
An Efficient RNS to Binary Converter Using the
Moduli Set {2n + 1, 2n, 2n− 1}

Kazeem Alagbe Gbolagade1,2, Member, IEEE and Sorin Dan Cotofana1, Senior Member IEEE,
1. Computer Engineering Laboratory, Delft University of Technology,

The Netherlands. E-mail: {gbolagade,sorin}@ce.et.tudelft.nl
2. University for Development Studies, Navrongo, Ghana.

Abstract—In this paper, we investigate Residue Number
System (RNS) to decimal conversion which is an important
issue concerning the utilization of RNS numbers in Digital
Signal Processing (DSP) applications. We propose a reverse
converter using the moduli set {2n+1, 2n, 2n−1}. First, we
show that this converter does not require the computation
of multiplicative inverses. Next, we simplify the Chinese
Remainder Theorem (CRT) to obtain a low complexity im-
plementation, which does not require explicit use of modulo
operation in the conversion process as it is normally the case
in the traditional CRT. At the algorithm level the conversion
process requires 3 or 4 additions and 4 multiplications thus
theoretically speaking its expected performance is similar
to that of other state of the art equivalent converters. A
critical path analysis however, which takes into consideration
hardware implementation details, indicates that the proposed
converter outperforms other state of the art converters in
terms of speed at the expense of same or lower area.

Index Terms—Reverse Conversion, Residue Number
System, Multiplicative Inverses, Chinese Remainder The-
orem.

I. INTRODUCTION

Residue Number System (RNS) is an unweighted
number system with inherent parallel characteristics,
which supports carry-free addition, borrow-free sub-
traction, and single step multiplication without partial
products [8], [2], [3]. While RNS utilization in highly
intensive computation has received considerable atten-
tion in the past [8], [3] it has not found widespread use
in general-purpose signal processor architecture mainly
because operations like magnitude comparison, overflow
detection, sign detection and division are rather difficult
to perform. However, where these operations are not
frequently needed, special-purpose Digital Signal Pro-
cessing (DSP) architectures based on RNS have been
proposed [1].

One of the issues that precludes the large scale RNS
utilization in computing technology is data conversion.
As RNS based functional units have to operate into a

binary/decimal environment the input operands provided
in either standard binary or decimal format need to
be converted to RNS before performing any operation.
In a similar way the final results must be represented
in the same way as the input operands thus RNS to
binary/decimal conversion is also required. This implies
that RNS based processors make heavily use of data
conversions, which is a slow process. For an RNS
processor to compete favourably with a conventional
processor those conversions have to be fast such that the
RNS speedup is not nullified by the conversion overhead.
Up to date several data conversion techniques have
been proposed based on either the traditional Chinese
Remainder Theorem (CRT) [10], [7], [12], [9] or Mixed
Radix Conversion (MRC) [3], [13], which may or may
not rely on look up tables. In [11], a CRT that reduced
the modulo M was presented. RNS to decimal converters
which does not require explicit modulo operations have
been presented in [7], [5], [12], [6]. Based on the
weight concepts, the decoding of RNS numbers using the
moduli sets {2n+1, 2n, 2n−1} and {2n+2, 2n+1, 2n}
have been presented in [7] and [5]. In [12], smaller
multipliers were obtained for these same moduli sets and
errors in [5] were also pointed out. Also, the corrections
to [5] has been presented in [6].

In this paper we present an efficient RNS to decimal
converter tailored for the {2n+1, 2n, 2n−1} moduli set.
It does not involve the computation of the multiplicative
inverses and it is a simplification, based on the scheme
proposed in [11], of the traditional CRT. We demonstrate
that the proposed converter operates on smaller numbers
than other state of the art converters for the the same
moduli set thus it requires less complex adders and
multipliers. From the algorithmic point of view the
conversion process requires 3 or 4 additions and 4 multi-
plications thus its expected performance is similar to that
of other state of the art equivalent converters. We also
performed a deeper analysis of the required hardware
in order to get a more realistic picture of the required

components. The critical path analysis, which takes into
consideration hardware implementation details, indicates
that the proposed converter outperforms other state of the
art converters in terms of speed at the expense of same
or lower area.

The rest of the article is organised as follows: Section
II presents the necessary background. In Section III we
describe the proposed algorithm. Section IV presents the
hardware realization of the proposed algorithm and a
comparison with the state of the art, while the paper is
concluded in Section V.

