Hardware Implementation of the Smith-Waterman Algorithm
Using Recursive Variable Expansion

Laiq Hasan Zaid Al-Ars Zubair Nawaz Koen Bertels
Delft University of Technology
Computer Engineering Laboratory
Mekelweg 4, 2628 CD Delft, The Netherlands
L.Hasan@ewi.tudelft.nl

Abstract: In this paper we adapted a novel approach 2 Background

for accelerating the Smith-Waterman (S-W) algorithm Based ordynamic programming (DP)L1], the S-W algo-
using Recursive Variable Expansion (RVE), which exposesrithm [1] is a method used for local sequence alignment
extra parallelism in the algorithm, as compared to any (j.e., identifying common regions in sequences that share
other technique. The results demonstrate that applying local similarity characteristics). In the following subsec-
the recursive variable expansion technique speeds up thetions we give a brief description of the algorithm, its inher-

performance by a factor of 1.36 to 1.41, as compared to ent data dependencies and a brief discussion about the RVE
traditional acceleration approaches at the cost of using approach.

1.25 to 1.28 times more hardware resources. o
2.1 S-W Description

Keywords: Sequence Alignment, Smith-Waterman Algo- When calculating the local alignment, a matfix ; is used
rithm, Systolic Array, Recursive Variable Expansion, FPGA to keep track of the degree of similarity between the two
sequences to be aligned(and B;). Each element of the

1 Introduction matrix H; ; is calculated according to the following equa-
. . . L . tion:
Sequence alignment is an important activity in the field 0
of bioinformatics that enables us to compare DNA strands H. 1. S,
i K) H _ 1—1,7—1 + 1,7 1
with each other and promises to help us understand possi- 4,5 = Max Hi y,—d)
ble genetically transmitted diseas&snith-Waterman (S-W) H, 7,_’1 —d

is the most accurate sequence alignment algorithm avail-
able, but its computational complexity makes it very slow
in real applications [1]. Faster algorithms like FASTA [2]
and BLAST [3] are available, but they achieve high speed
at the cost of reduced accuracy. Thus itis highly desirable 1 |pjtialization step
to accelerate the S-W algorithm in hardware.

Various approaches have been adapted to accelerate the 2. Matrix fill step
S-W algorithm by implementing either the whole algorithm
or some parts of it in hardware and compare the perfor-
mance with the software-only implementation [4], [5], [6], The matrix is first initialized withH, ; = 0 andH; o = 0,

[7], [8], [9]. An overview of such approaches is given in for all i andj. This is referred to as thiitialization step
[10]. After the initialization, amatrix fill stepis carried out using

This paper adapts a novel approach for accelerating theEquation 1, which fills out all entries in the matrix. The final
S-W algorithm usindgRecursive Variable Expansion (RVE) step is therrace back stepwhere the scores in the matrix
and compares the results with the implementation using are traced back to inspect for optimal local alignment. The
a traditional acceleration approach. The speedups thustrace back starts at the cell with the highest score in the
achieved are reported in the paper. matrix and continues up to the cell, where the score falls

The remainder of the paper is organized as follows: Sec- down to a predefined minimum threshold. In order to start
tion 2 gives a brief description of the S-W algorithm, dis- the trace back, the algorithm requires to find the cell with
cusses its inherent data dependencies and briefly explaindhe maximum value, which is done by traversing the entire
the RVE approach. Section 3 discusses the implementationmatrix.
using the traditional acceleration approach and the results The time complexity of the initialization step 3(M +
thus obtained. Section 4 demonstrates the results obtainedV), whereM is the number of rows and is the number of
by applying the RVE technique. Section 5 discusses the re-columns in the matrix. During the matrix fill step, the entire
sults obtained and their significance in comparison with the H; ; matrix needs to be filled according to Equation 1, mak-
related work. Section 6 provides a brief conclusion. ing its time complexity equal to the number of cells in the

where S; ; is the similarity score of comparing sequence
A; to sequenceB; andd is the gap penalty. The whole
algorithm is divided into the following three steps:

