fast Fourier transforms, and image
processing [1], [11]. RNS processors however have to make
use of data conversion, which has to be implemented as fast
as possible in order not to nullify the RNS advantages.

The work on residue to binary conversion is based on
Chinese Remainder Theorem (CRT) [2]-[8], [10] or on Mixed
Radix Conversion (MRC) [9], [12], [14]. CRT is desirable
because the computation can be parallelized while MRC
is by its very nature a sequential process. However many
up to date RNS to binary/decimal converters are based on

MRC due to the complex and slow modulo-M operation (M
being the system dynamic range thus a rather large constant)
required by CRT. The main problem with the MRC is that the
computations of the MR digits is done in a serial manner and
requires a large number of arithmetic operations.

In this paper, we present a matrix based method for ef-
ficient Residue to Decimal Conversion. First, we generalize
a previously proposed technique that was restricted to 5-
moduli set such that it becomes applicable to any RNS with
the set of relatively prime integer moduli {mi}i=1,n. Next,
we simplify the computing procedure by maximizing the
utilization of the modulo-mi adders and multipliers present
in the RNS functional units. For an n-digit RNS number
X = (x1, x2, x3, ..., xn) the proposed method takes at most
n iterations. Each iteration, except the first one, requires 2
multiplications and one parallel subtraction over all the mod-
mi ways of the RNS adder. This scheme results in an RNS to
MRC with an asymptotic complexity, in terms of arithmetic
operations, in the order of O(n), while the traditional MRC
technique exhibits an asymptotic complexity in the order of
O
(
n2
)
. In particular, the utilization of our technique, for

3-moduli and 10-moduli RNS results in the reduction of
the total number of arithmetic operations required by the
conversion process with 13.33% and 66.05%, respectively,
when compared to state of the art MRC. These results provide
a wide range of applications of RNS in the design of DSP
intensive applications.

The rest of the paper is organised as follows: We briefly
present the necessary background in Section II. Section III de-
scribes the proposed Generalized Matrix Method for efficient
residue to decimal conversion. We evaluate the performance
of our proposal in Section IV while the paper is concluded in
Section V.

II. BACKGROUND

RNS is defined in terms of a set of relatively prime moduli
set {mi}i=1,n such that gcd(mi, mj) = 1 for i 6= j, where
gcd means the greatest common divisor of mi and mj , while
M =

∏n
i=1 mi, is the dynamic range. The residues of a deci-

mal number X can be obtained as xi = |X|mi
thus X can be

represented in RNS as X = (x1, x2, x3..., xn), 0 ≤ xi < mi.
This representation is unique for any integer X ∈ [0, M − 1].
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We note here that in this paper we use |X|mi
to denote the

X mod mi operation and the operator Θ to represent the
operation of addition, subtraction, or multiplication. Given any
two integer numbers K and L RNS represented by K =
(k1, k2, k3, ..., kn) and L = (l1, l2, l3, ..., ln), respectively,
W = KΘL, can be calculated as W = (w1, w2, w3, ..., wn),
where wi = |kiΘli|mi

, for i = 1, n. This means that the
complexity of the calculation of the Θ operation is determined
by the number of bits required to represent the residues and
not by the one required to represent the input operands.
This creates the premises for high speed arithmetic and for
example it has been proved that RNS based addition can be
performed in O(log(log(n))) delay for unrestricted moduli and
in O(log(n)) for 2n and 2n − 1 moduli [13].

Conversion from RNS to decimal is relatively fast using
MRC as it does not involve the large modulo-M calculations
present in CRT. MRC is formulated as follows [1]: Suppose
that we have a set of residues{x1, x2, x3, ...xn} with the corre-
sponding set of moduli {m1, m2, m3, ...mn} and a set of digits
{a1, a2, a3, ..., an} which are the Mixed Radix Digits (MRD),
the decimal equivalent of the residues can be computed as
follows:

X = a1 + a2m1 + a3m1m2 + ... + anm1m2m3...mn−1

(1)

where the mixed radix digits are given as follows:
a1 = x1

a2 =
∣∣∣(x2 − a1)

∣∣m−1
1

∣∣
m2

∣∣∣
m2

a3 =
∣∣∣((x3 − a1)

∣∣m−1
1

∣∣
m2
− a2

) ∣∣m−1
2

∣∣
m3

∣∣∣
m3

(2)

.

.

an = |((...(xn − a1)|m−1
1 |m2 − a2)|m−1

2 |m3 − ...

−an−1)|m−1
n−1|mn

|mn

For the MRD ai, 0≤ ai < mi, any positive number in the
interval [0, ΠN

i=1mi−1] can be uniquely represented. It can be
inferred from the description above and in line with [12] that
a total of n(n−1)

2 arithmetic subtractions and multiplications
are required in order to compute the MRD for n-moduli sets.

