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Abstract: In this paper we adapted a novel approach
for accelerating the Smith-Waterman (S-W) algorithm
using Recursive Variable Expansion (RVE), which exposes
extra parallelism in the algorithm, as compared to any
other technique. The results demonstrate that applying
the recursive variable expansion technique speeds up the
performance by a factor of 1.36 to 1.41, as compared to
traditional acceleration approaches at the cost of using
1.25 to 1.28 times more hardware resources.
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1 Introduction
Sequence alignment is an important activity in the field
of bioinformatics that enables us to compare DNA strands
with each other and promises to help us understand possi-
ble genetically transmitted diseases.Smith-Waterman (S-W)
is the most accurate sequence alignment algorithm avail-
able, but its computational complexity makes it very slow
in real applications [1]. Faster algorithms like FASTA [2]
and BLAST [3] are available, but they achieve high speed
at the cost of reduced accuracy. Thus it is highly desirable
to accelerate the S-W algorithm in hardware.

Various approaches have been adapted to accelerate the
S-W algorithm by implementing either the whole algorithm
or some parts of it in hardware and compare the perfor-
mance with the software-only implementation [4], [5], [6],
[7], [8], [9]. An overview of such approaches is given in
[10].

This paper adapts a novel approach for accelerating the
S-W algorithm usingRecursive Variable Expansion (RVE),
and compares the results with the implementation using
a traditional acceleration approach. The speedups thus
achieved are reported in the paper.

The remainder of the paper is organized as follows: Sec-
tion 2 gives a brief description of the S-W algorithm, dis-
cusses its inherent data dependencies and briefly explains
the RVE approach. Section 3 discusses the implementation
using the traditional acceleration approach and the results
thus obtained. Section 4 demonstrates the results obtained
by applying the RVE technique. Section 5 discusses the re-
sults obtained and their significance in comparison with the
related work. Section 6 provides a brief conclusion.

2 Background
Based ondynamic programming (DP)[11], the S-W algo-
rithm [1] is a method used for local sequence alignment
(i.e., identifying common regions in sequences that share
local similarity characteristics). In the following subsec-
tions we give a brief description of the algorithm, its inher-
ent data dependencies and a brief discussion about the RVE
approach.

2.1 S-W Description
When calculating the local alignment, a matrixHi,j is used
to keep track of the degree of similarity between the two
sequences to be aligned (Ai andBj). Each element of the
matrix Hi,j is calculated according to the following equa-
tion:

Hi,j = max





0
Hi−1,j−1 + Si,j

Hi−1,j − d
Hi,j−1 − d

(1)

whereSi,j is the similarity score of comparing sequence
Ai to sequenceBj and d is the gap penalty. The whole
algorithm is divided into the following three steps:

1. Initialization step

2. Matrix fill step

3. Trace back step

The matrix is first initialized withH0,j = 0 andHi,0 = 0,
for all i andj. This is referred to as theinitialization step.
After the initialization, amatrix fill stepis carried out using
Equation 1, which fills out all entries in the matrix. The final
step is thetrace back step, where the scores in the matrix
are traced back to inspect for optimal local alignment. The
trace back starts at the cell with the highest score in the
matrix and continues up to the cell, where the score falls
down to a predefined minimum threshold. In order to start
the trace back, the algorithm requires to find the cell with
the maximum value, which is done by traversing the entire
matrix.

The time complexity of the initialization step isO(M +
N), whereM is the number of rows andN is the number of
columns in the matrix. During the matrix fill step, the entire
Hi,j matrix needs to be filled according to Equation 1, mak-
ing its time complexity equal to the number of cells in the



matrix or O(MN). The time complexity of the traceback
is alsoO(MN), as the entire matrix needs to be traversed
during this step. Thus the total time complexity of the S-W
algorithm isO(M +N)+O(MN)+O(MN) = O(MN).
The total space complexity of the S-W algorithm is also
O(MN), as it fills a single matrix of sizeMN .