3. Trace back step

matrix or O(M N). The time complexity of the traceback = ¢ve4---------------mmomomm g oo o
is alsoO(M N), as the entire matrix needs to be traversed
during this step. Thus the total time complexity of the S-W
algorithm isO(M + N)+O(MN)+O(MN) = O(MN). I R
The total space complexity of the S-W algorithm is also
O(MN), as itfills a single matrix of siz8/ N. Cydle2-———— b T |
In order to reduce th& (M N) complexity of the matrix
fill stage, multiple entries of théf; ; matrix can be calcu- SR N N Ml T 7777777777]
lated in parallel. This is however complicated by data de- Si
pendencies, whereby eaéh ; entry depends on the values 0

of three neighboring entried; ;_1, H;_1; and H;_1 j_1, T
H d Hiaj Hitja Sequence#1 Sequence#2 0

with each of those entries in turn depending on the values
of three neighboring entries, which effectively means that
this dependency extends to every other entry in the region
H,, : x < i, y < j. This implies that it is possible to Figure 2: Circuit to compute an element in thg ; matrix,
simultaneously compute all the elements in each anti diag- Where+ is an adderMAX s a max operator anfeqComp
onal, since they fall outside each others data dependencyS the sequence comparator that generates match/mismatch
regions. Figure 1 shows a sampig ; matrix for two se- scores

guences, with the bounding boxes indicating the elements

responding characters of two input sequences and outputs a

that can be computed in parallel. The right bottom cell is match/mismatch score. depending on wether the two char-
highlighted to show that its data dependency region is the , dep 9 .
acters are equal or not. Each max operator compares its

entire remaining matrix. The dark diagonal arrow indicates .

T : . inputs and outputs the maximum of the two. The time to
the direction in which the computation progresses. At least .
. . . compute an element is 4 cycles. We have assumed that the
9 cycles are required for this computation, as there are 9

bounding boxes representing 9 anti diagonals and a maxi—gg]rﬁ fgnfree:c:rz:t)i/gf is equal to the latency of one add or
mum of 5 cells may be computed in parallel. P P '

i 2.2 Recursive Variable Expansion

G|l AT | T | ~A Recursive Variable Expansion (RVBE}] is a kind of loop
o 0 o o o o transformation which removes all data dependencies from
a program, so that the program is parallelized to its maxi-
6 | o mum. The basic idea is that if any statem@nis dependent
on statement]; for some iteratiori andyj, then instead we
ol wait for H; to complete and then execut, we will re-
ill ¢ | o place all the occurrences of the variableGh that create
dependency with; with the computation of that variable
T° in H;. In this way there is no need to wait for the state-
c | o mentH; to complete and statemefi; can be executed in-

dependently ofd;. This step is recursively repeated until
Figure 1: A sampld?; ; matrix, where the dotted rectangles the statemen; is not dependent on any other statement,
show the elements that are computed in parallel. other than inputs or known values, which essentially means
thatG; can be computed without any delays. This transfor-
The degree of parallelism is constrained to the number mation is explained clearly in Example 1, which adds the
of elements in the anti diagonal and the maximum number |00p counter. Therefore after app|y|ng the RVE, we get an
of processing elements required will be equal to the number expression with five terms to be added, as shown in Exam-

of elements in the longest anti-diagon&l)(where ple 2. In this way, the whole expanded statement in Exam-
lg = min(M, N) © Example 1: A simple example which adds the loop counter

Here, we have assumed that the processing elements are A[l] = 1

equal in number to the length of the shorter sequence. Theo- fOf =2 FO 5 .

retically, the lower bound to the number of steps requiredin ~ Ali] = A[i-1]+i —— (GY)

this parallel implementation, equal to the number of anti- __ end for

diagonals required to reach the bottom-right element, is

m+n —1[12]. ple 2 can be computed in any order by computing the large

So far this is the best technique for parallelization and number of operations in parallel and efficiently using binary
has been used by many researchers [13], [14], [5]. Figuretree structure as shown in Figure 3. The major drawback of
2 shows the implementation to compute an element of this technique is that the speed up is achieved at the cost of
the H; ; matrix. This unit contains three adders, a se- redundancy, which consumes a lot of resources.
guence comparator circuiégqCompand three max oper- The RVE approach is discussed in detail in [16], where
ators. The sequence comparator circuit compares the corthe authors conclude that the RVE approach is 1.6 times

