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Chapter 1 
 

Introduction 
 

 

This chapter introduces to the content of the thesis project work �Profiling 

Symmetric Encryption Algorithms for Implantable Medical Devices�. The chapter is 

divided into several sections discussing the project motivation, the proposed solution, 

and the main challenges of the project. In addition, the organization of this project report 

is presented. 

 

1.1 Background Information 
           An embedded system is a special-purpose computer system designed to perform 

one or few dedicated functions, often with real time computing constraints. It is usually 

embedded as part of a complex system including software, hardware and mechanical 

parts. In contrast, a general-purpose computer, such as a personal computer, can do 

many different tasks depending on programming. Embedded systems control many 

devices commonly in use today. 

 

Embedded systems span many aspects of the modern life and there are many 

examples of their usage. Medical equipment is a class which advances continuously with 

an ever increasing number of more embedded systems for vital-signs monitoring, 

electronic stethoscopes for amplifying sounds, and various medical imaging (such as 

PET, SPET, CT and MRI) modalities for non-invasive endoscopy. One particular class of 

medical equipment is the microelectronics implants. Starting with the implantable 

pacemaker some 50 years ago, such devices have been increasingly improving over the 

last two decades. Implantable medical devices are made to replace and act as a missing 

biological structure, e.g. an implantable pacemaker. The primary purpose of a 

pacemaker is to maintain an adequate heart rate, either because the heart's native 

pacemaker of some people such as heart failure patients is not fast enough, or there is a 

block in the heart's electrical conduction system for some people such as myocardial 

infarction patients. The pacemaker contacts the heart muscles to regulate the beating of 

the heart. Other therapeutic implantable devices have followed, including bone-growth 

stimulators, drug-infusion pumps and cochlear implants that provide a semblance of 
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hearing for the deaf. Nowadays, implantable medical devices are being widely used in 

many organs of the human body and their number keeps growing. In Europe alone, a 

total number of 299,705 implanted devices have been registered over the year 2003 

(source: European Society of Cardiology [1]). According to the latest issue, the 

microelectronics implant market is expected to grow by at least 30% in the next 10 

years. 

 

1.2 Thesis Motivation 

            Typical, modern microelectronic implants comprise a central unit commonly used 

for data processing tasks (e.g. compression of sensor readout data) as well as for 

controlling all peripheral units of the device [2]. Such units usually are: 

• Sensors and actuators, used to physically interface to the living tissue,  

• A wireless transducer to allow (bidirectional) communication between the implant 

(in vivo) and an external controller (ex vivo) such as desktop computer, a 

palmtop, a laptop or, even, a mobile phone, and  

• A power module which provides the DC power needed for the operation of the 

implant electronics.  

Over the wireless interface of a microelectronic implant, inbound (to the 

implant) commands carry operational information, requests for data acquisition or any 

kind of effectuating on the living tissue (i.e. actuation) and so on. Outbound data 

streams contain implant responses to the external queries, operation-status messages 

and so on[2]. In figure 1 a conceptual view of a generic microelectronic implant is 

presented. 

The Health Insurance Portability and Accountability Act (HIPPA) in the USA [3] 

requires that the patient is the only owner of and should fully control the disclosure 

policy for his Personal Health Record (PHR). Any malicious acquisition of patient 

personal-health records will be treated as illegal. In the European Union (EU) [4], 

several Directives of the European Parliament and of the Council protect the processing 

and free movement of personal data, including that for health care purposes. 
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However, very few implantable medical devices are currently designed to 

actively deal with security issues. Recently, some researchers from the University of 

Washington and the University of Massachusetts have been able to gain wireless access 

to an implantable heart-defibrillator and pacemaker device [5]. Once they had access, 

the researchers found a way to reprogram the device to deliver (undesired) electric jolts 

to the heart tissue.  

 

Figure 1: A Typical Implantable Medical Device [2] 

While the risk for wireless attacks carried out against patients wearing such devices 

today remains low, because most of the radios involved only transmit over very short 

distances, the ability to interfere with transmission performance has been already 

illustrated. Furthermore, as the number of medical implants well increases in the future, 

and the implants devices will become more widely adopted more attention should be 

drawn on this issue. While newer devices are already being equipped with more 

powerful radios, for instance [6], patients should now, consider carefully if they would 

really be comfortable with implanting such a hack-prone devices in their body. 

Unfortunately, there are plenty of people who wouldn't necessarily have a choice. 
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Conclusively, protecting the privacy as well as the very health of patients is 

anticipated to be one of the most serious aspects of implant wireless communications in 

the years to come. In this context, microelectronic implants definitely require encryption 

of inbound and outbound traffic. Data needs to be relayed securely for protecting the 

personal biological information of patients. Conversely, commands to the implants need 

to be properly authenticated, protected and verified to be originating from legitimate 

operators so as to avoid unwanted, malicious or even fatal in-vivo manipulation of the 

devices. 

 

1.3 Project Work 
           As mentioned before, implantable medical devices are a particular class of 

embedded systems. Designing medical implants suffers from the same challenging 

issues as designing other embedded systems, such as miniature size, low power 

consumption, constrained memory size, etc. As a matter of fact, medical implants have 

much stricter requirements than generic embedded systems. For instance, an 

implantable pacemaker is normally implanted into the human body for at least 10 years 

[7]. Because of the limited battery capacity, the pacemaker has to minimize its power 

consumption in order to continue working such a long time. Clearly, battery replacement 

(through a risky and costly explantation procedure) is not a viable option. Moreover, the 

pacemaker has to be manufactured as small as possible in order to match the tight 

physical constraints inside the human body. In the Computer Engineering Group, we 

have established the Smart Implantable Medical Systems (SiMS) project that focuses on 

low power consumption problem among other issues.  

The SiMS project (http://ce.et.tudelft.nl/SiMS) is currently defining the 

architecture of a novel, minimalistic, low-power digital processor suitable for a large 

subset of biomedical applications. For defining this processor, various software 

applications have been employed as benchmarks to guide the design process. One of 

the examined benchmark suites, and a very important one as previously discussed, is 

data encryption.  

         In this thesis work, we study, analyze, collect and profile a large set of popular 

encryption algorithms in terms of power consumption, energy expenditure, encryption 

rate and program-code size through detailed simulations. We only choose to profile 

symmetric encryption algorithms for three reasons:  
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! Firstly, asymmetric encryption algorithms have been found to have computational 

and memory requirements that are prohibitively high for low-power embedded 

devices [8, 9]. Since we care more about memory constrained scenario in our SiMS 

project, we only concentrate on symmetric encryption algorithms. Nevertheless we 

will address the asymmetric encryption algorithms in our future work. In addition, 

related work in the field of embedded systems especially in wireless sensor network 

(WSNs) showed that carefully optimized software or hardware implementations of 

existing asymmetric algorithms may be viable for resource-constraint devices [10, 

11].  

! Secondly, our choice is based on typical application scenario for the targeted 

implants: data and command exchange with the implantable medical device does 

not happen particularly often, e.g. once a day. The reason for that primarily is the 

desired autonomous, unattended operation of such devices as well as the 

disproportionably large energy costs incurred when wirelessly transmitting data in-

vivo. In effect, even if a combination of asymmetric and symmetric-key encryption is 

assumed for secure authentication and actual-data exchange, respectively, 

authentication is not expected to occur so often in an implant operation. It is, thus, 

not our primary concern for this study. The scope of this thesis is focusing on the 

most commonly executed task, i.e. the symmetrically-encrypted data exchange. 

           After the study, analysis and evaluation of all symmetric encryption candidates, 

we will selected the best performing ones for the targeted application domain and 

investigate their respective instruction mixes in order to gain further insight on the most 

suitable instructions to be included in our targeted digital processor architecture. 

Concisely, the main contributions of this thesis work are: 

• To identify encryption algorithms which achieve the lowest average power 

consumption throughout their execution;     

• To identify encryption algorithms with the overall lowest total energy budget for   

encryption various plaintext sizes; 

• To identify encryption algorithms which encrypt various plaintext sizes at the 

highest possible rate or, at least, at a rate fast enough to satisfy the required 

sampling rate of the (biological) plaintext data; 
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� To identify the instruction mixes and frequencies of the best scoring encryption 

algorithms for including in the architecture of the new processor currently 

designed for a variety of biomedical implants. 

�  

• To make the statement that encryption is a crucial, much needed and feasible 

provision for future microelectronic implants. 

1.4 Report Organization 
           The background information of all candidate symmetric algorithms, profiling 

platform, benchmark suite and assumptions made in our thesis study are detailed in the 

following chapters: 

 

Chapter 2 gives the history and the background knowledge of various widely accepted 

encryption algorithms. The analysis of each algorithm and our selection process will be 

also explained in this chapter. Chapter 3 describes experiment lab establishment and 

discusses our results. Chapter 4 draws the conclusion of this thesis work. The future 

work of the SiMS project is also discussed in this chapter. 
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Chapter 2 
 

Background Concepts: Symmetric Ciphers 
 

 

This chapter discusses the background concepts of the current project: �Profiling 

Symmetric Cryptography Algorithms for Implantable Medical Devices�. Basic 

cryptography theory and several symmetric cryptography algorithms will be discussed 

and analyzed. Cipher architectures, implementation details, security levels and other 

information is provided. The reasons for studying only symmetric ciphers are related to 

the context of the SiMS project and will be explained in this chapter as well. 