In order to reduce theO(MN) complexity of the matrix
fill stage, multiple entries of theHi,j matrix can be calcu-
lated in parallel. This is however complicated by data de-
pendencies, whereby eachHi,j entry depends on the values
of three neighboring entriesHi,j−1, Hi−1,j andHi−1,j−1,
with each of those entries in turn depending on the values
of three neighboring entries, which effectively means that
this dependency extends to every other entry in the region
Hx,y : x ≤ i, y ≤ j. This implies that it is possible to
simultaneously compute all the elements in each anti diag-
onal, since they fall outside each others data dependency
regions. Figure 1 shows a sampleHi,j matrix for two se-
quences, with the bounding boxes indicating the elements
that can be computed in parallel. The right bottom cell is
highlighted to show that its data dependency region is the
entire remaining matrix. The dark diagonal arrow indicates
the direction in which the computation progresses. At least
9 cycles are required for this computation, as there are 9
bounding boxes representing 9 anti diagonals and a maxi-
mum of 5 cells may be computed in parallel.
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Figure 1: A sampleHi,j matrix, where the dotted rectangles
show the elements that are computed in parallel.

The degree of parallelism is constrained to the number
of elements in the anti diagonal and the maximum number
of processing elements required will be equal to the number
of elements in the longest anti-diagonal (ld), where

ld = min(M, N) (2)

Here, we have assumed that the processing elements are
equal in number to the length of the shorter sequence. Theo-
retically, the lower bound to the number of steps required in
this parallel implementation, equal to the number of anti-
diagonals required to reach the bottom-right element, is
m + n− 1 [12].

So far this is the best technique for parallelization and
has been used by many researchers [13], [14], [5]. Figure
2 shows the implementation to compute an element of
the Hi,j matrix. This unit contains three adders, a se-
quence comparator circuit (SeqComp) and three max oper-
ators. The sequence comparator circuit compares the cor-
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Figure 2: Circuit to compute an element in theHi,j matrix,
where+ is an adder,MAX is a max operator andSeqComp
is the sequence comparator that generates match/mismatch
scores

responding characters of two input sequences and outputs a
match/mismatch score, depending on wether the two char-
acters are equal or not. Each max operator compares its
inputs and outputs the maximum of the two. The time to
compute an element is 4 cycles. We have assumed that the
time for each cycle is equal to the latency of one add or
compare operation.

2.2 Recursive Variable Expansion
Recursive Variable Expansion (RVE)[15] is a kind of loop
transformation which removes all data dependencies from
a program, so that the program is parallelized to its maxi-
mum. The basic idea is that if any statementGi is dependent
on statementHj for some iterationi andj, then instead we
wait for Hj to complete and then executeGi, we will re-
place all the occurrences of the variable inGi that create
dependency withHj with the computation of that variable
in Hj . In this way there is no need to wait for the state-
mentHj to complete and statementGi can be executed in-
dependently ofHj . This step is recursively repeated until
the statementGi is not dependent on any other statement,
other than inputs or known values, which essentially means
thatGi can be computed without any delays. This transfor-
mation is explained clearly in Example 1, which adds the
loop counter. Therefore after applying the RVE, we get an
expression with five terms to be added, as shown in Exam-
ple 2. In this way, the whole expanded statement in Exam-

Example 1: A simple example which adds the loop counter

A[1] = 1
for i = 2 to 5
A[i] = A[i-1] + i ——- ( Gi)
end for

ple 2 can be computed in any order by computing the large
number of operations in parallel and efficiently using binary
tree structure as shown in Figure 3. The major drawback of
this technique is that the speed up is achieved at the cost of
redundancy, which consumes a lot of resources.

The RVE approach is discussed in detail in [16], where
the authors conclude that the RVE approach is 1.6 times



Example 2: After applying RVE on Example 1

A[5] = A[4] + 5
= A[3] + 4 + 5
= A[2] + 3 + 4 + 5
= A[1] + 2 + 3 + 4 + 5
= 1 + 2 + 3 + 4 + 5

faster than the traditional acceleration approach, however
the conclusion is based on theoretical discussion and is not
validated by any implementation results.
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+
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Figure 3: Circuit for the example 2