Hi1ja Sequence#1 Hija

Example 2: After applying RVE on Example 1 |

A[5] = A[4] +5 yCompl
= A[3] +4+5 Sequence#2 — Comparator .
= Al2]+3+4+5 5
= A[l]+2+3+4+5 Comp2
=1+2+3+4+5 + Comparator |

Add3

faster than the traditional acceleration approach, however
the conclusion is based on theoretical discussion and is not
Comparator

Comp4

validated by any implementation results. Hias Comparater F Rij [——»Hi,
Al5) Add2
If Sequence#1 = Sequence#2, then SiJ = match score, i H
n otherwise S;j = mismatch score H Y
Cycle 3 d = gap penalty K
@ Figure 4: Block diagram description of a basic cell for com-
— . .
puting H; ; values of Equation 1

Cycle 2

H@F design shown in Figure 4. Figure 6, shows how various

Cycle 1
4 Seql_aSeql_bSeql_cSeql_dSeql_eSeql_f Seql_gSeql_hSeql_i Seql_j

+ + 0 0 0 0 0 0 0 0 0 0 0
1
0 Hu Hip His His His Hig Haz Hig Hio Hia
g
1 2 3 4 5

ing value ofS; ;, depending on the values of the match
and mismatch scores, such tht; = match score, if the
corresponding characters in Sequencel and Sequence?2 al
equal, otherwiseS; ; = mismatch score. Add1 is an adder
that adds the diagonal elemefit_, ;_; and the value of

S; ;. Comp2 is a comparator that compares the output of neighboring cells are connected in this array. The matrix
the Add1 with a constant value 0 and outputs the greateris initialized with the value zero. The gap penalty is as-
of the two numbers. Add2 is an adder that adds the left ele- sumed to have a value zero and a simple scoring scheme is
mentH,_, ; and—d, whered is the gap penalty. Add3isan assumed, such tha; ; = 2, if there is a match, otherwise
adder that adds the upper eleméht; _; and—d. Comp3 S;,; = 0. The remaining values of thé; ; matrix are com-
compares the outputs of Add2 and Add3 and outputs the puted using the systolic array structure, shown in Figure 5.
greater of the two numbers. Comp4 compares the outputsTable 1 shows the filled matrix obtained using this systolic
of Comp2 and Comp3 and outputs the greater of the two array implementation. The bold digits in Table 1 show the
numbers. The output of Comp4 is the corresponding trace back path. Since the elements within each anti di-
value, which is stored in registé?; ;. The block diagram agonal are independent of each other, they are computed in
shown in Figure 4 is implemented in VHDL and the post parallel in the array. Therefore the time consumed by an
place and route simulations show that the time consumedanti diagonal is the same as the time consumed by one cell,
by such a cell is 9.8 ns, where the frequency of the clock which is 9.8 ns. Furthermore since there are 19 anti diag-
used is 50 MHz and the clock period is 20 ns. While im- onals in a 1& 10 systolic array, the speedup factor (calcu-
plemented on Xilinx XC2VP30 FPGA, one cell consumes lating the elements in anti diagonals in parallel) = 100/19
19 out of 13696 slices, where a slice is the basic hardware= 5.26. The latency is equivalent to 19 clock cycles = 380
building element. The cell design shown in Figure 4 can ns. The resources utilized for implementation of a<10

be used to implement a systolic array of any size dependingsystolic array without considering input output overhead are
on the availability of hardware resources. Figure 5, shows a equivalent to 1880 slices. The number of slices utilized by
10x10 systolic array, which is implemented using the cell the array, with input output hardware overhead is 2096, thus