 

2.1 A taxonomy of Cryptography 
Cryptography algorithms have the same old history as civilization. One famous 

example of using cryptography algorithms is Julius Caesar�s use of an alphabetic 

substitution cryptographic system to send secure information to his army [12]. Another 

famous example is the Hagelin cryptograph. It was made by Swede Boris Hagelin in the 

1930�s and was used by the American army until 1950 [13]. Modern cryptography can be 

divided into two main subfields of study:  Symmetric-key and Asymmetric-key 

cryptography. Symmetric-key can be divided into block ciphers and stream ciphers. 

Figure 2.1 depicts the taxonomy of cryptography.  

Symmetric-key cryptography refers to encryption methods in which both the 

sender and receiver share the same key (or, less commonly, in which their keys are 

different, but related in an easily computable way). This was the only kind of encryption 

publicly known until June 1976 [14]. The modern study of symmetric-key ciphers relates 

mainly to the study of block ciphers and stream ciphers and their applications. We will 

discuss the terminology involved in symmetric-key cryptography in the next section. 

Asymmetric-key cryptography is also known as public-key cryptography 

whereby two different but mathematically related keys are used � a public key and a 

private key [15]. A public-key system is so constructed that calculation of one key (the 

'private key') from the other (the 'public key') is computationally infeasible, even though 

they are necessarily related. Instead, both keys are generated secretly, as an 

interrelated pair [16]. The public key may be freely distributed, while its paired private 

key must remain secret. The public key is typically used for encryption, while the private 
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or secret key is used for decryption. The most famous applications of public-key 

cryptography are Elliptic-curve cryptography, PGP and the public-key infrastructure (PKI).  

Elliptic Curve Cryptography (ECC) provides the highest strength-per-key-bit of 

any cryptography algorithm known to take. Compared with other public-key approaches, 

ECC not only has the higher security but also has lows computation overhead, shorter 

key size and narrower bandwidth. Therefore, the experts believe that ECC will become 

the next generation widely used public-key cryptography.  

Pretty Good Privacy (PGP) is a computer program that 

provides cryptographic privacy and authentication. PGP is often used for signing, 

encrypting and decrypting e-mails to increase the security of e-mail communication.  

A PKI (public key infrastructure) enables users of a basically unsecured public 

network such as the Internet to securely and privately exchange data and money 

through the use of a public and a private cryptographic key pair that is obtained and 

shared through a trusted authority.  

 

Figure 2.1: Taxonomy of Cryptography 

 

2.2 Terminology of Symmetric Cryptography Algorithms 

 The terminology of symmetric cryptography algorithms mainly includes the 

following: 

Cryptography 

Symmetric Cryptography Asymmetric Cryptography 

Block Ciphers Stream Ciphers 



Chapter 2 Background Concepts: Symmetric Ciphers 
 

 9

Plaintext: Plain text is the ordinary information which the sender wishes to transmit to the 

receiver(s). 

Cipher text:  The encrypted text is called Cipher text. 

Encryption and Decryption:  Encryption is the process of converting plain text into 

ciphertext. Decryption is the reverse process, moving from ciphertext back to the original 

plain text. 

 

Figure 2.2: A Typical Encryption Procedure 

Cipher:  A cipher is a pair of algorithms which ensure the encryption and the reversing 

decryption. The detailed operation of a cipher is controlled both by the algorithm and by 

a specific key. 

Key: The key is a secret parameter for encrypting or decrypting a specific message- 

exchange context. Keys are important, as ciphers without keys are trivially breakable 

and therefore less than useful for most purposes. 

Block Ciphers: The block cipher is a type of symmetric-key encryption algorithm that 

transforms a fixed-length block of plain text data into a block of cipher text data of the 

same length. This transformation takes place under the action of a user-provided secret 

key. Decryption is performed by applying the reverse transformation to the cipher text 

block using the same secret key. The fixed length is called the block size and, for many 

block ciphers, the block size is 64 bits. In the coming years, the block size will increase 

to 128 bits as processors become more sophisticated. Since messages are almost 

always longer than a single block, some method of knitting together successive blocks is 

required. The different ways of knitting together blocks are known as the modes of 
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operation and must be carefully considered when using block ciphers. Mode of operation 

will be further elaborated in section 4. Block ciphers can be easier to implement in 

software than stream ciphers, because they often avoid time-consuming bit 

manipulations and they operate on data in computer-sized blocks [17]. 

 

Stream Ciphers: A stream cipher is a symmetric-key cipher where plaintext bits are 

combined with a pseudo-random cipher bit-stream (key stream), typically by an 

exclusive-or (xor) operation. In a stream cipher the plaintext digits are encrypted one at a 

time, and the transformation of successive digits varies during the encryption. Stream 

ciphers typically execute at a higher speed than block ciphers and have lower hardware 

complexity [18]. Stream ciphers that only encrypt and decrypt data one bit at a time are 

not really suitable for software implementation [17]. This explains why stream ciphers 

can be better implemented in hardware than block ciphers.  

Feistel - Cipher: A Feistel cipher is a symmetric structure used in the construction of 

block ciphers; it is also commonly known as a Feistel network. A large proportion of 

block ciphers use the scheme, including Blowfish, DES, MYSTY1, RC5, TWOFISH, 

XXTEA, GOST, etc. The Feistel structure has the advantage that encryption and 

decryption operations are very similar, even identical in some cases, requiring only a 

reversal of the key schedule. Therefore, the size of the code or the circuitry required to 

implement such a cipher is nearly halved. Feistel networks combine multiple rounds of 

repeated operations, such as: 

• Bit-shuffling functions (often called permutation boxes or P-boxes) ; 

• Simple, non-linear functions (often called substitution boxes or S-boxes);  

• Linear mixing (in the sense of modular algebra) using XOR operations. 
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Figure 2.3: The Encryption and Decryption Procedure of a Feistel Cipher 

S-Box: The substitution box (S-box) is a basic component of many symmetric key 

algorithms. In block ciphers, they are typically used to obscure the relationship between 

the plaintext and the cipher text; they rely on the Shannon's property of confusion [19]. In 

many cases, the S-boxes are carefully chosen to resist cryptanalysis. In general, an S-

box takes some number of input bits, m, and transforms them into some number of 

output bits, n: an m×n S-box can be implemented as a lookup table with 2m words of n 

bits each. Fixed tables are normally used, as in the Data Encryption Standards (DES), 

but in some ciphers the tables are generated dynamically from the key; e.g. the Blowfish 

and the Twofish encryption algorithms [20]. 
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Rounds: Rounds is the number of iterations in a cipher system. From figure 3 we can 

have a clear view that each repeated operations stand for a round. According to the 

crypto analysts, the bigger the number of rounds, the more secure the algorithms will be. 

The downside is that the execution time of the algorithms increases enormously. 

Key Size: key size or key length is the size of the key used in a given cryptographic 

algorithm. An algorithm's key length is distinct from its cryptographic security, which is a 

logarithmic measure of the fastest known computational attack on the algorithm, also 

measured in bits[21].  

Security Margin: In order to measure the advantage and disadvantage of different 

cryptography algorithms, security scientists have created several solutions to define the 

security level. According to Lenstra and Verheul [22], a cryptosystem can be assumed to 

be secure only if it is considered to be sufficiently infeasible to mount a successful attack 

against it. Unfortunately, it is hard to quantify what precisely is meant by "sufficiently 

infeasible". To cope with this known issue, we adopt the widely used security margin 

metric, proposed also by Lenstra and Verheul, which is defined as the year until which a 

user was willing to trust the DES cipher. According to this definition, if an attacker could 

afford CDES computations in 1982, sufficient to break DES, and can afford CX 

computations in year y (y > 1982), sufficient to break cipher X, then the security of cipher 

X in year y is computationally equivalent to the security of DES in 1982, or in other 

words, the security margin of cipher X is y. Since DES was standardized in 1977 and set 

for review in 1982, the year 1982 is used as the baseline. If the best known attack 

against a cipher with key length k is exhaustive key search, y can be calculated 

according to:  

y = 1982 + 30/23 * (k- 56) [23] 

Key schedule and subkey: A key schedule is an algorithm that, given the key, calculates 

the subkeys for all rounds. A subkey is a part of cipher key which is caculated with round 

parameter. 

Linear cryptanalysis: A linear cryptanalysis is to find approximations to the action of a 

cipher. Attacks have been developed for block ciphers and stream ciphers. Linear 
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cryptanalysis is one of the two most widely used attacks on block ciphers; the other is 

differential cryptanalysis. 

Differential cryptanalysis: Differential cryptanalysis is a general form of cryptanalysis 

applicable primarily to block ciphers, but also to stream ciphers. In the broadest sense, it 

is the study of how differences in an input can affect the resultant difference at the 

output. In the case of a block cipher, it refers to a set of techniques for tracing 

differences through the network of transformations, discovering where the cipher exhibits 

non-random behaviour, and exploiting such properties to recover the secret key. 

Brute-force attack: A Brute-force attack is a method of defeating a cryptographic scheme 

by trying a large number of possibilities; for example, possible keys in order to decrypt a 

message. In most schemes, the theoretical possibility of a brute force attack is 

recognized, but it is set up in such a way that it would be computationally infeasible to 

carry it out. Accordingly, one definition of "breaking" a cryptographic scheme is to find a 

method faster than the brute force attack. 