3 Implementation using Traditional
Acceleration Approach

Figure 4 shows a block diagram of a basic cell for comput-
ing elements of theHi,j matrix according to a traditional
acceleration approach normally referred to as a systolic ar-
ray approach. In Figure 4, Comp1 is a comparator that com-
pares the two input sequences and outputs the correspond-
ing value ofSi,j , depending on the values of the match
and mismatch scores, such thatSi,j = match score, if the
corresponding characters in Sequence1 and Sequence2 are
equal, otherwiseSi,j = mismatch score. Add1 is an adder
that adds the diagonal elementHi−1,j−1 and the value of
Si,j . Comp2 is a comparator that compares the output of
the Add1 with a constant value 0 and outputs the greater
of the two numbers. Add2 is an adder that adds the left ele-
mentHi−1,j and−d, whered is the gap penalty. Add3 is an
adder that adds the upper elementHi,j−1 and−d. Comp3
compares the outputs of Add2 and Add3 and outputs the
greater of the two numbers. Comp4 compares the outputs
of Comp2 and Comp3 and outputs the greater of the two
numbers. The output of Comp4 is the correspondingHi,j

value, which is stored in registerRi,j . The block diagram
shown in Figure 4 is implemented in VHDL and the post
place and route simulations show that the time consumed
by such a cell is 9.8 ns, where the frequency of the clock
used is 50 MHz and the clock period is 20 ns. While im-
plemented on Xilinx XC2VP30 FPGA, one cell consumes
19 out of 13696 slices, where a slice is the basic hardware
building element. The cell design shown in Figure 4 can
be used to implement a systolic array of any size depending
on the availability of hardware resources. Figure 5, shows a
10×10 systolic array, which is implemented using the cell
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Figure 4: Block diagram description of a basic cell for com-
putingHi,j values of Equation 1

design shown in Figure 4. Figure 6, shows how various
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Figure 5: Block diagram description of a 10×10 systolic
array

neighboring cells are connected in this array. The matrix
is initialized with the value zero. The gap penalty is as-
sumed to have a value zero and a simple scoring scheme is
assumed, such thatSi,j = 2, if there is a match, otherwise
Si,j = 0. The remaining values of theHi,j matrix are com-
puted using the systolic array structure, shown in Figure 5.
Table 1 shows the filled matrix obtained using this systolic
array implementation. The bold digits in Table 1 show the
trace back path. Since the elements within each anti di-
agonal are independent of each other, they are computed in
parallel in the array. Therefore the time consumed by an
anti diagonal is the same as the time consumed by one cell,
which is 9.8 ns. Furthermore since there are 19 anti diag-
onals in a 10×10 systolic array, the speedup factor (calcu-
lating the elements in anti diagonals in parallel) = 100/19
= 5.26. The latency is equivalent to 19 clock cycles = 380
ns. The resources utilized for implementation of a 10×10
systolic array without considering input output overhead are
equivalent to 1880 slices. The number of slices utilized by
the array, with input output hardware overhead is 2096, thus
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Table 1: Filled matrix obtained using the systolic array im-
plementation, as shown in Figure 5.

A G T A A G T A T A
0 0 0 0 0 0 0 0 0 0 0

G 0 0 2 2 2 2 2 2 2 2 2
G 0 0 2 2 2 2 4 4 4 4 4
T 0 0 2 4 4 4 4 6 6 6 6
C 0 0 2 4 4 4 4 6 6 6 6
A 0 2 2 4 6 6 6 6 8 8 8
G 0 2 4 4 6 6 8 8 8 8 8
T 0 2 4 6 6 6 8 10 10 10 10
A 0 2 4 6 8 8 8 10 12 12 12
T 0 2 4 6 8 8 8 10 12 14 14
A 0 2 4 6 8 10 10 10 12 14 16

a maximum of 653 PEs can be fitted on a Xilinx Virtex-II
Pro (XC2VP30) FPGA. We extended the array to 28x20,
which consumed 10751 out of 13696 slices, thereby show-
ing that in practice, 713 PEs can be fitted on a virtex-II Pro
FPGA. There are 47 anti diagonals in 28×20 array, so the
speedup factor = 560/47 = 11.91. The latency is equivalent
to 47 clock cycles = 47×20 = 940 ns.