II. BACKGROUND

RNS is defined in terms of a set of relatively prime
moduli set {mi}i=1,n such that gcd(mi,mj) = 1 for
i 6= j, where gcd means the greatest common divisor
of mi and mj , while M =

∏n
i=1 mi, is the dynamic

range. The residues of a decimal number X can be
obtained as xi = |X|mi

thus X can be represented in
RNS as X = (x1, x2, x3..., xn), 0 ≤ xi < mi. This
representation is unique for any integer X ∈ [0,M − 1].
We note here that in this paper we use |X|mi

to
denote the X mod mi operation and the operator Θ
to represent the operation of addition, subtraction, or
multiplication. Given any two integer numbers K and
L RNS represented by K = (k1, k2, k3, ..., kn) and
L = (l1, l2, l3, ..., ln), respectively, W = KΘL, can be
calculated as W = (w1, w2, w3, ..., wn), where wi =
|kiΘli|mi

, for i = 1, n. This means that the complexity
of the calculation of the Θ operation is determined by the
number of bits required to represent the residues and not
by the one required to represent the input operands. This
creates the premises for high speed arithmetic and for
example it has been proved that RNS based addition can
be performed in O(log(log(n))) delay for unrestricted
moduli and in O(log(n)) for 2n and 2n − 1 moduli [4].

For a moduli set {mi}i=1,n with the dynamic range
M =

∏n
i=1 mi, the residue number (x1, x2, x3, ..., xn)

can be converted into the decimal number X, according
to the Chinese Reminder Theorem, as follows [8]:

X =

∣∣∣∣∣
n∑

i=1

Mi

∣∣∣M−1
i xi

∣∣∣
mi

∣∣∣∣∣
M

, (1)

where M =
∏n

i=1 mi, Mi = M
mi

, and M−1
i is the

multiplicative inverse of Mi with respect to mi.
This general scheme can be actually simplified when

certain moduli sets of interests like {2n+1, 2n, 2n− 1}
are utilized. For this moduli set the following relations
have been derived for (x1 + x3) even and odd, respec-

tively, in [7]:

X =
∣∣∣∣
m2m3

2
x1 −m1m3x2 +

m1m2

2
x3

∣∣∣∣
M

(2)

X =
∣∣∣∣
M

2
+

m2m3

2
x1 −m1m3x2 +

m1m2

2
x3

∣∣∣∣
M

(3)

For the same moduli set, the following relation, which
uses smaller multipliers when compared to Equations (2)
and (3) have been presented in [12]:

X = x2 + m2

∣∣∣∣
⌊
(x1 − x3) + 2z0n

2

⌋

+ 2n

⌊
(x1 − 2x2 + x3) + 2z0n

2

⌋∣∣∣∣
m1m3

, (4)

where z0 is the XOR over the least significant bits of x1

and x3.
In the following section we assume the same moduli

sets {2n + 1, 2n, 2n − 1} and we introduce an RNS to
decimal converter based on Equation (1) by eliminating
the computation of the required multiplicative inverses.
By doing that we obtain exactly the same relations
as Equations (2) and (3). Further we simplify these
expressions such that we obtain relations that use smaller
multipliers and require lesser number of arithmetic op-
erations when compared to Equation (4).

III. PROPOSED ALGORITHM

Given the RNS number (x1, x2, x3) with respect to the
moduli set {m1,m2,m3} in the form {2n + 1, 2n, 2n−
1}, the proposed algorithm computes the decimal equiva-
lent of this RNS number based on a further simplification
of the well-known traditional CRT. First, we demonstrate
that the computation of the multiplicative inverses can be
eliminated for this moduli set. We further simplify the
resulting CRT to get a low complexity implementation
that does not require explicit use of modulo operation in
the final stage of the computation.

Theorem 1: Given the moduli set {2n+1, 2n, 2n−1}
with m1 = 2n+1,m2 = 2n,m3 = 2n−1 the following
hold true:

|(m1m2)−1|m3 = n, (5)

|(m2m3)−1|m1 = n + 1, (6)

|(m1m3)−1|m2 = 2n− 1. (7)

Proof: If it can be demonstrated that |n ×
(m1m2)|m3 = 1, then n is the multiplicative inverse of
(m1m2) with respect to m3. |n × (m1m2)|m3 is given
by: |(2n + 1)(2n)(n)|2n−1 = |(4n2 + 2n)n|2n−1 =
||4n3|2n−1 + |2n2|2n−1|2n−1 = |12 + 1

2 |2n−1 = 1, thus
Equation (5) holds true.