Side-channel attack: a side channel attack is any attack based on additional information 

gained from the physical implementation of a cryptosystem, rather than brute force or 

theoretical weaknesses in the algorithms (compare cryptanalysis). For example, timing 

information, power consumption, electromagnetic leaks or even sound can provide an 

extra source of information which can be exploited to break the system. Many side-

channel attacks require considerable technical knowledge of the internal operation of the 

system on which the cryptography is implemented. 

 
2.3 Analysis of symmetric-encryption Algorithms 
                In this section several symmetric encryption algorithms will be analyzed. The 

history of the algorithms, their key sizes, block sizes, code sizes1, number of rounds of 

algorithms and security levels will be discussed. We focus on block ciphers since they 

are much easier implemented in software. Implementing in software will avoid time-

consuming bit manipulations as long as they operate on data in computer-sized blocks. 
                                                
1 The code size is the size of the binary program when the C-source code is compiled with the GNU 

ARM cross-gcc-2.7.2.3. The reasons for using a cross-platform compiler will become clear in the next 
chapter. The code size is largely dependent on the algorithm implementation and should, thus, be 
considerated. 
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2.3.1 DES 

History of algorithm: The Data Encryption Standard (DES) is a cipher (a method for 

encrypting information) selected as an official Federal Information Processing Standard 

(FIPS) for the United States in 1976 and which has been used internationally. The 

algorithm was initially controversial, with classified design elements, a relatively short 

key length, and suspicions about a National Security Agency (NSA) backdoor. DES 

consequently came under intense academic scrutiny, and motivated the modern 

understanding of block ciphers and their cryptanalysis [24]. 

Key size:   The key originally consists of 64 bits; however, only 56 of these are actually 

used by the algorithm. Eight bits are used solely for checking parity, and are thereafter 

discarded. Hence the effective length is 56 bits, and it is usually used as such. 

Block size:  The block size is 64 bits. 

Code size1:  The size of DES is 14.6 KB. 

Rounds:     There are 16 rounds in the DES algorithms. 

Security level: The security margin of DES is 1982. 

Known attacks/threats:  There are three attacks known that can break the full 

sixteen rounds of DES: differential cryptanalysis (DC), linear cryptanalysis (LC), and 

Davies� attack. These types of attack are sometimes termed certification weaknesses. 

Therefore, we can use brute force attack to attack DES algorithm, which means trying 

every possible key in turn. 

Flow chart:  Figure 2.4 depicts DES. 

1. DES has 7 stages; 

                       2. Stages 4 to 6 are repeated 16 times; 

                       3. The DES is XOR arithmetic based algorithm. 
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Figure 2.4: Flow Chart of DES 

Comments: It is a known fact that DES is an old-fashioned version of symmetric 

algorithm. It has been cryptanalyzed for many years. Therefore, the security level of DES 

is quite low. Triple DES is the successor of DES which has a good security level. 

However, the time penalty of implementing triple DES in resource-constrained platforms 

is high; thus we prefer implementing DES instead of triple DES in the general case. 

2.3.2 BLOWFISH 
 
History of algorithm:  Blowfish has been designed in 1993 by Bruce Schneier and 

included in a large number of cipher suites and encryption products [25]. 

END 

Divided the block into two 32-bit A and B 

Initial permutation 

Final permutation 

 A = A XOR (B processed by Feistel fuction) 

    A = B XOR (A processed by Feistel fuction) 

START  

Round = 1

Round = Round - 1 

initialize Round Constant and Key 

N 
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Key size:     Blowfish features a variable key length from 0 up to 448 bits. We have 

selected 128 bits in our implementation experiment.  

Block size:   Blowfish has a 64-bit block size.  

Code size:   The size of the Blowfish code is 15.3 KB. 

Rounds:     It is a 16-round Feistel cipher and uses large key-dependent S-boxes.       

Security level:  The security margin of BLOWFISH is 2076. 

Known attacks/threats:  Blowfish provides a good encryption rate in software and no 

effective cryptanalysis of it has been found to date.  

Flow chart:   Figure 2.5 depicts Blowfish. 

1. The Blowfish has 7 stages; 

                         2. From stage 2 to stage 6 are repeated 16 times; 

                         3. The DES is XOR arithmetic based algorithm. In the fourth step, the f-

function use the first byte of the 32 bits of input to find an entry in the 

first S-box, the second byte to find an entry in the second S-box, and 

so on. The value of the f-function is ((S1(B1) + S2(B2)) XOR S3(B3)) + 

S4(B4) where addition is performed modulo 2^32. 

Comments of Blowfish: Blowfish is a successor of DES. It uses amounts of the 

principles used in DES to provide the same security with greater speed and efficiency in 

software [26]. Blowfish uses round keys; the entire contents of all the S-boxes are 

created by multiple iterations of the block cipher. This enhances the security of the block 

cipher, since it makes exhaustive search of the key space very difficult, even for short 

keys [27]. It could be the most secure symmetric algorithm. 
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Figure 2.5: Flow Chart of Blowfish 
 
 
 
2.3.3 3-WAY 

History of algorithm:    3-Way is a block cipher designed in 1994 by Joan Daemen. It is 

designed to be very efficient in a wide range of platforms from 8-bit processors to 

specialized hardware, and has some elegant mathematical features which enable nearly 

all the decryption to be done in exactly the same circuits as did the encryption. 
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XOR the left half of the block with the correspond 
subkey(of this round) 

apply the f-function to the left half of the block 

XOR the right half of the block with result 

swap the halves of the block 

START 

Round = 1

divide the plaintext into two subblocks; 
initialize Round Constant and Key 

Round = Round - 1 

N 

Y 

subkey generation 
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Key size:   The key length is also 96 bits. The figure 96 arises from the use of three 32 

bit words in the algorithm, from which also is derived the cipher's name.  

Block size: The block size of 3-WAY is 96 bits. 

Code size:  The size of the 3-WAY code is 11.2 KB. 

Rounds:    3-Way is an 11-round substitution-permutation network. 

Security level: The security margin of 3-WAY is 2034. 

Known attacks/threats:  3-Way is vulnerable to related-key cryptanalysis; Jone Kelsy, 

Bruce Schneier, and David Wagner show how it can be broken with one related key 

query and about 2^22 chosen plaintexts [28]. 

Flow Chart:  Figure 2.6 depicts DES. 

1. The DES has 7 stages; 

                       2. Stages 2 to 7 are repeated 11 times; 

                       3. In the first step, the plaintext is divided into three subblocks; each of 
them is the same size as 32bit. That is why we call this algorithm 3WAY; 

4. In the third step, matrix multiplication is carried out in parallel eight 

times, for each of the eight bits in the block contains. The matrix 

multiplication has a structure that allows it to be implemented in terms 

of shifts and XORs of 32-bit words which is the same size as subblock 

size. This use of matrix multiplication is similar to Rijndael (AES); 

5. In the fourth step, the first 32-bit subblock is rotated 10 bits to the right, 

and the third 32-bit subblock is rotated 1 bit to the left. The second 

subblock is not modified; 

6. In the sixth step, the diffusion makes the first 32-bit subblock rotated 1 

bit to the left, and the third 32-bit subblock rotated 10 bits to the right. 

Comments: 3WAY algorithm is normally implemented by hardware in the industrial 
world. 
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Figure 2.6: Flow Chart of 3-WAY 

 
2.3.4 GOST 

History of algorithm: GOST standards were originally developed by the government of 

the Soviet Union as part of its national standardization strategy. The word GOST in 

Russian is an acronym for �gosudarstvennyy standart�, which means state standard. The 

first GOST standard, GOST 1 State Standardization System, was published in 1968 [29]. 

Key size:  GOST has a key of 256 bits. 

initialize Key with Round Constant 

START  

END 

matrix multiplication using XORs 

perform two different rotations on two of the 32-
bit subblocks of the 96-bit block 

applies a nonlinear S-box with three inputs and 
three outputs to corresponding bits of the three 

subblocks 

provides diffusion between bits 

Round = 0

divide the block into three sublocks; 
initialize Round Constant 

Round = Round - 1 

N 

Y 



Chapter 2 Background Concepts: Symmetric Ciphers 
 

 20

Block size:  GOST has a 64-bit block size. 

Code size:   The code size of the GOST is 12.2KB. 

Rounds:     GOST is a Feistel network of 32 rounds.  

Security level:  The security margin of GOST is 2243. 

Known attacks/threats:  Not available so far. 

Flow chart:  Figure 2.8 depicts GOST. 

1. The GOST has 6 stages; 

                        2. Stages 2 to 6 are repeated 32 times; 

                        3. The GOST is S-box based algorithm. In the third step, S-boxes accept 

a four-bit input and produce a four-bit output. The S-box substitution in 

the round function consists of eight 4 × 4 S-boxes. 

 

Figure 2.7: Diagram of GOST 
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Figure 2.8: Flow Chart of GOST 
 

Comments of GOST: GOST has a very simple round function comparing with DES. It 

can be predicted that the time consumption of GOST is smaller than DES. 