The matrix method described in [9] for the moduli set
{11, 7, 5, 3, 2} , can be also utilized for conversion. It operates
on a number of jumps Ji, i = 1, 5 and it was introduced in [9]
only by means of an example, the RNS number (4, 0, 1, 2, 1),
as follows:

J1 = 4, the first residue and the first location is given by:

X − 4 =


|4− 4|11 = 0
|0− 4|7 = 3
|1− 4|5 = 2
|2− 4|3 = 1
|1− 4|2 = 1


The second jump is defined by a number J2 such that:
J2 = k2.11 and |3− J2|7 = 0, giving k2 = 6.

The second location is therefore given by:

X − 4− 66 =


|0− 66|11 = 0
|3− 66|7 = 0
|2− 66|5 = 1
|1− 66|3 = 1
|1− 66|2 = 1


The procedure is repeated until all the elements in the final

location are zeros, i.e.,

X − 4− 66− 231− 385− 1155 =


|0|11 = 0
|0|7 = 0
|0|5 = 0
|0|3 = 0
|0|2 = 0


From this description, one can observe that 4 modular

equations must be solved in order to obtain Jis. The required
decimal number is given by summing up the Jis. In the
next section we present a generalized matrix method which
is applicable to any moduli set. Furthermore, we simplify the
process of finding the jumps Ji and we show that this process
is similar in every stage.

III. PROPOSED MATRIX METHOD (MATR)

Our approach is based on the periodicity property inherent
in RNS. Periodicity is the ability of numbers to cycle in fixed
periods with respect to some given moduli and within the
dynamic range of the system. For example, given a 3-moduli
set {m1 = 5, m2 = 4, m3 = 3} , the residues cycle in a basic
period. That is, the residue sequence of modulus m1 will have
a period of 5 entries (0,1,2,3,4), m2 will have a period of 4 en-
tries (0,1,2,3) while m3 will have a period of 3 entries (0,1,2).
Based on that the decimal equivalent of any given residue
number is obtained by jumping backwards in the residue table
(a table containing all the possible decimal numbers together
with their residue equivalent within the dynamic range of the
system) to the nearest residue number with at least one residue
being zero. The value of that jump is recorded and the process
continues until all the residues become zeros. Suppose that
we have the residue set {x1, x2, x3, ..., xn} corresponding to
the moduli set {m1, m2, m3, ...,mn} , we can calculate its
decimal counterpart by a maximum number of n-consecutive
jumps in the residue table such that each jump increases the
number of zero residues with one. The process continues until
in the final location all the elements become zero.

More formally, given the moduli set {m1, m2, m3, ...,mn} ,
the residue number (x1, x2, x3, ..., xn) is converted into the
decimal number X as follows:

X =
n∑

i=1

pi, (3)

where pi is defined as

pi = (m1m2...mi−1)
∣∣∣(m1m2...mi−1)−1

∣∣∣
mi∣∣t(i−1)j

∣∣
mi

, (4)

i > 1 and t(i−1)j is a value to be determined based on the the
following matrix based computation.

If the jumps are p1, p2, p3, ..., pn and they correspond to the
residues x1, x2, x3, ..., xn, respectively, then,

p1 = x1 and the first location is:
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X − p1 =



|x1 − p1|m1
= 0

|x2 − p1|m2
= t1

|x3 − p1|m3
= t2

|x4 − p1|m4
= t3

|x5 − p1|m5
= t4

.

.
|xn − p1|mn

= tn−1


(5)

The second jump and is given by p2 = c2m1, where c2 has
to satisfy |t1 − p2|m2

= 0. Solving the above two equations
we obtain that

p2 = m1

∣∣∣∣∣∣∣(m1)−1
∣∣∣
m2

t1

∣∣∣∣
m2

(6)

and the second location is defined by:

X − p1 − p2 =



|0− p2|m1
= 0

|t1 − p2|m2
= 0

|t2 − p2|m3
= t21

|t3 − p2|m4
= t31

|t4 − p2|m5
= t41

.

.
|tn − p2|mn

= t(n−1)1


(7)

The third jump is determined as p3 = c3m1m2 and
|t21 − p3|m3

= 0 and it is given by:

p3 = (m1m2)
∣∣∣∣∣∣∣(m1m2)−1

∣∣∣
m3

t21

∣∣∣∣
m3

(8)

The third location is therefore given by:

X − p1 − p2 − p3 =



|0− p3|m1
= 0

|0− p3|m2
= 0

|t21 − p3|m3
= 0

|t31 − p3|m4
= t311

|t41 − p3|m5
= t411

.

.∣∣t(n−1)1 − p3

∣∣
mn

= t(n−1)11


(9)

This iterative process continues until the final loca-
tion is zero and the last jump is determined by pn =
cnm1m2m3...mn−1 and

∣∣t(n−1)11... − pn

∣∣
mn

= 0 .
Solving the above, pn, which is needed in the last matrix

computation is given by:

pn = (m1m2...mn−1)
∣∣∣∣∣∣∣(m1m2...mn−1)−1

∣∣∣
mn

t(n−1)11

∣∣∣∣
mn

(10)
Then the final location is given by:

X − p1− p2− p3...− pn =



|0− pn|m1
= 0

|0− pn|m2
= 0

|0− pn|m3
= 0

|0− pn|m4
= 0

|0− pn|m5
= 0

.