1 1 1 1
T E= T g

0 Ha Haz | Has | Has | Has | Hae | Haz | Has | Hao | Haa

g
[
':D\D, 0 HZ] H22 HZS H24 H25 HZE H27 HZE H29 HZA
‘U‘ ird 111
. . . 2 Eann
Figure 3: Circuit for the example 2 R| O | Ha | Ho | Ho | Ha | His | Hio | Ho | Ha | Heo | Hos
a : 7 it
@
H H e = 0 Hay Haz Haz Has Has Hag Har Hag Hag Haa
3 Implementation using Traditional s : , & %
H 'r-:; 0 Hsy Hs, Hsz Hsg Hss Hse Hs7 Hsg Hsg Hsa
Acceleration Approach 5 L A
w
Figure 4 shows a block diagram of a basic cell for comput- &/ ° | fer | He | He | Hor | Fos | Hoe | Har | oo | P | Hos
ing eleme_nts of thed; ; matrix according to a trad|t|0n_al g, .80 .0 - ..
acceleration approach normally referred to as a systolic ar- & 13 13 15
ray approach. In Figure 4, Compl is a comparator thatcom- & © | Hu | He | Ho | Ho | Hes | Ha | Ha | Hoo | Hoo | Has
. > 11 13 15 37
pares the two input sequences and outputs the correspond- ¢
< 0 Hoy Hgz Hoz Has Hgs Hos Hg7 Hgg Hag Hoa
I_
[

L 19
r
I—gigure 5: Block diagram description of a @0 systolic
array

Hoy Hoz
A\ 4 A %
Seq2_a | i : Hi—l,j—Q + g
Hio— He H Hi 9 2+ 5i—1,;-1
0 - 2 H;,_{,_; = max 7 7 3
H i l 1,7—1 Hi*Q,jfl +g ()
v ' 0
Seq2_b L >
d—w >
Hao—9> Has [Hos H;_1j_2+2g
Figure 6: Block diagram description of connectivity be- Higj2t9+Si-15-1
. . . Hj,_Lj = maXx Hi,Q_’jfl + Siflyj (4)
tween various neighboring cells I b
i—2,5
Table 1: Filled matrix obtained using the systolic array im- 0
plementation, as shown in Figure 5.
H;j_o+g
A|IGITIA|A|G|T|A|T|A Hi 12+ 85i;-1
ofo[o[o[o[O0[O0[O0[O0[O0]O Hij1=maxq Higjot+g+Si1;-1 (5
G|ojo|2|2|2|2|2|2|2]|2]|2 Hij-1+2g
Glo[o|[2|2|2]2 44444 0
AL R AR AR AN (o oW1
Hi 12+ g+ (Sij—1 MAXS; ;)
Al0|2|2|4|6| 6| 6| 6|8|8]8 Hy=max{ H; o o+Si 1,145, (6)
G|0|2|4|4|6| 6| 8| 8| 8| 8] 8 Hi o j_1+g+(Si—1,; MAXS, ;)
T|0|2|4|6|6| 6| 8 |10]|10|10] 10 0
A|l0O|2|4|6|8| 8| 8]|10|12|12]| 12)))
TIo0l 2126181818 101212112 A V\ge c:eflne&tge size pf R|VE bIocIJ as tbké(\:/kénghfagtlor)
Aol 24161810 10 10 12 14| 16 (b). Sofora array, implemented using , the block-

ing factor b = 2. When implemented in VHDL, this block

)] . i with b = 2 consumes 13 ns, where the clock period is 30
a maximum of 653 PEs can be fitted on a Xilinx Virtex-Il 15 and the frequency is 33.33 MHz. Using this block as a
Pro (XC2VP30) FPGA. We extended the array to 28x20, macro design, we implemented a5 array, such that it is
which consumed 10751 out of 13696 slices, thereby show- comparable to the 1010 systolic array without using RVE.

ing that in practice, 713 PEs can be fitted on a virtex-1l Pro rigyre 8 shows the block diagram representation of this im-
FPGA. There are 47 anti diagonals in>280 array, so the

speedup factor = 560/47 = 11.91. The latency is equivalent 4, Seala Seqib Seqlc Seql_j
to 47 clock cycles = 4%20 = 940 ns. s a}{ ,,,,, S B v o
We considered a software equivalent of the basic systolic Sezzib . cappenaly Hi, Hoose 3
cell written in C language. We run it on a 100 MHz IBM ., . ,. Hige Hip2 l Hivjo i :»H;
power PC and measured its runtime, which was 2790 ns. | | v v 1
This runtime when compared with the runtime of the basic | L by
cell, as shown in Figure 4, gives the relative speedup. ; S Bals ;
Speedup = 2790/ 9.8 = 284.7. o s I
Speedup (1010 array) = 284.%5.26 = 1497.52. | RVE p-> o
Seq2_j—m! T - O3 ! |
Speedup (2820 array) = 284.%11.91 = 3390.78. ! b
clk_extgbll Tir— —» O, i j
4 Implementation by Applying Re- o> ; ; -
cursive Variable Expansion i ok RST_