In the same way if |(n + 1) × (m2m3)|m1 = 1, then
n+1 is the multiplicative inverse of (m2m3) with respect

to m1. |(n+1)×(m2m3)|m1 is given by: |2n(2n−1)(n+
1)|2n+1 = |2n2(2n+1)−2n|2n+1 = ||2n2(2n+1)|2n+1+
| − 2n|2n+1|2n+1 = |0 + 1|2n+1 = 1, thus Equation(6)
holds true.

Again, if |(2n − 1) × (m1m3)|m2 = 1, then 2n − 1
is the multiplicative inverse of (m1m3) with respect to
m2. |(2n− 1)× (m1m3)|m2 is given by:
|(2n+1)(2n−1)(2n−1)|2n = |8n3−4n2−2n+1|2n =
||2n(4n2 − 2n − 1)|2n + |1|2n|2n = |0 + 1|2n = 1, thus
Equation (7) holds true.
The following theorem introduces a simplified way to
compute the decimal equivalent of the RNS number
(x1, x2, x3) with respect to the moduli set {m1, m2,m3}
in the form {2n + 1, 2n, 2n − 1} by simplifying Equa-
tion (1) for the specific case n = 3.

Theorem 2: The decimal equivalent of the RNS
number (x1, x2, x3) with respect to the moduli set
{m1,m2,m3} in the form {2n + 1, 2n, 2n − 1} is
computed for (x1 + x3) even and odd, respectively, as
follows:

X =
∣∣∣∣
m2m3

2
x1 −m1m3x2 +

m1m2

2
x3

∣∣∣∣
M

(8)

X =
∣∣∣∣
M

2
+

m2m3

2
x1 −m1m3x2 +

m1m2

2
x3

∣∣∣∣
M

(9)

Proof: Equation (1) for n = 3 is given by:

X =

∣∣∣∣∣
3∑

i=1

Mi

∣∣∣M−1
i xi

∣∣∣
mi

∣∣∣∣∣
M

. (10)

By substituting the multiplicative inverse values in The-
orem 1 into Equation (10) we obtain the following:

X =
∣∣∣∣(m2m3)(

m2

2
+ 1)x1 + (m1m3)(m3)x2

+(m1m2)(
m2

2
x3)

∣∣∣∣
M

=
∣∣∣∣(m2m3)(

m1 + 1
2

)x1 + (m1m3)(m2 − 1)x2

+(m1m2)(
m3 + 1

2
)x3

∣∣∣∣
M

=
∣∣∣∣(

M

2
)x1 + (

m2m3

2
)x1 −m1m3x2

+(
M

2
)x3 + (

m1m2

2
)x3

∣∣∣∣
M

=
∣∣∣∣
∣∣∣∣(x1 + x3)

M

2

∣∣∣∣
M

+
∣∣∣∣(

m2m3

2
)x1

∣∣∣∣
M

−|m1m3x2|M +
∣∣∣∣(

m1m2

2
)x3

∣∣∣∣
M

∣∣∣∣
M

(11)

From Equation (11), the following cases may be consid-
ered:

• If (x1 + x3) is even then |(x1 + x3)M
2 |M = 0.

• If (x1 + x3) is odd then |(x1 + x3)M
2 |M = M

2 .
Given that Equation (11) can be re-written for the first
and the second case, respectively, as:

X =
∣∣∣∣
m2m3

2
x1 −m1m3x2 +

m1m2

2
x3

∣∣∣∣
M

(12)

X =
∣∣∣∣
M

2
+

m2m3

2
x1 −m1m3x2 +

m1m2

2
x3

∣∣∣∣
M
(13)

Equations (8), (9), and (11), are exactly the same as
to ones derived based on a weighting function in [7]
and [5]. Thus the hardware realization based on these
equations is the same as the one presented in [7], [5]
and [12].

