2011 International Conference on Complex, Intelligent, and Software Intensive Systems

Scaling HMMER Performance
on Multicore Architectures

Sebastian Isaza*, Ernst Houtgast*, Friman Sanchez!, Alex Ramirez!? and Georgi Gaydadjiev*
*Computer Engineering Laboratory, Delft University of Technology
TComputer Architecture Department, Technical University of Catalonia
IBarcelona Supercomputing Center

Abstract—In bioinformatics, protein sequence alignment is
one of the fundamental tasks that scientists perform. Since
the growth of biological data is exponential, there is an ever-
increasing demand for computational power. While current
processor technology is shifting towards the use of multicores,
the mapping and parallelization of applications has become a
critical issue. In order to keep up with the processing demands,
applications’ bottlenecks to performance need to be found and
properly addressed. In this paper we study the parallelism and
performance scalability of HMMER, a bioinformatics application
to perform sequence alignment. After our study of the bottlenecks
in a HMMER version ported to the Cell processor, we present two
optimized versions to improve scalability in a larger multicore
architecture. We use a simulator that allows us to model a system
with up to 512 processors and study the performance of the three
parallel versions of HMMER. Results show that removing the I/0
bottleneck improves performance by 3x and 2.4x for a short
and a long HMM query respectively. Additionally, by offloading
the sequence pre-formatting to the worker cores, larger speedups
of up to 27x and 7x are achieved. Compared to using a single
worker processor, up to 156x speedup is obtained when using
256 cores.

I. INTRODUCTION

The discovery of the DNA structure in 1953 has drasti-
cally altered the field of biology. In the following decades,
improvements in sequencing technology has led to an explo-
sion in availability of genetic information. Figure 1 shows
the exponential growth of one of the most important global
resources for protein data: the Swiss-Prot database [1]. Other
genetic databases are also experiencing similar growth trends.
Nowadays, the genetic structure of many different species
has been sequenced and the resulting sheer size of such data
sets makes analysis by hand impossible. Bioinformatics is the
discipline that uses computer technology to enable types of
biological research that would be unfeasible otherwise.

Within bioinformatics, sequence alignment is a primary
activity. Fragments of DNA or protein sequences are compared
to each other in order to identify similarities between them.
Due to the computational complexity [2] of the algorithms
used to process these data sets, demand for processing power
is soaring. It is then critical for bioinformatics applications
to be efficient and scalable in order to meet this demand.
Two of the most popular sequence analysis tools are BLAST
[3] and HMMER [4]. Although BLAST is faster, HMMER is
more sensitive and is able to find more distant relationships.
The inclusion of HMMER? in the SPEC2006 and the recent
development of HMMER3 show its significance.

In computer architecture, single threaded performance
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Fig. 1. Swiss-Prot database growth.

growth is stagnating because of frequency, power and memory
scaling issues. As a response, technology is currently shifting
towards multicore architectures. This paradigm shift however,
imposes a critical challenge as performance scaling will only
be achieved by the efficient parallelization of applications.
Performance bottlenecks need to be found and tackled in order
to keep up with the soaring demand for computational power
in the bioinformatics domain.

The effectiveness of the multicore paradigm for bioin-
formatics applications is still an open research question. In
this paper we study the scaling and parallel behavior of
HMMER. We use HMMERCELL (a port of HMMER to the
Cell architecture [5]) as baseline for the analysis and propose
two optimized versions based on the bottlenecks found. We
simulate a multicore with up to 512 processors in order to
measure performance. We compare the three parallel versions,
report their relative speedup and their performance scalability
with the number of cores. In concrete, the main contributions
of this paper are:

e The analysis of HMMERCELL bottlenecks for larger

scale multicores;

e Two optimized HMMER versions that improve perfor-
mance by up to 3x and 27X compared to HMMER-
CELL;

o The performance analysis of a system with up to 512
cores that is able to speedup HMMER by 156 x.

The rest of the paper is organized as follows. Section II

describes other work with similar aim and how ours is differ-
ent. Section III describes HMMER program phases and the

IEEE
computer
® psouety



parallel versions. In Section IV, we describe the experimental
methodology used to obtain the results. In Section V we
present and discuss the simulation results. Section VI draws
the conclusions.