.) . . Figure 8: Block diagram representation of a 10x10 array
Figure 7 shows the way to fill a 2x&#; ; matrix using RVE eusing RVE with b = 2

approach, as per Equations 3, 4, 5 and 6, where S is th i) .])
match/mismatch score and g is the gap penalty [16]. In eachplementathn with detailed pin outs of the RVE .block with b
case the cell to be filled is highlighted along with the cells = 2- Four pins are reserved for the corresponding characters
which are required for its computation. of the input sequences S and T. Five pins are for H inputs,
one for gap penalty and two for clock and reset. The four
output pins are)y, Oz, O3 andOy. If we relate the out-
put pins with Figure 7, the, is for Hoy, O5 is for Hio,

0 | Hu O3 is for Hy; and Oy is for Hy;. Figure 9 shows, how a
10x 10 array is constructed by using RVE blocks with b =
2. For the blocks in first row and first column of Figure 9,
all the inputs come from outside, as shown by external in-
put pins of Figure 8. The four outputs of each block go to

Seql_a Seql_b Seql_a Seql_b Seql_a Seql_b Seql_a Seql_b

0 0 0 0 0 0 0 0 0 0

0 Hy,

q ¢bas e zhbas
q ¢bas e zbas
q ¢bas e zbas
q ¢has e zbas

0 Ha

(@ (b) © (d)
Figure 7: Filling a 2x2H; ; matrix using Recursive Variable
Expansion

Seql_aSeql_bSeql_cSeql_dSeql_eSeql_f Seql_gSeql_hSeql_i Seql_j

Table 2 reports the results achieved from our implemen-
tations. The first part of the table presents a comparison

0 | Hu | He | Ha | Ho | Ho | Ho | He | He | He | He between software implementation and systolic array imple-
mentation, which demonstrates that the basic cell design is

O | Mo | Ha | Ha | He | Ha | Ho | Ha | e) Ha | e 284.7 times faster, the X0 systolic array implementation

S I T D T I I R is 1497.52 times faster and the>280 systolic array imple-

mentation is 3390.78 times faster than their corresponding
O | Ha | Hz | Ha | Mo | Ha | Ho | Ha | Hz | Ha | Hz equivalent software implementations. The first part of Table
2 also shows that the basic cell consumes 19 slices, whereas
the 10x 10 systolic array consumes 1880 out of 13696 slices

O | Ha | Hz | Ha | Ho | Ha | Ho | Ha | Hz | Ha | Hy without considering the input output hardware overhead and
2096 slices out of 13696 slices with overhead. It also shows
that the 2&20 systolic array consumes 10751 slices. The

O | Ha | Hz | Ha | Ho | Ha | Ho | Ha | Ho | Ha | Ha FPGA used for implementations is Xilinx XC2VP30, which
has a maximum of 13696 slices. The second part of Table

[gbas 17zbas Y zbas 6 zbas § zbes o zbasp zbas o zhasq zbas e ghas

0 Hiy Hi, Hiy Hio Hiy Hi, Hiy Hip Hiy Hi, . .
2 presents a comparison between systolic array and RVE
O | Hu | Ho | Ha | Ho | Ha | Ho | Ha | Heo | Ha | Ha implementations, which demonstrates that the 10 array
: -) using RVE with b = 2 is 1.41 times faster than the equiva-
Figure 9: 10x10 array using RVE with b = 2 lent 10x 10 systolic array implementation and 28x20 array