We propose to further simplify (8) and (9) using the
following theorem:

Theorem 3: Given the RNS number (x1, x2, x3) with
respect to the moduli set {m1,m2,m3} in the form
{2n + 1, 2n, 2n − 1}, the decimal equivalent of this
RNS number is computed for (x1 + x3) even and odd,
respectively, as follows:

X = −m2x1 + m1

∣∣∣∣
m2

2
(x1 + x3)−m3x2

∣∣∣∣
m2m3

(14)

X = −m2x1

+m1

∣∣∣∣
m2m3

2
+

m2

2
(x1 + x3)−m3x2

∣∣∣∣
m2m3

(15)

Proof: To prove this theorem we use the following
lemma presented in [11]:

|am1|m1m2
= m1 |a|m2

(16)

From Equation (8), we have

X =
∣∣∣∣
m2m3

2
x1 −m1m3x2 +

m1m2

2
x3

∣∣∣∣
m1m2m3

=
∣∣∣∣
m2

2
(m1 − 2)x1 −m1m3x2 +

m1m2

2
x3

∣∣∣∣
m1m2m3

= x1 +
∣∣∣∣
m1m2

2
(x1 + x3)−m1x1 −m1m3x2

∣∣∣∣
m1m2m3

(17)

Applying Equation (16) we obtain

X = x1 + m1|m2

2
(x1 + x3)− x1 −m3x2|m2m3 , (18)

which can be further simplified as:

X = −m2x1 + m1|m2

2
(x1 + x3)−m3x2|m2m3 (19)

thus Equation (14) holds true.

From Equation (9), we have

X =
∣∣∣∣
m1m2m3

2
+

m2m3

2
x1

−m1m3x2 +
m1m2

2
x3

∣∣∣∣
m1m2m3

=
∣∣∣∣
m1m2m3

2
+

m2

2
(m1 − 2)x1

−m1m3x2 +
m1m2

2
x3

∣∣∣∣
m1m2m3

= x1 +
∣∣∣∣
m1m2m3

2
+

m1m2

2
(x1 + x3)

−m1x1 −m1m3x2|m1m2m3
(20)

Applying Equation (16) we obtain

X = x1

+m1

∣∣∣∣
m2m3

2
+

m2

2
(x1 + x3)− x1 −m3x2

∣∣∣∣
m2m3

,(21)

which can be further simplified as

X = −m2x1 + m1

∣∣∣∣
m2m3

2

+
m2

2
(x1 + x3)−m3x2

∣∣∣∣
m2m3

(22)

thus Equation (15) holds also true.

IV. PERFORMANCE EVALUATION

The converter described in this paper is processing
numbers with smaller magnitude than the one proposed
in [7]. This can be easily deduced based on the fact that
Equations (14) and (15) use modulo m2m3 instead of
modulo m1m2m3 as required by Equations (2) and (3).
The same holds true also when we compare our proposal
with the one in [12] due to the fact that for the consid-
ered moduli set the modulo (m2m3) in Equations (14)
and (15) is always smaller than the modulo (m1m3) in
Equation (4). More precisely the modulo used in [12] is
with 2n−1 larger than the one we utilize. Consequently,
the numbers involved in Equations (14) and (15) are
smaller than those in Equation (4). This results in a
reduced complexity and delay of the associated hardware
as the smaller the magnitude of the processed operands
the less complex are the required functional units that
support the calculations.

The number of arithmetic operations required for our
proposal - Equations (14) and (15) - and for the one
in [12] - Equation (4) - are summarized in Table I.
As one can observe in the Table our proposal requires
less additions but more multiplications. This information
however is not sufficient to make a comparison as the

Operations [12] Proposed Algorithm
Additions 7 3/4

Multiplications 2 4
Reduced M m1m3 m2m3

Table I
PERFORMANCE COMPARISON

delay and area of the involved adders and multipliers
depend on operand magnitudes and on implementation
specific details. Thus a deeper analysis of the required
hardware has to be done in order to get a more realistic
picture.

The hardware required for our proposal is depicted in
Figure 1 and the one for the converter in [12] in Figure 2.
Before we further analyze the two schemes we first
prove that modulo (m2m3) operations in Equations (14)
and (15) do not need to be explicitly implemented and
this operation can be done by adder AB in Figure 1 with
at most one corrective addition/subraction. For that we
analyze all the possible cases as follows:

1) (x1 + x3) = 0 and x2 = 2n − 1. This results
in the most negative value one may get. In this
case Equation (14) reduces to | −m3x2|m2m3 . To
perform the modulo (m2m3) operation we need
to do corrective additions. Given that m2m3 +
(−m3x2) = (2n)(2n− 1)− ((2n− 1)(2n− 1)) =
4n2 − 2n − 4n2 + 4n − 1 = 2n − 1 > 0, for
any positive integer n, only one corrective addition
with m2m3 is required to compute the modulo.