2.3.5 IDEA 

History of algorithm: The International Data Encryption Algorithm (IDEA) is designed 

by Xuejia Kai and James Massey of ETH Zurich and was first described in 1991. The 

algorithm was intended as a replacement for the DES. IDEA is a minor revision of an 

earlier cipher, PES (Proposed Encryption Standard); IDEA was originally called IPES 

(Improved PES). The cipher was designed under a research contract with the Hasler 

START 

END 

add a 32-bit subkey modulo 2^32 

put the result through a layer of S-box 

rotate that result left by 11 bits 

put the result into the output of the round function

Round = 0

Round = Round - 1 

initialize Round Constant and Key 
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Foundation, which became part of Ascom-Tech AG. The cipher is patented in a number 

of countries but is freely available for non-commercial use [30]. 

Key size:  IDEA uses 52 subkeys; each of them is 16 bits long. Two are used during 

each round and four are used before every round and after the last round. 

Block size: The plaintext block in IDEA is 64 bits long. It is divided into four quarters, 

each 16 bits long. Three operations are used in IDEA to combine two 16 bit values to 

produce a 16 bit result, addition, XOR, and multiplication. 

Code size:  The code size of IDEA is 13.4KB. 

Rounds:   There are 8 rounds in the IDEA algorithms. 

Security level: The security margin of IDEA is 2243. 

Known attack/threat: Not available so far. 

Flow chart:  Figure 2.9 depicts IDEA. 

1. The IDEA has 10 stages; 

                        2. Stages 3 to 10 are repeated 8 times; 

                        3. The plaintext block in IDEA is divided into four quarters, each 16 bits 

long. Three operations are used in IDEA to combine two 16 bit values 

to produce a 16 bit result, addition, XOR, and multiplication. 

Comments of IDEA: IDEA derives much of its security by interleaving operations from 

different groups � modular addition and multiplication, and 

bitwise exclusive OR (XOR) � which are algebraically 

"incompatible" in some sense. 
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Figure 2.9: Flow Chart of IDEA 
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END 
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is also the new value of F, to E 

Change both A and C by XORing the current value of F 
with each of them; change both B and D by XORing the 

current value of E with each of them

Swap B and C 

multiply A by K(49). Add K(50) to B. 
Add K(51) to C. Multiply D by K(52). 

Round = 0

Round = Round - 1 

Sub-Key generation; the 52 subkeys called K(1) 
through K(52).

N 

Y 

initialize Round Constant; 
divide the plaintext into four subblocks: A,B,C, D
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2.3.6 LOKI91 

History of algorithm: LOKI91 has also been designed as a possible replacement for 

DES. The cipher was developed based on a body of work analyzing DES and is very 

similar to DES in structure. LOKI91 was designed in response to the attacks on LOKI89 

which is the ancestor of LOKI91. The changes included removing the initial and final key, 

new S-box, and small alterations to the key schedule [31]. 

Key size:   The key size of the LOKI91 is 64 bit. 

Block size:  The block size of the LOKI91 is 64 bit. 

Code size:  The code size of the LOKI91 is 11.3KB. 

Round of algorithm:  There are 16 rounds in the LOKI91 algorithms. 

Security level:  The security margin of LOKI91 is 1992. 

Known attack/threat: The S-boxes functions of LOKI91 is changed to minimize the 

probability of seeing different inputs resulting in the same output (a kind of differential 

cryptanalysis attack), thus improving LOKI91's immunity to this attack. The changes to 

the key schedule were designed to reduce the number of "equivalent" or "related" keys, 

which resulted in the exhaustive search space (a kind of brute force attack) for the cipher 

being reduced.              

Flow chart:  Figure 2.10 depicts LOKI91. 

1. The LOKI91 has 9 stages; 

                        2. Stages 3 to 9 are repeated 16 times; 

                        3. The LOKI91 is S-box and P-box based algorithms. 

Comments:  LOKI91 analyses key schedule to minimize generation of equivalent key, 

or related (key, plaintext) pairs which greatly reduce the time consumption of key 

generation. 
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Figure 2.10: Flow Chart of LOKI91 
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Right half is XORed with a piece of the key 

Expansion permutation 
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Figure 2.11: Diagram of LOKI91 

2.3.7 RC5 

History of algorithm: RC5 is a simple block cipher. It has been designed by Ronald 

Rivest in 1994 [32]. RC stands for "Rivest Cipher", or alternatively, "Ron's Code".  

Key size:   The key size of RC5 is 128 bits. 

Block size:   The block size of RC5 is 64 bits. 

Code size:   The size of RC5 code is 11.4 KB. 

Round of algorithm: There are 12 rounds in the RC5 algorithm. 

Security level of algorithm: The security margin of RC5 is 2076. 

Attack or hacking of algorithm: Until now, 12-round RC5 (with 64-bit blocks) is 

susceptible to a differential attack using 2^44 chosen plaintexts [33]. 18�20 rounds are 

suggested as sufficient protection. 

Flow chart:  Figure 2.12 depicts RC5. 

1. The RC5 has 5 stages; 

                        2. Stages 4 to 5 are repeated 12 times; 
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                        3. The RC5 is XOR arithmetic algorithm based algorithms; 

4. In the fourth step, we use 2r + 2 key-dependent 32-bit words: S0, S1, 

S2�.S2r+1, where r is the number of rounds. 

Comments of RC5:  RC5 is the ancestor of RC6. Both of them can be well implemented 

by software in embedded system. 

 

Figure 2.12: Flow Chart of RC5 
 

START   

END 

Divide the plaintext block into two 32-bit words: A 
and B 

A = A+S0; B = B + S1; 
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Round = 0
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Figure 2.13: Diagram of RC5 

 
2.3.8 RC6 

History of algorithm: RC6 is derived from RC5. It was designed by Ron Rivest, Matt 

Robshaw, Ray Sidney, and Yiqun Lisa Yin to meet the requirements of the Advanced 

Encryption Standard (AES) competition. The algorithm was one of the five finalists, and 

was also submitted to the NESSIE and CRYPTREC projects. It is a proprietary 

algorithm, patented by RSA Security [34]. 

Key size:     The key size of RC6 is 128 bits. 

Block size:   The block size of RC6 is 128 bits. 

Code size:    The size of RC6 code is 11.4 KB. 

Rounds:      There are 20 rounds in the RC6 algorithms. 

Security level of algorithm:  The security margin of RC6 is 2076. 

Known attack/threat:  Not available so far. 
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Flow chart:  Figure 2.14 depicts RC6. 

1. The RC6 has 8 stages; 

                       2. Stages 4 to 8 are repeated 20 times; 

                       3. In the third step, the first and the second subkey S0 and S1 are used. 

Then each round of RC6 uses two subkeys; the first one uses S2 and 

S3, and successive rounds use successive subkeys. 

 

Figure 2.14: Flow Chart of RC6 
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B is XORed with the first subkey, and D is XORed with the 
second subkey 

The first subkey for the round is XORed to A,  
and the second subkey for the round is XORed to C 

The value of A is placed in D, the value of B is placed in A, the 
value of C is placed in B, and the (original) value of D is placed 

in C. 

END

Round = Round - 1 

Round = 0
Y 

N 

Divide the plaintext block into 4 subblocks: A, B, C and D 

Initialize Round Constant; initialize key 

B is rotated left 5 bits and the XORed to A 

D is rotated left 5 bits and the XORed to C 
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Comments of RC6: RC6 can be viewed as interweaving two parallel RC5 encryption 

processes. However, RC6 does use an extra multiplication operation not present in RC5 

in order to make the rotation dependent on every bit in a word, and not just the least 

significant few bits. 

2.3.9 SKIPJACK 

History of algorithm: SKIPJACK is representative of a family of encryption algorithms 

developed in 1980 as part of the NSA suite of �TYPE I� algorithms. SKIPJACK was 

designed using building blocks and techniques that have forty years� history. Many of the 

techniques are related to work that was evaluated by some of the world�s most famous 

experts in combinatory and abstract algebra. SKIPJACK's more immediate heritage 

dates to around 1980, and its initial design to 1987. The specific structures included in 

SKIPJACK have a long evaluation history, and the cryptographic properties of those 

structures had many prior years of intense study before the formal process began in 

1987 [35]. 

Key size:     The key size of SKIPJACK is 80 bits. 

Block size:   The block size of SKIPJACK is 64 bits. 

Code size:    The size of SKIPJACK code is 12.2 KB.  

Rounds:      There are 32 rounds in the SKIPJACK algorithms. 

Security level: The security margin of SKIPJACK is 2013. 

Known attack/threat:  Eli Biham and Adi Shamir discovered an attack against 16 of the 

32 rounds within one day of declassification, and extended this to 31 of the 32 rounds 

within months using impossible differential cryptanalysis. 

Flow chart:  Figure 2.15 depicts SKIPJACK. 

1. The SKIPJACK has 6 stages; 

                       2. Stages 3 to 6 are repeated 32 times; 
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                       3. In the fourth step, permutation G is a four-round Feistel cipher, involving 

dividing its 16-bit input into two 8-bit halves. Like DES, the left half of 

the block is not changed in each round, but acts as input to the f-

function, the output of which is XORed to the right half. Unlike DES, the 

two halves are swapped after the last round.  

 

Figure 2.15: Flow Chart of SKIPJACK 
 

Comments of SKIPJACK:  SKIPJACK is designed to substitute DES and it is widely 

implemented by hardware.  

 

START  

END 

The second quarter of the block (W2) is XORed with the round 
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2.3.10 XXTEA 

History of algorithm: Corrected Block TEA (often referred to as XXTEA) is designed to 

correct weaknesses in the original Block TEA (Tiny Encryption Algorithm), which was 

first published together with a paper on TEA extensions (XTEA)[36]. The cipher's 

designers were Roger Needham and David Wheeler of the Cambridge Computer 

Laboratory, and the algorithm was presented in an unpublished technical report in 

October 1998 [37]. 