.∣∣t(n−1)11... − pn

∣∣
mn

= 0


(11)

Therefore, as stated in Equation (3), the required Decimal
equivalent of (x1, x2, x3, ...xn) with respect to the moduli set
{m1, m2, m3, ...mn} is given by:

X = p1 + p2 + p3 + ... + pn (12)

A critical look at Equations (6), (8), and (10) indicates that this
process is similar, i.e., it is simply the product of moduli and
their multiplicative invereses, which is precomputed together
with a number ti, i = 2, n. This is similar to the process of
computing MRD but the subtractions are done in parallel.

In order to clarify the algorithm let us assume for example
that we want to convert (3, 2, 0)RNS(5|4|3)

to decimal. The algorithm is applied as follows:
(i) (3, 2, 0)RNS(5|4|3)
p1 = 3

X − 3 =

 |3− 3|5 = 0
|2− 3|4 = 3
|0− 3|3 = 0


p2 is computed by:
p2 = 5 |3|4 = 15
The next location is therefore given by:

X − 3− 15 =

 |0− 15|5 = 0
|3− 15|4 = 0
|0− 15|3 = 0


The final location is already (0,0,0) , there is no need to

proceed further and hence the result is X = 3 + 15 = 18, as
it should.

IV. PERFORMANCE EVALUATION

In the proposed technique presented in Section III, com-
putation of p1 is straight forward as p1 = x1. This implies
that the computation of at most n − 1 pis is required in
the conversion process, as in some cases as in the previous
example the conversion may need less steps. The computation
of each of the pi, i = 2, n requires 2 multiplications because
each pi, i = 2, n is simply the product of the moduli and
their multiplicative invereses, which are pre-computed together
with a number ti, i = 2, n. This can be clearly seen from
Equations (6), (8) and (10). In addition, the conversion process
also requires n-parallel subtractions. Given that each of those
subtractions is done modulo-mi they can be executed in
parallel on the RNS adder embedded in the RNS processor.
The summation of p′is also requires (n − 1) additions. This
implies that the total number of computations that are required
sums up to at most 4n− 3. Hence, the asymptotic complexity
of the proposed technique is in the order of O(n). The total
number of operations is computed based on the assumption
that an addition takes one cycle and a multiplication two cycles
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Method Moduli Reduction [in %]
MATR 3 13.33
MATR 4 29.63
MATR 5 40.48
MATR 6 48.33
MATR 7 54.32
MATR 8 59.05
MATR 9 62.88
MATR 10 66.05

Table I
ARITHMETIC OPERATIONS REDUCTION IN %

Figure 1. Number of Arithmetic Operation vs Moduli Set Length

thus we consider that one multiplication is equivalent delay
wise with two additions.

For the MRC, n(n−1)
2 additions and n(n−1)

2 multiplications
are required for the computation of MRD in addition to n− 1
additions and n−1 multiplications required by Equation (1) to
compute the required decimal number while for the MATR n
subtractions, 2(n− 1) multiplications are required in addition
to the n − 1 additions required by Equation (12) to compute
the required decimal number.

Figure I shows the behaviour of both the MRC and MATR
methods in terms of the number of arithmetic operations as
the length of the moduli set increases. As the moduli set
cardinality increases the number of arithmetic operation in
MRC grows quadratically while for MATR it increases with
a constant factor of six arithmetic operations.

In Table I, we present the percentage reduction of the total
number of arithmetic operations required by MATR when
compared to MRC. One can observe that MATR achieves
13.33% and 66.05% reductions with moduli set of length
three and ten, respectively. As expected the larger the number
of moduli in the RNS the larger the reduction the proposed
conversion method exhibits.

We note here that in Table I, the following notations are
utilized: Moduli - stands for the number of moduli in the
considered RNS; Reduction - stands for reduction of the total
number of arithmetic operations in percentage achieved by
MATR over the traditional MRC.

V. CONCLUSIONS

In this paper, we presented a matrix based method for
efficient Residue to Decimal Conversion. First, we generalized
a previously proposed technique that was restricted to 5-
moduli set such that it can be utilized in conjunction with any
RNS with the set of relatively prime integer moduli {mi}i=1,n.

Next, we simplified the computing procedure by maximizing
the utilization of the modulo-mi adders and multipliers present
in the RNS functional units. For an n-digit RNS number
X = (x1, x2, x3, ..., xn) the proposed method takes at most
n iterations. Each iteration, except the first one, requires 2
multiplications and one parallel subtraction over all the mod-
mi ways of the RNS adder. This scheme results in an RNS to
MRC with an asymptotic complexity, in terms of arithmetic
operations, in the order of O(n), while the traditional MRC
technique exhibits an asymptotic complexity in the order of
O
(
n2
)
. In particular, the utilization of our technique, for

3-moduli and 10-moduli RNS results in the reduction of
the total number of arithmetic operations required by the
conversion process with 13.33% and 66.05%, respectively,
when compared to state of the art MRC. Given that the method
we proposed substantially reduces the RNS to binary/decimal
conversion overhead it makes RNS more effective in addition
and multiplication dominated DSP applications.
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