II. RELATED WORK

HMMER has been ported to various architectures in order
to accelerate its execution. In [6], an FPGA implementation of
HMMER is investigated. As in HMMERCELL, the computa-
tionally intensive kernel of the Viterbi algorithm is the main
focus. Similar to HMMERCELL, the FPGA is used as a filter:
the sequences with a promising score require reprocessing
on the host machine. A thirty fold speedup over an AMD
Athlon64 3500+ is reported. This result is comparable to the
performance of HMMERCELL.

HMMERCELL, the Cell port of HMMER, is created by
Lu et. al. In [7], detailed information on the implementation
and parallelization strategy is provided, along with raw per-
formance data where it is benchmarked against commodity
x86 architectures. Compared to the AMD Opteron platform
(2.8 GHz) and the Intel Woodcrest platform (3.0 GHz), a
single Cell is reported to be up to thirty times faster than
those Intel and AMD processors using a single core. In this
paper HMMERCELL performance is evaluated by manually
instrumenting the code to obtain runtime traces and map
it onto a larger multicore architecture (SARC [8]) to study
performance scalability. After bottlenecks are identified, two
optimized versions are proposed and evaluated.

Further parallel versions of HMMER for different architec-
tures have been proposed by researchers. MPI-HMMER was
created to take advantage of computer clusters [9]. Similar
to HMMERCELL, one node is assigned a manager role
and the rest of the machines are workers over which the
workload is distributed. To cope with overhead from message
passing, sequences are grouped in larger bundles and sent
as one message. Through double buffering, communication
latency is minimized. An eleven-fold speedup is reported when
using sixteen machines. In [10], MPI-HMMER is analyzed
and found to be scalable up to 32-64 nodes, depending on
workload. PIO-HMMER is introduced, addressing I/O-related
bottlenecks through the use of parallel /O and optimized
post-processing. The manager distributes an offset file with
sequences to each node and they read the sequences from
their local database. Furthermore, nodes only report significant
results back to the manager. The resulting scaling capability is
much improved, as up to 256 machines can be used effectively.
Other authors have parallelized HMMER hmmpfam kernel for
shared-memory machines [11] and for computer clusters in
HSP-HMMER([12], using MPL In [13], HMMER is reported
to scale up to 1024 processors on a Blue Gene/L system.
Although that paper does not report kernel performance
(GCUPS), we can safely assume it is significantly slower.
The Blue Gene/L platform uses PowerPC 440 cores that,
compared to the Cell SPEs [5] we use, do not support SIMD
processing and run at much lower clock frequency rates.
Having a superior performance per worker, poses a higher
pressure on the shared resources like the master processor and
thus the scalability is more difficult to achieve. The aim of our
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work is to study the parallel performance of HMMER for on-
chip multicores with high throughput workers. Furthermore,
the use of on-chip multicores provides great energy savings
compared to discrete multiprocessors and clusters.

IITI. APPLICATION’S DESCRIPTION

In the following we present our target application HMMER
and describe the parallel versions used in our experiments.

A. HMMER

HMMER is an open source family of tools often used in
biosequence analysis [4]. It is aimed specifically at protein
sequence analysis. Groups of protein sequences thought of
as belonging to the same family are modeled with profile
Hidden Markov Models (HMMs). This paper focuses on
one tool within the HMMER suite: hmmsearch. With this
program, an HMM can be compared to a protein sequence
database (see Figure 2). The goal is to find the proteins
from the database that are most similar to the protein family
represented by the HMM query. To perform this comparison,
the Viterbi algorithm is used to generate an alignment score.
The hmmsearch output is a list of high scoring sequences and
their alignment to the HMM. Execution time is dominated by
the Viterbi decoding phase, which is performed once for each
sequence in the database. Profiling of the original HMMER
code running on a single processor shows that for all but the
simplest workloads, this phase accounts for 98+% of total
running time.