Key size:     The key size of XXTEA is 128. 

Block size:   The block size of XXTEA is 64. 

Code size:    The size of XXTEA code is 11.2 KB. 

Rounds: There are 32 rounds in the XXTEA algorithms. 

Security level: The security margin of XXTEA is 2076. 

Known attack/threat:  Not available so far. 

Flow chart:   Figure 2.16 depicts XXTEA.  

1. The XXTEA has 8 stages; 

                        2. Stages 4 to 8 are repeated 32 times; 

                        3. XXTEA is left shifting and right shifting arithmetic based algorithm. 

 
Figure 2.16: Flow Chart of XXTEA 
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Comments: The size of block for XXTEA can be arbitary. The unusually small size of 

the XXTEA algorithm would make it a viable option in situations where there are extreme 

constraints e.g. embedded hardware systems where the amount of available RAM is 

minimal [38]. 

 
2.3.11 MISTY1 

History of algorithm: MISTY1 is designed in 1995 by Mitsuru Matsui and others for 

Mitsubishi Electric. MISTY1 is one of the selected algorithms in the European NESSIE 

project, and has been recommended for Japanese government use by the CRYPTREC 

project. "MISTY" can stand for "Mitsubishi Improved Security Technology", it is also the 

initials of the researchers involved in its development: Matsui Mitsuru, Ichikawa Tetsuya, 

Sorimachi Toru, Tokita Toshio, and Yamagishi Atsuhiro [39]. 

Key size:     The key size of MISTY1 is 128 bits. 

Block size:   The block size of MISTY1 is 64 bits. 

Code size:    The size of MISTY1 code is 18.8 KB. 

Rounds:      There are 8 rounds in the MISTY1 algorithms. 

Security level: The security margin of MISTY1 is 2076. 

Known attack/threat: MISTY1 claims to be provably secure against linear and 

differential cryptanalysis. 

Flow chart:  Figure 2.17 depicts MISTY1. 

1. The MISTY1 has 11 stages; 

                        2. Stages 3 to 11 are repeated 8 times; 

                        3. MYSTY1 is S-box based algorithm. It uses two kinds of function, which 

are called function FO and function FL. Function FO calls another 

function, namely FI. The key expansion part also uses function FI. 

Function FI uses two S-boxes, namely S7, S9. 
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Figure 2.17: Flow Chart of MISTY1 
 
 
 

D0=FL(D0,0); D1=FL(D1,1); D1=D1^FO(D0,0); 

D0=FL(D0,2); D1=FL(D1,3); D1=D1^FO(D0,2); 
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D0=FL(D0,6); D1=FL(D1,7); D1=D1^FO(D0,6); 

D0=D0^FO(D1,7); 
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Comments of MISTY1: MISTY1 has an innovative recursive structure; the round 

function itself uses a 3-round Feistel network. MISTY1 claims to be provably secure 

against linear and differential cryptanalysis. 

2.3.12 TOWFISH 

History of algorithm: TWOFISH is a block cipher by Counterpane Labs, published in 

1998. It was one of the five Advanced Encryption Standard (AES) finalists [40], but it was 

not selected for standardization. Twofish is related to the earlier block cipher Blowfish 

[41]. 

Key size:     The key size of TWOFISH is 128 bits. 

Block size:   The block size of TWOFISH is 128 bits. It is divided into 4 parts: Q0, Q1, 
Q2 and Q3. 

Code size:    The size of TWOFISH code is 22.2 KB. 

Rounds:      There are 16 rounds in the TWOFISH algorithms. 

Security level: The security margin of TWOFISH is 2076. 

Attack or hacking of algorithm: Not available so far. 

Flow chart:  Figure 2.18 depicts TWOFISH. 

1. The TWOFISH has 10 stages 

                        2. From stage 3 to stage 10 are repeated 16 times 

                        3. TWOFISH is shifting arithmetic and XOR arithmetic based algorithm 

Comments of TWOFISH: On most software platforms TWOFISH is slightly slower than 

Rijndael (AES) for 128-bit keys, but somewhat faster for 256-bit keys [42]. TWOFISH is 

related to the earlier block cipher Blowfish. However, TWOFISH has seen less 

widespread usage than Blowfish, which has been available for a longer period of time. 
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Figure 2.18: Flow Chart of TWOFISH 
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Q0, and Q1 rotated left 8 bits, are each submitted to four key-
dependent S-boxes with 8-bit inputs and outputs 

The bytes in each subblocks are combined by means of matrix 
multiplication with the MDS matrix 

The two resulting 32-bit quantities are mixed with each other 
through a Pseudo-Hadamard Transform 

the first subkey for the round is added to the one formed from Q0 
and XORed to Q2 afterwards; the second subkey for the round is 
added to the one formed from Q1, and the result is XORed to Q3 

Q2 is rotated one bit right 

Divide the plaintext block into 4 subblocks: Q0, Q1, Q2 and Q3 

initialize Round Constant; initialize key 

Q3 is rotated one bit left 

two halves of the block are swapped: Q0 is swapped with Q2, and 
Q1 is swapped with Q3

Round = Round - 1 

Round = 0
Y 

N 
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2.3.13 RIJNDAEL (AES) 

History of algorithm: RIJNDAEL has been adopted as an encryption standard by the 

U.S. government. It has been analyzed extensively and is now used worldwide, as was 

the case with its predecessor [43], the Data Encryption Standard (DES). RIJNDAEL was 

announced by the National Institute of Standards and Technology (NIST) as U.S. FIPS 

PUB 197 (FIPS 197) on November 26, 2001 after a 5-year standardization process in 

which fifteen competing designs were presented and evaluated before Rijndael was 

selected as the most suitable. It became effective as a standard May 26, 2002. As of 

2006, RIJNDAEL is one of the most popular algorithms used in symmetric key 

cryptography.  

Key size:     The key size of Rijndael is 128 bits. 

Block size:   The block size of Rijndael is 128 bits. 

Code size:    The size of Rijndael code is 37 KB. 

Rounds:      There are 12 rounds in the Rijndael algorithms. 

Security level: The security margin of Rijndael is 2076. 

Known attack/threat: As of 2006, the only successful attacks against AES 

implementations have been side-channel attacks. The National Security Agency (NSA) 

reviewed Rijndael, and stated that it was secure enough for US Government non-

classified data [44].  

Flow chart:  Figure 2.19 depicts Rijndael. 

1. The Rijndael has 10 stages; 

                        2. Stages 2 to 7 are repeated 12 times; 

                        3. Rijndael is S-box based algorithms. 
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Figure 2.19: Flow Chart of RIJNDAEL 

START   

END 

Byte Sub step: each byte of the block is replaced by its substitute in 
an S-box 

Shift Row step: a transposition step where each row of the state is 
shifted cyclically a certain number of steps 

Mix Column step: each column is multiplied by the matrix 

Add Round Key step: each byte of the state is combined with the 
round key 

initialize Round Constant; 
initialize key 

round key generation 

Round = 1
N 

Round = Round - 1 

Y

Byte Sub step: each byte of the block is replaced by its substitute in 
an S-box 

Shift Row step: a transposition step where each row of the state is 
shifted cyclically a certain number of steps 

Add Round Key step: each byte of the state is combined with the 
round key 
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Comments of RIJNDAEL: If the embedded systems support 32-bit or larger words, it is 

possible to speed up execution of this cipher by combining �SubBytes� and �ShiftRows� 

with �MixColumns�, and transforming them into a sequence of tables. This requires four 

256-entry 32-bit tables, which utilizes a total of four kilobytes (4096 bytes) of memory�

one kilobyte for each table. A round can now be done with 16 tables and 12 32-bit 

exclusive-or (XOR) operations, followed by four 32-bit exclusive-or operations in the 

�AddRoundKey� step. If the resulting four kilobyte table size is too large for a given target 

platform, the table operation can be performed with a single 256-entry 32-bit table by the 

use of circular rotates. Using a byte-oriented approach it is possible to combine the 

�SubBytes�, �ShiftRows�, and �MixColumns� steps into a single round operation. 

2.4 Symmetric cryptography Modes 
 
             There are several different modes of symmetric cryptography. Different modes 

have different considerations: some are more concerned about security level, while 

others may be concerned more about efficiency or fault tolerance. In the following 

sectors we will discuss the most frequently used modes: 

 
2.4.1 ECB 
 
             Electronic codebook (ECB) mode is the most obvious way to use a block cipher: 

A block of plaintext encrypts into a block of cipher text. Since the same block of plain text 

always encrypts to the same block of cipher text, it is theoretically possible to create a 

code book of plaintexts and corresponding cipher texts. 