We considered a software equivalent of the basic systolic
cell written in C language. We run it on a 100 MHz IBM
power PC and measured its runtime, which was 2790 ns.
This runtime when compared with the runtime of the basic
cell, as shown in Figure 4, gives the relative speedup.

Speedup = 2790 / 9.8 = 284.7.
Speedup (10×10 array) = 284.7×5.26 = 1497.52.
Speedup (28×20 array) = 284.7×11.91 = 3390.78.

4 Implementation by Applying Re-
cursive Variable Expansion

Figure 7 shows the way to fill a 2x2Hi,j matrix using RVE
approach, as per Equations 3, 4, 5 and 6, where S is the
match/mismatch score and g is the gap penalty [16]. In each
case the cell to be filled is highlighted along with the cells
which are required for its computation.
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Figure 7: Filling a 2x2Hi,j matrix using Recursive Variable
Expansion

Hi−1,j−1 = max





Hi−1,j−2 + g
Hi−2,j−2 + Si−1,j−1

Hi−2,j−1 + g
0

(3)

Hi−1,j = max





Hi−1,j−2 + 2g
Hi−2,j−2 + g + Si−1,j−1

Hi−2,j−1 + Si−1,j

Hi−2,j + g
0

(4)

Hi,j−1 = max





Hi,j−2 + g
Hi−1,j−2 + Si,j−1

Hi−2,j−2 + g + Si−1,j−1

Hi−2,j−1 + 2g
0

(5)

Hij = max





(Hi,j−2 MAXHi−2,j) + 2g
Hi−1,j−2 + g + (Si,j−1 MAXSi,j)
Hi−2,j−2 + Si−1,j−1 + Si,j

Hi−2,j−1 + g + (Si−1,j MAXSi,j)
0

(6)

We define the size of RVE block as theblocking factor
(b). So for a 2×2 array, implemented using RVE, the block-
ing factor b = 2. When implemented in VHDL, this block
with b = 2 consumes 13 ns, where the clock period is 30
ns and the frequency is 33.33 MHz. Using this block as a
macro design, we implemented a 5×5 array, such that it is
comparable to the 10×10 systolic array without using RVE.
Figure 8 shows the block diagram representation of this im-

RVE b=2
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Figure 8: Block diagram representation of a 10x10 array
using RVE with b = 2

plementation with detailed pin outs of the RVE block with b
= 2. Four pins are reserved for the corresponding characters
of the input sequences S and T. Five pins are for H inputs,
one for gap penalty and two for clock and reset. The four
output pins areO1, O2, O3 andO4. If we relate the out-
put pins with Figure 7, thenO1 is for H22, O2 is for H12,
O3 is for H21 andO4 is for H11. Figure 9 shows, how a
10×10 array is constructed by using RVE blocks with b =
2. For the blocks in first row and first column of Figure 9,
all the inputs come from outside, as shown by external in-
put pins of Figure 8. The four outputs of each block go to
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Figure 9: 10x10 array using RVE with b = 2

the inputs of corresponding neighboring blocks, where the
remaining inputs for those blocks come from outside. The
entire design consumes 2409 out of 13696 slices without
considering input output hardware overhead. The resources
utilized with input output hardware overhead are equivalent
to 2630, thus a maximum of 130 PEs (RVE blocks with b=2)
can be fitted, while implementing on a Xilinx Virtex-II Pro
(XC2VP30) FPGA. Since fourHi,j elements are calculated
per PE, the maximum number ofHi,j elements calculated
is 130 × 4 = 520. We extended the design to 14x10, which
is equivalent to 28×20 systolic array and consumed 13694
out of 13696 slices, thereby showing that in practice, 140
PEs can be fitted on a Xilinx Virtex-II Pro FPGA. There are
9 anti diagonals in a 5×5 array using RVE with b = 2, rep-
resented by letters A, B, C, D, E, F, G, H and I in Figure
9. Each anti diagonal is computed in one clock cycle, so
the latency is equivalent to 9 clock cycles = 9×30 = 270 ns.
In case of 14×10 array, there are 23 anti diagonals, so the
latency is equivalent to 23 clock cycles = 23×30 = 690 ns.