B. Parallel HMMER

This paper uses HMMERCELL [7] as baseline: HMMER
v2.3.2 ported to the Cell processor [5]. Since the execution
time of hmmsearch is almost exclusively formed by the execu-
tion of the Viterbi function, the parallelization strategy focuses
on this program phase and follows a master-worker scheme.
The master processor creates parallel jobs that are consumed
by the workers. Parallelism is used at two levels: coarse-grain
parallelism by spawning threads and fine-grain parallelism
by using SIMD processing within the Viterbi kernel. Due
to memory limitations caused by the small Local Stores,
the Viterbi algorithm is modified to use a smaller memory
footprint. Hence, worker processors do not provide a full
alignment but only produce an alignment score. High scoring
alignments are reprocessed (by running the full Viterbi) on the
master processor to obtain the actual alignment (more details
on HMMERCELL can be found in [7]).

After extensive profiling and tracing of HMMERCELL we
present here two optimized versions that are more scalable
and target a larger and more general multicore architecture
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Fig. 3. Parallel HMMER diagram.

(see SectionIV-A). Figure 3 shows a diagram of the parallel
HMMER functioning and Table I lists the phases involved.
For every sequence in the database, two steps are involved
at first. A sequence is load from the disk into main memory
(IO_SEQS) and then it is formatted (FORMAT) for appro-
priate Viterbi processing. In HMMERCELL, both phases are
sequentially handled by the master processor which creates a
centralized bottleneck. Since the Swiss-Prot database amounts
to 234MB, we notice that in a realistic scenario, the database
can be permanently hold in memory. Thus, the application
is relieved from the I/O bottleneck and should be able to
efficiently use more processors. The second observation is that
the FORMAT phase is independent for every sequence in the
database and therefore can be performed by the workers in
parallel. The three parallel versions described are listed here
for reference:

o BASE: Baseline HMMERCELL parallelization with I/O
reads and sequential formatting of sequences.

e M_FORMAT: Removing the I/O bottleneck by holding
database in main memory. FORMAT is performed by the
master.

e W_FORMAT: Besides removing I[/O, the FORMAT
phase is performed by the workers in parallel.

The processing done in FORMAT consists in replacing
every amino acid by its index in the alphabet. Hence, moving
this simple operation to the workers side only implies a
negligible increase in code size and no extra memory for the
sequence as it can be overwritten when formatted.

For the sake of clarity, Figure 3 does not show the loading
of the HMM as this is done only once, at the beginning.
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TABLE 1
LIST OF PROGRAM PHASES.

Phase name Description

IO_SEQS Read sequences from disk.

FORMAT Format sequence for proper processing.
CR_JOB Create an entry in the job queue.
WAIT_JOB Wait for an available job to process.
FULL_VIT Compute full Viterbi algorithm.
UD_QUEUE  Update entry status as done.
GET_JOB Get a job entry from the queue.
GET_SEQ DMA sequence from memory to SPM.
RED_VIT Compute reduced Viterbi algorithm.
WB_RES Write-back result in queue.

IV. EXPERIMENTAL METHODOLOGY

To study the impact of the different parallelizations we
have used the TaskSim simulator [8], [14] that models the
parameterizable multicore architecture as sketched in Figure 5
(see Section IV-A). The simulator uses a hybrid trace-driven
high-level/cycle-accurate technique, that is, some components
are simulated very accurately while others are abstracted out,
depending on the aspects one wants to analyze. The simulator
inputs are trace files that describe the application functioning
by providing three types of information: data transfers, com-
putational bursts and synchronization signals. To obtain these
traces we have manually instrumented HMMERCELL using
a Cell adapted version of the MPItrace tracing library [15].
The generated traces have been inspected with Paraver [16] in
order to visualize the bottlenecks. The instrumented code was
run on an IBM QS21 Blade, with a Cell processor running
at 3.2GHz and 4GB of RAM. The code has been compiled
with GCC4.1.1 and -O3 flag. Only the master and one worker
processor (that is, a PPE and one SPE in Cell) were used to
generate the trace. This in order to create a single pool of tasks
that can be dynamically scheduled to any of the simulated
worker processors.