             This is the easiest mode to work with. Each plaintext block is encrypted 

independently. We don�t have to encrypt a file linearly; we can encrypt the 10 blocks in 

the middle first, then the blocks at the end, and finally the blocks in the beginning. This is 

important for encrypted files that are accessed randomly, like a database. If a database 

is encrypted with ECB mode, then any record can be added, deleted, encrypted, or 

decrypted independently of any other record-assuming that a record consists of a 

discrete number of encryption blocks. This mode is very suitable for parallel processing.  
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Figure 2.20: ECB mode 

 
2.4.2 CBC 
 
              In cipher block chaining (CBC) mode, the plaintext is XORed with the previous 

cipher text block before it is encrypted. After a plaintext block is encrypted, the resulting 

cipher text is also stored in a feedback register. Before the next plaintext block is 

encrypted, it is XORed with the feedback register to become the next input to the 

encrypting routine. The resulting cipher text is again stored in the feedback register, to 

be XORed with the next plaintext block, and so on until the end of the message. The 

encryption of each block depends on all the previous blocks. 

             CBC mode can be characterized as feedback of the cipher text at the encryption 

end and feed forward of the cipher text at the decryption end. This has implications 

having to do with errors. A single bit error in a plaintext block will affect that cipher text 

block and all subsequent cipher text blocks. This isn�t significant because decryption will 

reverse that effect, and the recovered plaintext will have the same single bit error. CBC 

is very suitable for high reliable error correcting environment. 

 
Figure 2.21: CBC mode 
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2.4.3 CFB 
 
             Block ciphers can also be implemented as a self-synchronizing stream cipher; 

this is called cipher-feedback (CFB) mode. With CBC mode, encryption cannot begin 

until a complete block of data is received. This is a problem in some network 

applications. In a secure network environment, for example, a terminal must be able to 

transmit each character to the host as it is entered. When data has to be processed in 

byte-sized chunks, CBC mode just won�t do. In CFB mode, data can be encrypted in 

units smaller than the block size. 

 
Figure 2.22: CFB mode 

 
2.4.4 OFB 
 
             Output-feedback (OFB) mode is a method of running a block cipher as a 

synchronous stream cipher. It is similar to CFB mode, except that n bits of the previous 

output block are moved into the right-most positions of the queue. Decryption is the 

reverse of this process. This is called n-bit OFB. On both the encryption and the 

decryption sides, the block algorithm is used in its encryption mode. This is sometimes 

called internal feedback, because the feedback mechanism is independent of both the 

plaintext and the cipher text streams. 

            One nice feature of OFB mode is that most of the work can be offline, before the 

plaintext message even exists. When the message finally arrives, it can be XORed with 

the output of the algorithm to produce the cipher text. 
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Figure 2.23: OFB mode 
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Chapter 3 
 

Profiling and Analysis 
 

 

In the previous chapter we have discuss the background concept of symmetric 

ciphers. This chapter we will profile all symmetric ciphers which have been discussed in 

chapter 2. In order to give good guidance of designing a novel, minimalistic, low-power 

processor suitable for a large subset of biomedical applicationsctives, we will analysis 

the average and peak power consumption, total energy budget, encryption rate and 

efficiency of all candidates and select one cipher as our benchmark.  

 

3.1 Profiling System Overview 
                      The profiling system overview comprises four parts: profiling metrics, 

profiling scenario, operation mode selection and input datasets. 

3.1.1 Profiling Metrics 
The implementation of cryptographic systems presents several 

requirements and challenges for embedded systems. First, the performance of the 

algorithms is often crucial. One needs encryption algorithms to run at the transmission 

rates of the communication links. Slow running cryptographic algorithms translate into 

consumer dissatisfaction and inconvenience. On the other hand, fast running encryption 

might mean high product costs since higher speeds were achieved through custom 

hardware devices. Moreover, the biomedical-implant field calls for further particular 

design requirements and constraints. Therefore, it is crucial to analyze average & peak 

power consumption, the total energy cost and the encryption rate as our profiling 

metrics. 

 
3.1.2 Profiling Scenario 

In the context of a typical application scenario, as discussed previously, 

(outbound) data telemetry takes place a lot more often than (inbound) command 

reception in implants. In effect, we are focused here on the encryption part of the profiled 

algorithms.  Furthermore, due to their symmetric nature, most of these algorithms have 

the same computational requirements for both encryption and decryption. 
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3.1.3 Operation Mode Selection 
Operation mode is the way for encrypting a message longer than the 

block size of an algorithm which has been discussed in chapter 2. In this thesis work we 

only consider the Electronic Codebook (ECB) mode. It has been shown that different 

operation modes (e.g. CBC, CFB and OFB) incur different fault-tolerance levels with 

regard to information loss due to transmitted-packet loss but incur the same energy 

penalty. Since in this work we are not investigating the efficiency of different modes in 

terms of information integrity but, rather, profile ciphers based on their power 

performance, ECB is sufficient for our thesis work. 

 

3.1.4 Input Datasets  
The nature of the input datasets (i.e. plaintexts) does not affect the 

behavior of the studied encryption algorithms except for their size. For other algorithms, 

such as biological data compression, the nature of the input datasets does impact the 

performance. However, in the interest of completeness, we have tested the algorithms 

against one biological workload provided from the BIOPAC (R) Student Lab PRO v3.7 

software [45].  

The workload (BP) represents continuous blood-pressure readouts. Our 

prior extensive study [46] on biomedical implants has revealed that typical data-memory 

sizes inside the implants range from 1 KB to 10 KB. Therefore, BP workloads of both 

sizes (1 KB and 10 KB, roughly) have been profiled. The specifics can be seen in Table 

3.1. 

 

test name Size 

(B) 
Samples 

(#) 
Duration 

(sec) 
Sample rate 

(sml/sec) 
Sample rate 

(KB/sec) 

Blood Pressure 

(BP) 1KB 

1404 141 0.282 500 4.86 

Blood Pressure 

(BP) 10KB 

12798 1198 2.396 500 5.22 

Table 3.1 Biomedical workloads used for profiling. 
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3.2 Experimental Setup 
The experimental setup comprises three parts: the simulator setup, 

encryption algorithms setup and the selected benchmark suite. 

 

3.2.1 The Simulator 
The profiling of symmetric ciphers has been based on XTREM [47], a 

modified version of SimpleScalar [48, 49]. The XTREM simulator is a cycle-accurate, 

microarchitectural, power- and performance- functional simulator for the Intel XScale 

core. It models the effective switching node capacitance of various functional units inside 

the core, following a similar modeling methodology to the one found in Wattch [50]. 

XTREM has been selected for its straight-forward functionality but mostly for its high 

precision in modeling the performance and power of the Intel XScale core [51]. More 

precisely, it exhibits an average performance error of 6.5% and an even smaller average 

power error of 4% [52].  

The main XScale characteristics are summarized in Table 3.2. Many of 

the architectural features have been integrated into XTREM. Thumb instructions and 

special memory-page attributes are not supported but they do not affect simulation 

results since they are not used by our benchmarked applications. XTREM allows 

monitoring of 14 different functional units of the Intel XScale core: Instruction Decoder 

(DEC), Branch-Target Buffer (BTB), Fill Buffer (FB),Write Buffer (WB), Pend Buffer (PB), 

Register File (REG), In-struction Cache (I$), Data Cache (D$), Arithmetic-Logic Unit 

(ALU), Shift Unit (SHF),Multiplier Accumulator (MAC), Internal Memory Bus (MEM), 

Memory Manager (MM) and Clock (CLK).  

 

Although XScale (and, thus, XTREM) is a low-power processor with 

aggressive power-management features, we are well-aware that it is not suitable for 

biomedical implants in terms of power consumption. However, our selection has been 

based on availability and on the crucial fact that XTREM models actual hardware with 

very high accuracy. Moreover, in this study we focus on the relative behavior and 

performance of different encryption algorithms rather than on absolute figures. We are 

interested in the differences observed across the various ciphers and resulting trends 

are highly probable to stay the same in our envisioned biomedical processor.  
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Last, clock frequency has been lowered to closer resemble realistic 

implantable systems. Other parameters have not been tampered with since it is not 

certain that the simulator will scale properly. For instance, instruction and data TLBs 

have not been disabled; the operating voltage or the memory latencies have not been 

altered. 

feature value 

ISA 32-bit ARMv5TE-compatibility,8 DSP instructions 

Pipeline depth 7/8-stage, super-pipelined 

Datapath width 32-bit 

RF size 16 registers 

Issue policy in-order 

Instr. Window single-instruction 

I-Cache 32KB 32-way set-assoc. (1-cc hit/170-cc miss lat.) 

D-Cache 32KB 32-way set-assoc. (1-cc hit/170-cc miss lat.) 

TLB 32-entry fully-assoc. 

BTB 128-entry direct-mapped 

Branch Pred. 2-bit Bimodal 

Write Buffer 8-entry 

Fill Buffer 8-entry 

Mem. bus width 4-byte 

INT/FP ALUs 4 / 4 

DSP co-proc. 40-bit, low-power, variable-lat. MAC 

Clock freq. 2 MHz (typ. 200 MHz) 

Oper. Voltage 1.5 Volt 

Implem. Tech. 0.18 um 

 

Table 3.2 XScale architecture details. 

3.2.2 The Encryption Algorithm 
When putting together our benchmark suite of ciphers, we have made an 

effort to include sources adhering to the following characteristics: 

 

• Large range of symmetric encryption techniques and styles, from high-performing to 

compact flavors; 
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• Mature, optimized, well-documented implementation code base; 

• Various algorithm complexities; 

• Suitability: the XTREM simulator can only handle C and Java sources. Furthermore, 

in its current version it does not support simulating an OS on top of the simulated 

hardware, thus prohibiting the use of encryption sources - such as the excellent 

bzip2 algorithm that require multithreading support or other high-level features;  

• Availability: all collected benchmarks comprise utterly free, published or free under 

the GNU General Public License sources, readily available to the research 

community.  

