Compiler and OpenMP framework to allow dynamic
hardware allocation on reconfigurable platforms

Vlad-Mihai Sima, Koen Bertels
Computer Engineering
Faculty of Electrical Engineering, Mathematics and Computer Science
Delft University of Technology
Mekelweg 4, 2628 CD Delft, The Netherlands
Phone: +31 15 2786249 Fax: +31 15 2784898

Abstract—In this paper, we present the compiler and OpenMP
runtime library extensions needed to allow runtime decisions
regarding area allocation on a reconfigurable platform in a
multi application context. Using a strong interaction between the
operating system and the compiled applications, our framework
will allow operating system algorithms to decide which allocation
fits best the current environment. System calls will be inserted
at essential point in the application, to inform the operating
system about the execution status, and to obtain the decisions
done at operating system side. We will profile and analyze the
overheads introduced. For estimating the results obtained with
this framework we will use a beamforming application The
testing platforms is based on Xilinx Virtex 4 ML.403 development
board running Linux 2.6 and supporting MOLEN programming
paradigm.

I. INTRODUCTION

As computer systems become more complex there is also a
demand for faster and smaller devices. One possible solution is
to use reconfigurable which allows designs to investigate new
strategies using limited resources. Reconfigurable computing
can be especially used in the context of parallel applications,
as the hardware implementation can adapt to different levels
of parallelism at runtime.

In this paper, we propose modifications to the compiler and
runtime OpenMP library for executing some of the functions in
parallel. We do this in conjunction with the MOLEN paradigm,
which shows its flexibility in various contexts.

The paper is organized as follows: in Section II we briefly
present the MOLEN programming paradigm for reconfig-
urable architectures and related work. Next, we give a real
motivational example and also present the problem overview.
A detailed description of the proposed modifications is given
in Section IV. Some profilling results are shown in Section V,
with a comparison to other related possibilities and analyses of
the factors that influence the results. In Section VI, we present
conclusions and outline new research directions.

II. BACKGROUND

The programming model for a reconfigurable platform must
offer an abstraction of the available resources to the program-
mer. The role of the MOLEN programming paradigm [1]
is to abstracts the hardware and allows the programmer and

the compiler to use efficiently the underlying hardware. The
extension need to the existing system is minimal involving
a set of fixed instructions or operating system calls that
allow the designer to use any number of hardware units in
any configuration. To support parallel execution, the minimal
extension include the following primitives: SET, EXECUTE,
BREAK and MOVTX and MOVFX.

OpenMP is set of compiler directives, library functions and
environment variables that can be used to specify parallelism
in applications that use shared memory architecture. Because
of this OpenMP is the obvious choice for describing paral-
lelism in a Molen paradigm context.

Run-time solutions for allocation are presented in [2] from
the services point of view, without relating too much to the ac-
tual implementation.In [3] an algorithm based on early partial
reconfiguration and incremental reconfiguration is presented
but without involving parallelism.

III. MOTIVATIONAL EXAMPLE

With the increase of available parallelism more and more
applications use OpenMP to specify what sections of the code
can benefit from parallelism. One of the most common uses is
applying the same computations on multiple vectors, if there is
no data dependencies between the computations or the results.
Assuming we have such a case in an sound processing appli-
cation, where filters must be applied on waveforms coming
from multiple microphones as in Figure. 1.

We observe that the code contains two annotations. The
first one #pragma omp parallel for is a pragma defined by
the OpenMP standard and means that the iterations of the
next loop can be executed in parallel - ie. there are no data
dependencies between them.

The second annotation, #pragma molen 1, is a pragma
specific to the MOLEN programming paradigm and specifies
that the filter function should be run on the reconfigurable
fabric and it is identified as the operation /.

Even if with OpenMP you specify how many threads are
created for a specific parallel section this is not recommended.
The reason is that by allowing the runtime system to decide
the number of threads the application is written in a portable
way - as it doesn’t make any assumption on the number of

int func(int =xin,
{
int 1i;
#pragma omp parallel for
for (i=0;i<1l; i++)

{

int **out, int 1)

#pragma molen 1
filter(in[i],out[i]);

Fig. 1. Example code

threads - and also the best number of threads can be chosen,
depending on the overall system situation.