Protein sequence data sets are from the Swiss-Prot database
[1] and HMMs from Pfam [17]. Figure 4 shows the current
model and sequence length distribution for Pfam and Swiss-
Prot databases. Based on this information, input test sets have
been chosen. Two HMMs of 100 and 500 states are used
to study a typical and a demanding execution scenario. In
order to keep traces under a reasonable size, we have used
a randomly selected subset of Swiss-Prot for the simulations
(20,000 sequences). Every sequence creates a job and so we
have enough jobs to stress our multicore system.

A. Multicore Architechture

In this paper we have studied the performance scalability
of HMMER on the SARC architecture [8], shown in Figure
5. It is a clustered (or tiled) multicore interconnected with a
system of hierarchical buses. Clusters of 8 (P)rocessors are
grouped together through a local data bus (LDB) and all
clusters are connected by the global data bus (GDB). The
memory interface controllers (MIC) to access off-chip DRAM
memory and the L2 cache banks are also connected to the
GDB and shared by all processors.

SARC is a heterogeneous architecture given that different
processor types coexist. The (M)aster processor is a powerful
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out-of-order superscalar processor that can efficiently run the
operating system and the control sections of applications. It
accesses memory through a private L1 instruction/data cache
and is connected to the rest of the system through the GDB.
(W)orker processors perform data processing, that is, the bulk
work of the targeted applications. Each worker can access
three different types of memory: its own scratchpad memory
(SPM), the global shared memory and the other worker’s SPM.
For the last two cases, it is required to program a DMA engine
on the memory controller (MC) which takes care of the data
transfer, decoupling it from the worker processor execution.
Each LDB is a bus with a ring topology, able to transmit
8 bytes per cycle at 3.2GHz (that is, 25.6 GB/s). Since the
GDB is expected to handle more traffic, its bandwidth is
increased with 4 rings. Every ring provides an independent
communication channel between any pair of components in the
system. Main memory is composed of two off-chip DRAMs
controlled by one MIC providing up to 25.6GB/s. The DRAMs
are DDR3-1600 with a peak bandwidth of 12.8GB/s. Fine-
grain interleaving at the DRAM channels is used, that is,
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consecutive memory lines change DRAMs so that large DMA
requests of consecutive memory ranges can be processed in
parallel accessing several DRAMs concurrently.

The L2 cache size is IMB and it is organized in 4 banks,
each able to provide 25.6GB/s. As in the DRAMs case,
fine-grain interleaving in accessing L2 banks provides high
bandwidth for accesses to consecutive addresses. Since data
transfers in this architecture mostly rely on DMAs, fine-grain
interleaving enables the cache banks to serve multiple parts
of a single DMA request in parallel. As a consequence, the
effective bandwidth observed by the request can be higher than
that of a single bank. The L2 is meant to take advantage of
data reuse among different workers. However, since the data
set of one task easily fits on the worker’s SPM, there is no
need to have per worker L1 caches. Having them would imply
a lot of extra area, complexity to support coherency and power.

The synchronization queue (SQ) is composed by two hard-
ware FIFOs implemented in an independent memory module
connected to the GDB. One queue is for the master to submit
tasks and the other for the workers to report task completion.

V. RESULTS AND DISCUSSION

In this section we first show profiling results of HMMER-
CELL in order to have an overview of performance scalability
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with various types of inputs. We use 5 distinct HMMs with
lengths from 100 to 500 positions, thus covering the average
and demanding scenarios as follows from Figure 4(a) (larger
HMMs need more processing). Then we create a sequence
set consisting of 20.000 randomly selected sequences with
length distribution identical to the Swiss-Prot database. Figure
6 gives an overview of HMMERCELL performance where
some basic characteristics on how HMMERCELL reacts to
changes in input parameters are revealed: the use of a longer
HMM model size requires correspondingly longer execution
time; in general, the use of additional SPEs leads to shorter
execution times; and only a certain number of SPEs can be
used effectively, depending on the workload. Due to manage-
ment overhead, using more SPEs results in identical or even
deteriorated performance.