using RVE with b = 2 is 1.36 times faster than its equiv-
the inputs of corresponding neighboring blocks, where the gjent systolic array implementation. The second part of
remaining inputs for those blocks come from outside. The the taple also shows that the 100 RVE implementation
entire design consumes 2409 out of 13696 slices without consumes 2409 out of 13696 slices without considering in-
considering input output hardware overhead. The resourcesyyt output hardware overhead and 2630 out of 13696 slices
utilized with input output hardware overhead are equivalent iin overhead. Similarly 2820 RVE implementation con-
t0 2630, thus a maximum of 130 PEs (RVE blocks with b=2) symes 13694 slices. This means that the speedup of 1.41
can be fitted, while implementing on a Xilinx Virtex-Il Pro 5 achieved at the cost of utilizing 1.25 to 1.28 times more
(XC2VP30) FPGA. Since fouH; ; elements are calculated yegources and the speedup of 1.36 is achieved at the cost of
per PE, the maximum number &f; ; elements calculated tjlizing 1.27 times more resources. Thus by applying the
is 130 x 4 = 520. We extended the design to 14x10, which - RyE technique, we improved the performance by a factor of
is equivalent to 2820 systolic array and consumed 13694 3390.78x1.36 = 4611.5, as compared to its equivalent soft-
out of 13696 slices, thereby showing that in practice, 140 \y5re implementation. The speedup achieved by applying
PEs can be fitted on a Xilinx Virtex-Il Pro FPGA. There are RVE increases with the increasing blocking factor (b), but
9 anti diagonals in a’65 array using RVE with b = 2, rep- yesource utilization also increases as a consequence. Thus
resented by letters A, B, C, D, E, F, G, Hand | in Figure the |imiting factor is the availability of resources on the de-

9. Each anti diagonal is computed in one clock cycle, so yice utilized for implementation (Xilinx XC2VP30 in our
the latency is equivalent to 9 clock cycles 280 =270 ns. ¢ase).

In case of 1410 array, there are 23 anti diagonals, so the)
latency is equivalent to 23 clock cycles =230 = 690 ns. 6 Conclusion

In case of 1610 array, the performance gain in terms of | this paper we presented an implementation of the S-W
latency, achieved by the RVE implementation, as compared 5|gorithm using traditional acceleration approach and com-
to a traditional systolic array = 380/270 = 1.41. This perfor- pared its performance with a software equivalent. The com-
mance gain is achieved at the cost of utilizing 2630/2096 t0 parison shows that the implementation using traditional ac-
2409/1880 = 1.25 to 1.28 times more resources. In case Of¢eleration approach is 3390.78 times faster than its equiva-
28x20 array, the performance gain = 940/690 = 1.36, at the |ent software implementation. To explore more parallelism
cost of utilizing 13694/10751 = 1.27 times more resources. gnd to eliminate the limitations due to inherent data depen-

dencies, we applied the RVE technique. The implementa-

5 Discussion and Results]'Eion using this technique improves the per_formance by a
. . i] actor of 1.36 to 1.41, as compared to the implementation
Systolic array is the best known implementation of the S-Wging traditional acceleration approach, at the cost of using
algorithm thus far, as it exploits the maximum parallelism 1 >5't5 1.28 times more resources. Thus the performance
available in the algorithm. This inherent parallelism is lim- 5-hieved by implementation using RVE technique is 4611.5

ited by the data dependencies in the algorithm. The RVE {imes higher, as compared to its equivalent software imple-
approach adopted in this paper eliminates this limitation by ,entation.

expanding all the variables to their maximum capacity. The

result is an improved performance at the cost of using addi- References

tional resources. The degree of expansion for the variables

depends on the availability of resources on the platform be- [1] T. F. Smith and M. S. Waterman, “ldentification of
ing utilized. So its a trade off between the speedup achieved common molecular subsequencekiurnal of Molec-
and the resources utilized. ular Biology, vol. 147, pp: 195-197, 1981.

Table 2: Comparison between software, systolic array and RVE implementations

|

Comparison between software and systolic array implementations

Implementation Time Clock Speedup w.r.t. Number of slices Number of slices
consumed | frequency software with overhead
implementation
software 2790 ns | 100 MHz 1 — —
basic cell 9.8 ns 50 MHz 284.7 19 out of 13696 19 out of 13696
10x10 380 ns 50 MHz 284.7x5.26 1880 out of 13696 2096 out of 13696
systolic array =1497.52
28x20 940 ns 50 MHz 284.7<11.91 — 10751 out of 13696
systolic array =3390.78

|

Comparison between systolic array and RVE implementations

|

Implementation Time Clock Speedup w.rt. | Number of slices | Cost | Number of slices | Cost with
consumed | frequency | systolic array with overhead overhead
implementation
10x10 380 ns 50 MHz 1 1880 out of 13696 1 2096 out of 13696 1
systolic array
10x10 array using| 270 ns 33.3 MHz 1.41 2409 out of 13696 1.28 | 2630 out of 13696 1.25
RVE with b =2
28%x20 940 ns 50 MHz 1 — — | 10751 out of 13696 1
systolic array
28x20 array using| 690 ns 33.3 MHz 1.36 — — 13694 out of 13696 1.27
RVE with b =2