Assuming the implementation fits only once on the available
reconfigurable fabric, we need to use just one thread so the
code generated will be equivalent with the code generated for
the C program in Figure. 2. (that is, without any OpenMP
constructs).
int func(int **in, int *xout, int 1)
{

int i;

for (i=0; i<1l;1i++)

{

molen_movtx(1l,0,in[i]);
molen_movtx(l,1,out[i]);
molen_execute(l);

molen_break (1) ;

Fig. 2. Example code

The parameters for molen_movtx are: the identifier of the
implementation, the parameter number and the parameter
value. For the other two molen functions the only parameter
is the identifier of the operation.

Obviously in case we have several threads we can’t use
the above code as for each thread another instance of the
implementation has to be run. So, our problem can be
formulated as follows: given an annotated C code that contains
both OpenMP and MOLEN pragmas, information about the
size of implementations for the functions that can be executed
in hardware and the total size of the reconfigurable fabric,
instantiate as many as possible hardware modules and run
them from the software using the MOLEN operating system
calls.

IV. IMPLEMENTATION

An overview of our framework is presented in Figure. 3.
We will present next each of the important elements.

GCC based compiler

Inserts molen_execute(tid,opid) and
get_thread_num (operations)

¥ LY

Application

BitstreamsJ GPP code

I
2. get_thread_num(operations)
3. thread_get_id()
/’Amoleniexecule(tid,opid) i

Operating system

1. load(bitstreams)

Hardware
manager

OpenMP

Thread
library

library

Configure,
execute

A

amm

FPGA }

Fig. 3. Framework for executing using OpenMP and MOLEN

The hardware manager is a part of the operating system
and has the following functions:

o loads the bitstreams available from the application elf
file. This is done when the applications calls a sys-
tem call with parameter an array with bitstream ad-
dresses and the operation id for those bitstreams. This
is needed as a specific operation could be placed at
various positions inside the reconfigurable area. Doing
the relocation of hardware tasks at runtime would be
time consuming so we decided to provide the hardware
manager a set of possibilities. The system call signature
is molen_load_bitstreams(bitstream *p, int n).

o return the maximum number of instances that can be
configured on the hardware for a specific opid. This has to
take into account the current state of the hardware, and the
various placing options associated with those operations.
The call for this is molen_get_max_operations(int *p, int
n), where p is an array of operation id-s that will be used
in the parallel section.

o give a handle to an instance of a specific operation.
Further invocation with the same id will provide another
instance, if this is possible. The call to get a handle is
int molen_create_operations(int *p, int n) and the call to
deallocate the handle is int molen_destroy_operations(int
h)

« send parameters to a specific operation using a handle.
The function prototype is int molen_movtx(int h, int par,
int value), where par is the parameter number and value
is it’s value

o execute using a handle returned by the hardware manager.

Identify
OpenMP
sections

!

Search inside
the call graph
for pragma

There
are such
functions

YES

A Y

Call DWARV Insert call to
for those get_max_operations
functions and create_operations
Generate
special Replace each call with
symbols for execute_operation
the bitstreams

A

Link the
application

Fig. 4. Compilation flow

The function is int molen_execute(int h, int opid)
« waits for the execution of a certain instance to finish. The
function is int molen_break(int h, int opid)

The compiler contains several modifications in order to
allow the execution of multiple CCU-s in OpenMP context.
The flow of the operations is described in Figure. 4

The first step is to identify the OpenMP sections and to
search for functions marked with MOLEN pragma. This is
done now within the scope of a compilation unit (a .c file)
but this can be extended in the future. After all the pragmas
have been identified a list of needed operations is constructed.
Multiple invocations of the same operation are ignored, as
the code in a section should be sequential, so one hardware
instance can be reused multiple times.

Instead of the normal mechanism used by the OpenMP
library to determine the number of threads - create as many
threads as processors in the system - our framework will
provide a special function that will determine that number
- omp_molen_get_thread_num(int *op, int n). This function
receives as parameter the operation list computed in the pre-

vious step, and it’s purpose is to determine, using the hardware
manager, how many operations can be configured and run in
parallel. This function uses molen_get_max_operations.

The next step is to add in the parallel sections a local
handle variable, initialised with the result of calling int
molen_create_operations. This handle will be used at each call
place to identify which instance shall be used by the thread.

The last step is to replace each call of a function with
int molen_execute_operation with the handle created and the
operation id.