2) (x1 + x3) is even and has the maximum possible
value and x2 is zero. This is the largest positive
value one may get and Equation (14) reduces to
|m2

2 (x1 + x3)|m2m3 . Given that m2m3 − m2
2 (x1 +

x3) = 4n2− 2n− (n)(2n+2n− 2) = 4n2− 2n−
4n2 + 2n = 0 the maximum sum in the modulo
adder cannot exceed m2m3, thus no correction is
required.

3) (x1 + x3) = 1 and x2 = 2n − 1. In this case
Equation (15) reduces to |m2m3

2 +m2
2 −m3x2|m2m3 .

Given that in this case m2m3
2 +m2

2 −m3x2 is always
negative and that m2m3 + m2m3

2 + m2
2 −m3x2 =

2n(2n− 1) + (2n2 − n) + n + (4n2 − 4n + 1) =
2n2 + 2n − 1 > 0, only one corrective addition
with m2m3 is required to compute the modulo.

4) (x1 + x3) odd has the maximum, possible value
and x2 is zero. Equation (15) reduces to |m2m3

2 +
m2
2 (x1 +x3)|m2m3 . Given that 2m2m3− (m2m3

2 +
m2
2 (x1 + x3)) = 2(4n2 − 2n)− (2n2 − n + 4n2 −

2n) = 8n2 − 4n − 6n2 + 3n = 2n2 − n > 0
one corrective subtraction of m2m3 is required to
compute the modulo.

X

X

X

X

AA

AC

AB (CORRECTION)

x x
x

xm mm

m

−m

m

OUTPUT

1

3

2

1

2

2 3

2

3

2
2

Figure 1. Proposed Data Path.

A3/M

A2 A1

i

x x x x x
1 2 3

1 3

x
2

Output

Y
C

C

Y
i2

i2 i1

i1

A4

X

X

Figure 2. Converter Data Path from [12].

Thus we can conclude that the modulo m2m3 operation
can be implemented with at most one corrective addition
or subtraction. The same holds true also for the modulo
m1m3 operation that is associated to the A3/Mi Adder
in Figure 2.

Roughly speaking the performance of the designs in
Figure 2 and in Figure 1 seems to be the same as both of
them have three adders and two multipliers on the critical
path. However those are not exactly standard components
and their actual delays depend on the magnitude of the
processed operands.

The Adder A2 in Figure 2 has three inputs thus it
cannot be directly implemented with a Carry Propagate
Adder (CPA). Actually, according to Equation (4) the
term 2z0n has to be also part of its input. Thus A2 has
to be a 4:1 adder. To implement such an adder two levels
of Carry Save Adders (CSAs) (two full adder delay) are
required to reduce the 4 numbers to 2 numbers, followed
by a CPA. Given that A2’s result can be between −(2n−
1) and 3n − 1 the CPA has an additional delay in the
order of log(5n− 1).

The Adder AA in Figure 1 is a standard CPA thus no
CSA is required. Its result is at most 4n−2 than it has a
delay in the order of log(4n− 2), thus it is substantially
faster than A2.

The next element on the critical path is a multiplier.
Its complexity is determined by the magnitude of its
inputs and by implication its output value. In Figure 2 it
produces a maximum result of 6n2−2n while in Figure 1
it produces a maximum result of 4n2− 2n, thus the last
one is smaller and faster than the first one.

Further the modulo addition has to be performed. This
is done in both cases by computing first a tentative result.
This result is subsequently compared with m1m3 or
m2m3, respectively, and based on this and on the XOR
of the least significant bits of x1 and x3, one corrective
addition/subtraction is executed on the same adder. Given
that m1m3 is larger with 2n−1 than m2m3 the modulo
adder A3/Mi in Figure 2 is in principle larger and slower
than the Adder AB in our proposal. However the Adder
AB as depicted in Figure 1 has an extra input and this
my change that as it has to perform a 3:1 addition thus
an extra CSA is required. In the following we prove
that the conditional addition of the m2m3

2 term can be
actually postponed and embedded into the correction
step required for the modulo operation without any delay
overhead. For that we remove m2m3

2 as input and revisit
the 4 correction cases analyzed in the beginning of this
section.