 

3.2.3 The Selected Benchmark Suite 
The implementation of a given encryption algorithm plays crucial role for 

the performance and behavior of the algorithm as its underlying structure. While 

adhering to the above characteristics, in order to offer the best possible fairness in our 

selection process, we have attempted to include algorithms built with the same 

implementation philosophy (e.g. algorithm suite implemented by the same author(s)) 

and/or algorithms being top representatives in their category. Table 3.3 summarizes our 

selected benchmark suite. An implementation of the original DES algorithm, although 

considered not secure any longer, has been included in our benchmark suite as a 

reference point for the rest of the considered ciphers.  

encryption 
algorithm 

key size 
(bits) 

Security 
margin2 

GOST 256 2243
BLOWFISH 128 2076
IDEA 128 2076
RC5 128 2076
XXTEA 128 2076
MISTY1 128 2076
RC6 128 2076
TWOFISH 128 2076
RIJNDAEL 128 2076
3WAY 96 2034
SKIPJACK 80 2013
LOKI91 64 1992
DES 56 1982

Table 3.3 Benchmark suite of symmetric ciphers 

                                                
2  The background information of security margin can be obtained from chapter 2.2 terminology of 

symmetric cryptography algorithms. 
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3.3 Profiling Analysis 
  The profiling analysis comprises three parts: power consumption, energy 

consumption and efficiency. 

3.3.1 Power consumption 
We start our profiling study by firstly examining how the selected ciphers 

perform in terms of power consumption since this is a crucial attribute of energy-

constrained devices as implants. Overall and per-component average power 

consumption is depicted in Fig. 3.1 for all 13 ciphers and for the two BP plaintext sizes 

1KB and 10 KB. 

Across all ciphers we can readily see in the figure that the memory-

manager unit (MM) is the most power-hungry component of the processor with a rough 

69% fraction of overall power consumed. The MM unit is activated each time the core is 

stalled because of a main-memory instruction or data access. Next follow the ALU 

consuming roughly 18%, the clock structure (CLK) consuming 5% and the instruction-

cache (I$) consuming 3:5% of the overall power, on aver-age. Compared with other 

types of workloads, e.g. data compression, encryption is more computationally intensive 

(i.e. many arithmetic and logic operations), thus the high consumption of the ALU is not 

surprising. Further, encryp-tion is typically data- rather than control-dominated, with few 

instruction branches, placing high demands on linear in-struction fetch. That is why the 

instruction-cache consumes on average more power than other memory units, e.g. the 

data-cache or the BTB. Last, the clock structure is known throughout digital systems to 

be a significant component of power consumption, which is also the case here. If we 

operated the processor at a higher frequency, power consumption would increase 

considerably. In terms of plaintext sizes, overall average power consumption increases 

insignificantly (about 3%) with input size. Essentially, in the range from 1KB to 10KB of 

plaintext size which is of interest for our case, power consumption does not seem to be 

affected. This agrees also with the findings of Law et al. [23]. In accordance to the same 

work as well as our own measurements, a significant difference in consumed power 

would be observed in plaintext sizes comparable to the block size of the ciphers, i.e. 10 

to 30 Bytes. In this range, key-initialization tasks place a computational overhead 

comparable to the actual encryption process. This indicates that encryption becomes 

more power-efficient with larger plaintext sizes. 
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A final observation from Figure 3.1 is that the power-behavior of the 

ciphers does not change with increasing plaintext size, at least in the range of interest. 

There is one exception: 3-WAY and XXTEA switch places when moving to the larger 

plaintext but this is of minimal significance since they both score the poorest in terms of 

average power consumption. The best performing ciphers on this metric are IDEA, 

LOKI91, SKIPJACK, MISTY1 and RIJNDAEL. Although DES is included in the study as 

a reference point, it cannot be selected as a winning candidate in the profiling due to its 

compromised status. It is interesting, however, to observe that it features one of the 

lowest power profiles even though it is one of the oldest encryption algorithms. 

 

Except for average power consumption, another interesting metric is peak 

power consumption. This is especially important for battery-powered systems such as 

implants are. A battery able to support a cipher with a given average power consumption 

may be unable to deliver the required output at a given point in time if the cipher 

sporadically presents peak power values which are largely deviating from its average 

power needs. To address this aspect of the profiled ciphers, we have plotted Figure. 3.2. 

The ciphers are depicted in order of increasing peak-power profiles. The bar series 

denoted as average power consumption is the aggregated equivalent of the bars seen 

previously, in Figure. 3.1. 

 

It is interesting to see that ciphers scoring high in the previous test, such 

as IDEA and LOKI91, display a large difference of roughly 35 mW between average and 

peak power, which can potentially throw the implant designer off track. This difference 

has to be taken into serious account if such ciphers are to be employed in an 

implantable device. IDEA, MISTY1, LOKI91 and RIJNDAEL still occupy the first 

positions. However, TWOFISH in now inside the top-scoring ciphers and, what is more, it 

displays the most consistent profile between average and peak power. In terms of our 

chosen plaintext sizes, and similarly to average power, peak-power profiles present no 

differences. 
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Figure 3.1 Per-component, average power consumption (in mW) for two plaintext sizes 
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Figure 3.2 Average and peak power consumption (in mW) for two plaintext sizes 

 
3.3.2 Energy consumption 

Apart from the rate at which a cipher consumes energy, i.e. its power 

consumption, it is important to also investigate the total energy costs incurred for 

executing the whole cipher. This metric is the total energy expenditure of a cipher and 

our findings are summarized in Figure. 3.3, for both plain-text sizes. SKIPJACK and 

LOKI91 have been omitted from the plots since they display excessively large energy 

needs (an order of magnitude larger for LOKI91 than the rest of the algorithms). 

However, average values include these two algorithms in their calculation to give a 

complete view. 

 

Knowing the overall energy budget needed for completing a single 

encryption task is especially important for implantable systems. It directly tells us how 

much stored energy the given task needs in order to execute and, in effect, what energy 

amount will be deduced from the battery. It also tells us if e.g. a scheduled encryption 
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and transmission of physiological readouts can take place or not. Given the mission-

critical tasks implants performance, it might be preferable at some point to not engage in 

transmission of (encrypted) data. For instance, it is more important for a pacemaker 

running low on battery to keep working for an extra couple of days (to allow time for 

recharging or servicing) than to transmit ECG readouts to its inquiring host once and 

then power down.  

 

In terms of energy distribution in the various processor components, we 

can again see that the MM, ALU, CLK and I$ are the most demanding ones. However, 

Fig. 3 tells a completely different story for the energy sparing-ness of the profiled 

ciphers. RC6 and RC5 have climbed in the first positions of the ranking, becoming the 

most energy-efficient ciphers. IDEA and MISTY1 follow with RIJNDAEL and BLOWFISH 

contesting for the fifth position across the two different plaintexts. Clearly, MISTY1 and 

RIJNDAEL perform better when smaller plaintext sizes are considered. Conversely, 

BLOWFISH favors larger sizes. Further, it is surprising that XXTEA is not among the 

best-scoring ciphers since it is considered a relatively light-weight algorithm. 

 

A last observation in this subsection is that energy budget does not scale 

linearly with plaintext size for most of the ciphers. The cost of encrypting a 10-KB 

workload as opposed to that of successively encrypting 10 1-KB workloads is 14% 

smaller, in an overall. The reason for that difference again is the overhead penalty paid 

during initialization of the encryption algorithms (e.g. key setup). As our simulations have 

revealed, other factors also contributing to this penalty are the increased fetch- and data-

stalls that are reduced over the execution time of a cipher as cache entries get filled, etc. 

However, this penalty is not similar across the various ciphers. In Figure.3.4, the energy 

budgets for encrypting one 10-KB workload and 10 consecutive 1-KB workloads are 

plotted. The ciphers are ranked in order of increasing difference between the two 

budgets, i.e. in order of increasing penalty. RC6, IDEA, RC5, MISTY1 and RIJNDAEL 

are still in the first positions, incurring small penalties but TWOFISH has fallen near the 

bottom of the ranking, due to introducing a significant energy penalty. This secondary 

metric of energy is interesting because it indirectly gives a measure of computational 

efficiency of the various ciphers. 
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Figure 3.3 Per-component and total encryption energy costs (in Joules). 
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Figure 3.4 Computation overhead of ciphers manifested as energy penalty (in Joules) 

when encrypting one 10-KB and ten 1-KB plaintexts. 

 
3.3.3 Efficiency 

Another metric we use in our profiling work of block ciphers is their 

encryption rate. In Figure 3.5 encryption rates in KB/sec are reported for 1-KB and 10-

KB plaintexts. RC6, RC5, MISTY1, RIJNDAEL and BLOWFISH score the highest on this 

metric, with RC6 and RC5 being by far the fastest ciphers. In fact, and contrary to the 

rest of the ciphers, RC6 and RC5 achieve impressive encryption-rate improvements with 

increasing plaintext size. The rate of BLOWFISH appears also to benefit largely from a 

larger plaintext size. In an overall, all ciphers seem to benefit from larger plaintexts: from 

3:34 KB/sec for the 1-KB data, the average rate boosts to 4.52 KB/sec. The reasons for 

this are the same as the ones previously mentioned concerning the energy penalty. 