Using the example given in Section III the code generated
will be the one in Figure: 5. We can identify almost all of
the steps from Figure. 3 on this code: the second step is
contained in GOMP_loop_runtime_start - which has the role
of assigning work to each of the threads. The third step is
represented by molen_create_operation which will create the
necessary handle. The last step is molen_execute.

int func(int #**in, int <**out, int 1)
{
int ops[]={1};
long i, _s0, _e0;
if (GOMP_loop_runtime_start (O,
n, 1, & _s0, &_e0))
do {

h = molen_create_operations (ops);
for (i = _s0, i < _e0; i++) {
molen_movtx(h,1,0,in[1]);
molen_movtx(h,1,1,out[i]);

molen_execute(h,1);
molen_break (h,1);
}
} while (GOMP_loop_runtime_next
&e0));
molen_destroy_operations (h);

GOMP_loop_end () ;

(&_sO0,

Fig. 5. Example code

V. PROFILLING RESULTS

We target an architecture similar to Xilinx Virtex series.
For profilling we used Xilinx Virtex 4 inside the development
platform ML410 using a Linux 2.6 kernel. The PowerPC
processor runs at 300 Mhz and the hardware designs are
clocked at 100 Mhz. We implemented and profilled part of the
above framework as work continues to allow parallel execution
of CCU-s (Custom Computin Units). To assess the overhead
introduced by the framework we measured the time need for
the execution of a single filter function and compared with the
overhead imposed by the operating system calls and thread
switching.

The results were obtained using a beamforming application.
The idea is to enhance the capabilities of sensors - in our

TABLE I
OVERHEADS

Overheads Time (p sec)
Thread creation 2000
Thread switch 600
Operating system call 20

TABLE I
PROFILE RESULTS

All SW | 1 instance | 2 instances | 3 instances
Execution (msec) 2521 10324 6962 6754
Overheads - 14% 36% 60%
Speedup vs SW - 17.21 25.52 26.31

case microphones - by jointly taking the individual signals
of multiple sensors into one computation and thereby modify
their spatial directivity. The computation intensive part is
composed of a filter operations filter, executed in parallel for
all the sources. We present in Table. I the gathered data.

The application process a stream of audio so we will be
interested just the overheads occurring at each iteration and
not the overheads due to the initialization, as on a long
period of time these will become an insignificant part of the
total execution time. As libgomp (the library implementing
OpenMP runtime) creates the thread team at program start we
can ignore the Thread creation overhead, Of course there must
be as many threads as the maximum number of operations that
can fit in parallel on the reconfigurable device.

In one iteration of the execution there are 3 parallel regions
with 16, 4 and 16 parallel loops, all calling filter function.
The hardware implementation, generated using DWARV [?]
C-to-VHDL compiler is 20 times faster than the software only
version (profilled on Virtex4 platform). We give in the Table II
summarized estimated results for different number of instances
implemented in hardware.

In the table, we consider overhead thread switchting (we
need as many thread switches as the number of threads per
parallel region) and system calls (for transferring parameter,
execution and getting back the result). We can see that, as we
create threads, the overheads becomes the dominant part of
the time spent in the parallel section.

We can see that the speedup increases significantly as we
implement more iterations in hardware and this would scale as
the number of microphones will increase - because the number
of parallel iterations will also increase.

VI. CONCLUSION

In this paper, we presented a framework that allows exe-
cuting CCU-s using MOLEN programming paradigm from an
OpenMP context taking into account the total area available
for configuring the CCU-s. We have made measurements and
estimated that our framework can support efficient execution
of programs in such a context. Several improvements are
possible among which we enumerate: determine the maximum

number of parallel iterations taking into account the ratio
between the gain and the overhead, extend the framework with
a mechanism to allow an efficient partition of the area in the
case of multiple applications.

REFERENCES

[1] S. Vassiliadis, S. Wong, G. Gaydadjiev, K. Bertels, G. Kuzmanov,
and E. M. Panainte, “The molen polymorphic processor,” IEEE Trans.
Comput., vol. 53, no. 11, pp. 1363-1375, 2004.

[2] D. A. K. . G. B. W. Martyn A. George, Mathew J. Pink, “Efficient
allocation of fpga area to multiple users in an operating system for
reconfigurable computing,” in In Proceedings of ERSA, 2002, pp. 238—
242.

[3] B. Jeong, S. Yoo, S. Lee, and K. Choi, “Hardware-software cosynthesis
for run-time incrementally reconfigurable fpgas,” in ASP-DAC ’00: Pro-
ceedings of the 2000 conference on Asia South Pacific design automation.
New York, NY, USA: ACM, 2000, pp. 169-174.