If x1 + x3 is even the term m2m3
2 is not part of the

calculation and the correction can be done as usual. If
x1 + x3 is odd the tentative sum in the modulo adder
is m2

2 (x1 + x3) − m3x2 instead of m2m3
2 + m2

2 (x1 +
x3)−m3x2 thus it is smaller with m2m3

2 then it should
actually be. Taking that into consideration the correction
rules change to:
• If tentative sum is smaller than −m2m3

2 add 3m2m3
2 ;

• If tentative sum is larger than m2m3
2 subtract m2m3

2 ;
• Otherwise add m2m3

2 .
In this way the extra input is not contributing any longer
to the tentative sum calculation and the AB Adder in
Figure 1 outperforms its counterpart in Figure 2 in terms
of delay and area.

The last elements on the critical path, a multiplier and
an adder, have similar delays in both designs as they deal
with operands within the same order of magnitude. Thus
our proposal is certainly faster than the one in [12].

V. CONCLUSIONS

In this paper, we investigated RNS to decimal conver-
sion, which is an important issue concerning the utiliza-
tion of RNS numbers in DSP applications. We presented
a new algorithm for RNS to decimal conversion in the
moduli set {2n+1, 2n, 2n−1}. First, we eliminated the
computation of multiplicative inverses. Next, we further
simplified the resulting CRT to obtain a low complexity
implementation which does not require the explicit use
of modulo operation in the conversion process as it is
normally the case in the traditional CRT. The proposed
converter operates on smaller numbers than other state
of the art converters for the the same moduli set thus
it requires less complex adders and multipliers. We
demonstrated that from the algorithmic point of view
the conversion process requires 3 or 4 additions and 4
multiplications thus its expected performance is similar
to that of other state of the art equivalent converters.
We also did a critical path analysis, which indicated that
the proposed converter outperforms other state of the art
converters in terms of speed at the expense of similar or
lower area cost.

REFERENCES

[1] W.K. Jenkins and B.J. Leon. The use of residue number systems
in the design of finite impulse response digital filters. IEEE
Trans. On circuitry and systems, vol. 24, pp. 191-200, 1977.

[2] Mi Lu. Arithmetic and Logic in Computer Systems. John Wiley
and Sons, New Jersey, 2004.

[3] G.A. Jullien M.A. Soderstrand, W.K. Jenkins and F.J. Taylor.
Residue Number Arithmetic: Modern Application in Digital
Signal Processing. IEEE press, New York, 1986.

[4] B. Parhami. Arithmetic Algorithms and Hardware Designs.
Oxford University Press, New York, 2000.

[5] A. B. Premkuma. An rns to binary converter in a three moduli
set with common factors. IEEE Trans. on Circuits and Systems-
II: Analog and Digital Processing, Vol. 42, No. 4, pp 298-301,
April, 1995.

[6] A. B. Premkuma. Corrections to an rns to binary converter in a
three moduli set with common factors. IEEE Trans. on Circuits
and Systems-II: Analog and Digital Processing, Vol. 51, No.1,
pp 43, January, 2004.

[7] A. B. Premkumar. An rns to binary converter in 2n + 1,2n,
2n − 1 moduli set. IEEE Trans. on Circuits and Systems-II:
Analog and Digital Signal Processing, Vol. 39, No. 7, pp. 480-
482, July, 1992.

[8] N. Szabo and R Tanaka. Residue Arithmetic and its Application
to Computer Technology. MC-Graw-Hill, New York, 1967.

[9] M. O. Ahmad W. Wang, M.N.S. Swamy and Y. Wang. A
study of the residue-to-binary converters for three-moduli sets.
IEEE Trans. on Circuits and Systems-I: Fundamental Theory
and Applications, Vol. 50,No. 2, Feb.,pp 235-243, 2003.

[10] M.N.S. Swamy W. Wang and M.O. Ahmad. Moduli selection in
rns for efficient vlsi implementation. International Symposium
on Circuits and Systems, Vol. 4, pp.512-515, 2003.

[11] Y. Wang. New chinese remainder theorems. in Proc. Asilomar
Conference, USA, pp. 165-171, Nov., 1998.

[12] M.O. Ahmad Y. Wang, M.N.S. Swamy. Residue to binary
number converters for three moduli set. IEEE Trans. Circuits
Syst. II, vol. 46, pp. 180-183, Feb., 1999.

[13] H.M. Yassine and W.R. Moore. Improved mixed radix conver-
sion for residue number system architectures. proceedings of
IEEE pt-G , Vol. 138, No.1, pp.120-124, Feb., 1991.