[2] W. R. Pearson and D. J. Lipman, “Rapid and Sensi- [10] L. Hasan, Z. Al-Ars and S. Vassiliadis, “Hardware Ac-

[3]

[4]

[5]

[6]

[7]

[8]

(9]

tive Protein Simlarity SearchesSciencevol. 227, pp:
1435-1441, 1985.

S. F. Altschul, Gish, W. Miller, W. Myers and D.
J. Lipman, “A Basic Local Alignment Search Tool”,
Journal of Molecular Biologyvol. 215, pp: 403-410,
1990.

J. Chiang, M. Studniberg, J. Shaw, S. Seto and
K. Truong, “Hardware Accelerator for Genomic Se-
guence Alignment”,Proceedings of the 28th IEEE
EMBS Annual International Conferenasug 30—Sept

3, 2006, New York City, USA.

Y. Yamaguchi, Y. Miyajima, T. Maruyama, and A.
Konagaya, “High Speed Homology Search Using
Run-Time Reconfiguration’FPL 2002.

M. Borah, R. S. Bajwa, S. Hannenhalli and M. J. Ir-
win, “A SIMD Solution to the Sequence Comparison
Problem on the MGAP”Proceedings of the Interna-
tional Conference on Application Specific Array Pro-
cessors1994.

A. DiBlas et. al., “The UCSC Kestrel Parallel Proces-
sor”, IEEE Transactions on Parallel and Distributed
Systemsvol. 16(1), pp: 80-92, 2005.

A. Schroder et. al., “Bio-Sequence Database Scanning
on a GPU"HICOMB, 2006.

Laig Hasan and Zaid Al-Ars, “Performance Improve-
ment of the Smith-Waterman Algorithm”Annual
Workshop on Circuits, Systems and Signal Processing
(ProRISC 2007)November 29-30, 2007, Veldhoven,
The Netherlands.

[11]

[12]

[13]

[14]

[15]

[16]

celeration of Sequence Alignment Algorithms - An

Overview”, Proceedings of International Conference

on Design & Technology of Integrated Systems in
Nanoscale Era (DTIS'07)pp: 96-101, September 2—

5, 2007, Rabat, Morocco.

R. Giegerich, “A systematic approach to dynamic pro-
gramming in bioinformatics"Bioinformatics vol. 16,
pp: 665677, 2000.

H. Y. Liao, M. L. Yin and Y. Cheng, “A Parallel Imple-
mentation of the Smith-Waterman Algorithm for Mas-
sive Sequences Searching?roceedings of the 26th
Annual International Conference of the IEEE EMBS”,
September 1-5, 2004, San Francisco, CA, USA.

Steve Margerm, Cray Inc, “Reconfigurable Comput-
ing in Real-World Applications”FPGA and Struc-
tured ASIC Journal (www.fpgajournal.conBebruary

7, 2006.

C.W. Yu, K. H. Kwong, K. H. Lee and P. H. W. Leong,
“A Smith-Waterman Systolic Cell'-PL 2003,.

Z. Nawaz, O. S. Dragomir, T. Marconi, E. M.
Panainte, K. Bertels and S. Vassiliadis, “Recursive
Variable Expansion: A Loop Transformation for Re-
configurable Systems’proceedings of International
Conference on Field-Programmable Technology 2007
Kokurakita, Kitakyushu, JAPAN, December 2007.

Z. Nawaz, M. Shabbir, Z. Al-Ars, K.L.M. Bertels,
“Acceleration of Smith-Waterman Using Recursive
Variable Expansion”proceedings of 11th Euromicro
Conference on Digital System Design 206G&rma,
Italy, September 2008.