They are related to the cipher-key initialization phase as well as the cold start of the 

processor itself. 
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For the targeted implant applications, our primary concern is to preserve 

power consumption at low levels. This means that we are not seeking the fastest 

performing cipher but, rather, one which is fast enough to cover our needs. As can be 

seen in Table 3.1, the biological data we used as plaintext features a relatively high (in 

this context) sampling rate of 4.86 KB/sec for the 1-KB and 5.22 KB/sec for the 10-KB 

workload. In our 2-MHz simulated processor, only ciphers RC6 and RC5 manage to 

sustain the required sampling rate. The cost paid is that both ciphers display a relatively 

high power profile (93 mW to 100 mW) as seen in subsection 3.3.1. 
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Figure 3.5 Encryption rate (in KB/sec). 

 
3.4 Cipher selection and result 

To summarize our analysis results, we present in Table 3.4 the 5 best-

performing algorithms in each one of our profiled metrics (except for the security-margin 

metric). According to table 3.5, MISTY1 appears in all 5 metrics of the above table. 

IDEA, RIJNDAEL, RC6 and RC5 follow with each with 4 occurrences in the table. 

However, IDEA performs consistently better than RIJNDAEL with the exception of 
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encryption rate. Besides, RIJNDAEL scores almost always last in the ranking among 

ciphers with 4 occurrences. Last, RC6 scores always better than RC5. LOKI91 has 3 

occurrences in the table but is, in any case, dismissed due to its now insecure nature. 

 

average power 
consumption 

peak power 
consumption 

total energy 
cost 

encryption 
efficiency 

encryption 
rate 

program-code 
size 

IDEA IDEA RC6 RC6 RC6 XXTEA 
LOKI91 MISTY1 RC5 IDEA RC5 3WAY 
SKIPJACK LOKI91 IDEA RC5 MISTY1 LOKI91 
MISTY1 TWOFISH MISTY1 MISTY1 RIJNDAEL RC6 
RIJNDAEL RIJNDAEL BLOWFISH RIJNDAEL BLOWFISH RC5 

 

Table 3.4 Five best-performing encryption algorithms  

(In descending order of performance) 

 

algorithm occurrences comment 
MISTY1 5 - 

IDEA 4 except for encr. rate, always better than RIJNDAEL 

RIJNDAEL 4 among ciphers with 4 occurences, it scores almost always last in the 
ranking 

RC6 4 always better than RC5 
RC5 4 - 

LOKI91 3  

BLOWFISH 2  

SKIPJACK 1  

TWOFISH 1  

3WAY 1  

XXTEA 1  

 

Table 3.5 the rank of best-performing encryption algorithms 

(According to the occurrences rate) 

 

Conclusively, from the above findings, MISTY1 is the most promising 

cipher according to our imposed metrics; thus, we take a closer look at its underlying 

instruction mix. Table 3.6 illustrates the type and frequency of instructions executed for 

encrypting the 1-KB BP plaintext with the MISTY1 cipher. XTREM, which is based on 

SimpleScalar, implements ARM instructions through microcode (referred to as u - ops 
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hereon). We included u - op statistics rather than ARM instruction because they can 

better capture the workings of the underlying architecture. For instance, a single ARM 

command to store multiple registers to the stack pointed to by R13, breaks down to a 

number of more elementary u - ops (see Table 3.6). 

ARM instruction 
Equivalent ARM 
microcode 

stmdb  r13!,{r4-r8,r10-
r15} agen  tmp1,r13,0 
  agen  tmp0,tmp1,-16 
  stp  r11,[tmp0] 
  agen r13,r13,-16 
  agen  tmp0,tmp1,-12 
  stp  r12,[tmp0] 
  agen  tmp0,tmp1,-8 
  stp r14,[tmp0] 
  agen  tmp0,tmp1,-4 
  stp  r15,[tmp0] 

Table 3.6 Sample ARM instruction which stores registers in the stack pointed to by R13 

and equivalent ARM u - OP sequence 

 

Going back to Fig. 3.6 and Table 3.7, we readily observe that execution is 

heavily dominated by load/store (stp, ldp) operations, logic operations (eor, and, orr) and 

register-to-register copy operations (mov). Such a mix also explains the dominance of 

the MM and ALU components in the power-consumption plots, as previously discussed. 

This mix motivates us to-wards effcient implementation of loads/stores, moves and logic 

operations in terms of power consumption and speed. Note that "agen" is always used to 

calculate an address before load/store-related operations and, thus, is not considered as 

a stand-alone instruction but as part of those operations. 

u-op count percentage
agen (address generation) 155134 30%
ldp (load from private 
memory) 109861 21%
eor (logical xor) 71909 14%
mov (move) 63862 12%
stp (store to private 
memory) 36527 7%
and (logical and) 23523 5%
orr (logical or) 19073 4%
other 40405 8%
TOTAL 520294   

Table 3.7 MISTY1 on 01_KB 



Chapter 3 Profiling and Analysis 
 

 58

mov (move)
12%

and (logical and)
5%

orr (logical or)
4%

other
8%

agen (address
generation)

29%

stp (store to private
memory)

7%

eor (logical xor)
14%

ldp (load from private
memory)

21%

 
Figure 3.6 u-op mix and frequencies for MISTY1 operating on the 1-KB BP plaintext. 

 

By investigating also the second and the third best ciphers, i.e. IDEA and 

RC6, we accumulate the following statistics, seen in Table 3.8. The mixes in this case 

favor load/store and move operations highly but logic operations to a smaller extent, 

compared to the MISTY1 case. However, they both display high percentages of 

arithmetic (add, sub, rsb, cmp) and branch (b) operations, contrary toMISTY1. Given that 

MISTY1 scores high in most metrics of our profiling study, optimizing our architecture for 

the more focused MISTY1 instruction mix alone is considered the best option. 
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IDEA  RC6  
u-op percentage u-op percentage 

mov (move) 29% agen (address generation) 25% 
agen (address generation) 18% mov (move) 15% 

ldp (load from private 
memory) 12% 

ldp (load from private 
memory) 15% 

b (unconditional branch) 9% stp (store to private memory) 8% 
add (add) 7% add (add) 8% 

cmp (compare) 6% b (unconditional branch) 5% 
stp (store to private memory) 5% eor (logical xor) 4% 

orr (logical or) 4% sub (subtract) 4% 
other 10% rsb (reverse subtract) 4% 

  other 11% 
Table 3.8 u-op mix and frequencies for IDEA and RC6 operating on the 1-KB BP 

plaintext 
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Chapter 4 
 

Conclusions and Future Works 
This chapter discusses the conclusions from the current thesis project. Future 

work, possible improvements and acknowledgements on the project are also discussed 

in this chapter. 

 

4.1 Conclusions 
The objective of the thesis project was to profile symmetric-encryption algorithms 

in order to give suggestion for designing low-power digital computer architecture for the 

SiMS project. In this perspective, the project has completed the following: 

1 Described and analyzed encryption algorithms in depth and in detail.  

2 Did survey 13 block ciphers in terms of underlying structure, advantage and 

disadvantage, security level, and code size. 

3 Did comment on all 13 block algorithms regarding unique traits and specific which 

are useful for profiling and analyzing for the SiMS digital architectures. 

4 Implemented various symmetric encryption algorithms by using XTREM simulator. 

5 Examined numbers of metrics of all symmetric-encryption algorithms on a workload 

suite of recorded biological signals. 

6 Compared the relative behavior of ciphers operating on different workload sizes. 

Qualitative results regarding the trade-offs among different metrics such as 

encryption rate and average power consumption, peak power consumption, energy 

consumption, etc, have been offered. 

7 After performing the above tasks, MISTY1 was selected as the winner of the 

profiling study and identify the most common instructions executed by MISTY1. 

 

4.2 Future Work 
 This project has defined the benchmark for encryption algorithms suitable for 

biomedical devices. However, our thesis project concentrated on symmetric encryption 

algorithms and did not take into consideration of any asymmetric algorithms. In the future 

work, we will: 

• Investigate the asymmetric encryption and decryption algorithms and implement 

several algorithms with different workloads to measure the metrics of them. 
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• Extend our benchmark suite with different application classes such as losses data- 

compression which profile compact storage and over-the-air transmitted data.  

• Investigate potential problems and benefits when merging different applications 

together such as merge of encryption algorithms and compression algorithms. 
 

4.3 Possible Improvements   

1. We need to optimize the structure of algorithms to enhance the performance of 

algorithms. 

      Many symmetric encryption algorithms have redundancy structure which keeps 

the algorithm secure. Some crypto analyzers already optimized parts of the 

redundancy structure of some encryption algorithms and still kept the algorithms 

secure. But there is still no evident that optimized algorithms are suitable for 

Implantable Medical Device. More lab experiments are needed to be 

implemented to convince the suitability of optimized encryption algorithms. 

 

2. We can reduce the rounds of algorithms but keep the reasonable secure level: 

The more rounds the algorithm has, the more secure the algorithm will be. 

However, more rounds will take additional CPU resources and increase the 

power consumption. To reduce the round of algorithms but keep it still secure is 

an efficient method to reduce the power consumption and other metrics. Crypto 

analyzers already found the least rounds margin of many encryption algorithms. 

But whether this least rounds margin are suitable for IMD is still requested to 

testified. More lab experiments are required to test the least round margin of 

encryption for Implantable medical devices. 
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