Afterwards, we investigate the performance of the two
optimized versions (see Section III) and compare it with
BASE on the SARC architecture. Figure 7 shows the speedup
provided by the M_FORMAT and W_FORMAT versions over
BASE, for various processor counts. We analyze both the
average case (100 states HMM) and a more demanding one
(500 states HMM). On Figure 7(a) we see that for the short
HMM there is no benefit when using 4 or less cores. For few
cores, the I/O overhead does not affect performance because
the execution time is largely dominated by the computation
of the Viterbi kernel (RED_VIT). On the other hand, a large
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HMM imposes an even higher demand on the RED_VIT
processing and since it is executed in parallel, more cores (16)
can be efficiently used (Figure 7(b). By holding the database
in main memory and thus avoiding the I/O bottleneck, a 3x
and 2.4x speedup is obtained for short and long HMMs
respectively. Finally parallelizing the FORMAT phase brings
the largest improvement. Speedups of up to 27x and 7X
are achieved for each case, compared to the BASE version.
For short HMMs, the impact is significantly larger due to
the fact that the sequential parts amount to a bigger portion
of the execution. Compared to the M_FORMAT version,
W_FORMAT reaches 9.3x and 3x speedups for the short
and long HMMs respectively.

Figure 8 shows the performance scalability in the number of
cores using Log-Log axes. For the short HMM (Figure 8(a)),
the BASE version can only take advantage of 8 workers for a
maximum speedup of 5x. M_FORMAT increases maximum
speedup to 15x with 16 cores and W_FORMAT increases the
number of utilizable cores to 256 to achieve 148x speedup.
Figure 8(b) shows that for a large HMM, performance scales a
bit more (up to 156x). This is because a longer HMM makes
the parallel portion of work larger.

In Figure 9, we plot the cumulative time distribution of
phases in the best parallel version (W_FORMAT). This, in
order to study the performance saturation that occurs when
using more than 256 cores. We look at four scenarios: using
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64, 128, 256 and 512 cores. For each case, one bar represents
the master and the other one the average behavior of the
workers. First of all, we see that on the master side, the
WAIT_JOB time gets reduced with more cores that are able
to finish the jobs faster. The other phases in the master stay
unchanged. On the workers side, most of the time is spent on
RED_VIT and FORMAT phases, indicating a high utilization
rate. With the increase in the number of cores, phases get
reduced proportionally. The most important trend to observe
in Figure 9 is that the reduction in total execution time
(determined by the master), stops at 256 cores due to fixed
duration of three phases: CR_JOB, FULL_VIT, UD_QUEUE.
These, stay unchanged in all cases as they only depend on the
input data and not on the number of cores being used, as in
Amdahl’s law.

Figure 9 also reveals that workers spend most of the time
in computing the Viterbi kernel (and formatting) and do not
manage to saturate the memory nor the buses. This was
confirmed by running further simulations with different system
configurations. These experiments showed that increasing the
GDB bandwidth, adding more cache and cache banks, and
adding more MICs to increase the memory bandwidth did not
change the time it takes the workers to complete all jobs.

VI. CONCLUSIONS

This paper analyzed the performance scalability of several
parallel versions of the HMMER software for protein sequence
alignment. We started by analyzing HMMERCELL, a Cell
port of HMMER. By manually instrumenting the code and
looking into the execution traces, we were able to find out the
bottlenecks when the application is ported to a larger multicore
like SARC. Based on our findings, we proposed two optimized
versions that were aimed at alleviating the bottlenecks: holding
the database in memory to avoid I/O access and parallelizing
the pre-formatting of sequences. Simulation results showed
that the M_FORMAT version was up to 3x faster while the
W_FORMAT parallelization achieved up to 27x speedup,
compared to HMMERCELL. Compared to using a single
worker processor, W_FORMAT scaled performance up to
156x with 256 cores. Adding more cores or increasing the
memory bandwidth did not improve performance. This was be-
cause the system is then bottlenecked by the master processing
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the FULL_VIT phase and collecting results from all workers.
Parallelizing FULL_VIT in a system with larger scratchpad
memories is the way to increase scalability further.

We are convinced that our study presents very useful
insights in the design of future multicore chips targeting
bioinformatics workloads.
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