In case of 10×10 array, the performance gain in terms of
latency, achieved by the RVE implementation, as compared
to a traditional systolic array = 380/270 = 1.41. This perfor-
mance gain is achieved at the cost of utilizing 2630/2096 to
2409/1880 = 1.25 to 1.28 times more resources. In case of
28×20 array, the performance gain = 940/690 = 1.36, at the
cost of utilizing 13694/10751 = 1.27 times more resources.

5 Discussion and Results
Systolic array is the best known implementation of the S-W
algorithm thus far, as it exploits the maximum parallelism
available in the algorithm. This inherent parallelism is lim-
ited by the data dependencies in the algorithm. The RVE
approach adopted in this paper eliminates this limitation by
expanding all the variables to their maximum capacity. The
result is an improved performance at the cost of using addi-
tional resources. The degree of expansion for the variables
depends on the availability of resources on the platform be-
ing utilized. So its a trade off between the speedup achieved
and the resources utilized.

Table 2 reports the results achieved from our implemen-
tations. The first part of the table presents a comparison
between software implementation and systolic array imple-
mentation, which demonstrates that the basic cell design is
284.7 times faster, the 10×10 systolic array implementation
is 1497.52 times faster and the 28×20 systolic array imple-
mentation is 3390.78 times faster than their corresponding
equivalent software implementations. The first part of Table
2 also shows that the basic cell consumes 19 slices, whereas
the 10×10 systolic array consumes 1880 out of 13696 slices
without considering the input output hardware overhead and
2096 slices out of 13696 slices with overhead. It also shows
that the 28×20 systolic array consumes 10751 slices. The
FPGA used for implementations is Xilinx XC2VP30, which
has a maximum of 13696 slices. The second part of Table
2 presents a comparison between systolic array and RVE
implementations, which demonstrates that the 10×10 array
using RVE with b = 2 is 1.41 times faster than the equiva-
lent 10×10 systolic array implementation and 28x20 array
using RVE with b = 2 is 1.36 times faster than its equiv-
alent systolic array implementation. The second part of
the table also shows that the 10×10 RVE implementation
consumes 2409 out of 13696 slices without considering in-
put output hardware overhead and 2630 out of 13696 slices
with overhead. Similarly 28×20 RVE implementation con-
sumes 13694 slices. This means that the speedup of 1.41
is achieved at the cost of utilizing 1.25 to 1.28 times more
resources and the speedup of 1.36 is achieved at the cost of
utilizing 1.27 times more resources. Thus by applying the
RVE technique, we improved the performance by a factor of
3390.78×1.36 = 4611.5, as compared to its equivalent soft-
ware implementation. The speedup achieved by applying
RVE increases with the increasing blocking factor (b), but
resource utilization also increases as a consequence. Thus
the limiting factor is the availability of resources on the de-
vice utilized for implementation (Xilinx XC2VP30 in our
case).

6 Conclusion
In this paper we presented an implementation of the S-W
algorithm using traditional acceleration approach and com-
pared its performance with a software equivalent. The com-
parison shows that the implementation using traditional ac-
celeration approach is 3390.78 times faster than its equiva-
lent software implementation. To explore more parallelism
and to eliminate the limitations due to inherent data depen-
dencies, we applied the RVE technique. The implementa-
tion using this technique improves the performance by a
factor of 1.36 to 1.41, as compared to the implementation
using traditional acceleration approach, at the cost of using
1.25 to 1.28 times more resources. Thus the performance
achieved by implementation using RVE technique is 4611.5
times higher, as compared to its equivalent software imple-
mentation.
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Table 2: Comparison between software, systolic array and RVE implementations
Comparison between software and systolic array implementations

Implementation Time Clock Speedup w.r.t. Number of slices Number of slices
consumed frequency software with overhead

implementation
software 2790 ns 100 MHz 1 — —
basic cell 9.8 ns 50 MHz 284.7 19 out of 13696 19 out of 13696
10×10 380 ns 50 MHz 284.7×5.26 1880 out of 13696 2096 out of 13696
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