Generic Loop Parallelization
for Reconfigurable Architectures

Ozana Silvia Dragomir and Koen Bertels

TU Delft, Mekelweg 4, 2628CD, Delft, The Netherlands
{0.S.Dragomir, K.L.M.Bertels} @tudelft.nl

Abstract—Reconfigurable Computing (RC) is one of
the most intensively studied research areas nowadays
due to its potential to dramatically increase application
performance. RC combines a general purpose processor
(GPP) and a Field Programmable Gate Array (FPGA),
having the advantages of both hardware performance and
software flexibility. Modern real-life applications (such as
audio, video, image processing, etc) spend most of the
execution time in loops, which represent or include the
application kernels. These loops are an important source
of performance improvement. In our work, we target loops
that contain in their bodies code for the GPP (software
functions) and also for the FPGA (hardware functions). We
assume there are data dependencies between consecutive
tasks in the loop body, but not between different loop
iterations. Assuming the Molen machine organization as
our framework, we focus on applying existing loop opti-
mizations to such loops, with the purpose of parallelizing
applications such that multiple kernel instances run in par-
allel on the reconfigurable hardware, while concurrently
executing code on the GPP. In this paper, we focus on loop
transformations that are suitable for loops containing an
arbitrary number of software and hardware functions. The
extended shifting consists of relocating the functions placed
in the beginning and in the end of one loop iteration,
in order to eliminate the data dependencies and allow
certain software and hardware functions to be executed
in parallel. The loop distribution consists of splitting the
loop into small loops (e.g., with only one kernel) allowing
in some cases a larger degree of parallelism when applying
the loop unrolling and shifting techniques. We estimate the
performance achieved by applying the extended shifting
technique in conjunction with loop unrolling and compare
it to the performance achieved when applying the loop un-
rolling and shifting techniques to smaller loops obtained by
distributing the original loop. For the experimental results
we used randomly generated tests, for loops containing a
variable number of kernels (between 2 and 8 kernels).

Keywords: loop optimizations, reconfigurable com-
puting, Molen programming paradigm, FPGA

I. INTRODUCTION

Modern real-life applications (such as audio, video,
image processing, etc) spend most of the execution time
in loops, which represent or include the application
kernels. These loops are an important source of perfor-
mance improvement. Various loop transformations (such
as loop unrolling, software pipelining, loop shifting, loop
distribution, loop merging, or loop tiling) can be used
successfully to maximize the parallelism inside the loop
and improve the application performance.

The applications we target in our work have loops
that contain in their bodies code for the GPP (software
functions) and also for the FPGA (hardware functions).
Our goal is to improve the performance for such loops,
by applying standard loop transformations such as the
ones mentioned above. We take into account the fact
that there are loop transformations that are not beneficial
in most compilers because of the large overhead that
they introduce when applied at instruction level, but at
a coarse-level (i.e., function level), they show a great
potential for improving the performance. We describe
briefly the loop transformations we found to be beneficial
in the targeted applications.

Loop unrolling is traditionally used to eliminate the
loop overhead, improving cache hit rate and reducing
branching by replicating the loop body. We use unrolling
to expose the loop parallelism, allowing us to execute
concurrently multiple kernels on the reconfigurable hard-
ware.

Loop shifting is a transformation that moves opera-
tions from one iteration of the loop body to the previous
iteration. The operations are shifted from the beginning
of the loop body to the end of the loop body and a copy
of these operations is also placed in the loop prologue. In
our research, loop shifting means moving a function from
the beginning of the loop body to the end and we use
it to eliminate the data dependencies between software



e
aio
;
<
B

b) Unrolled loop

@ @ - @

a) Loop

Fig. 1.

and hardware functions, allowing concurrent execution
on the GPP and FPGA.

Loop distribution is a technique that breaks a loop
into multiple loops over the same index range but each
taking only a part of the loop’s body. We use loop
distribution to break down large loop bodies into smaller
ones that can be parallelized more with loop unrolling
and loop shifting in order to improve the performance.

II. BACKGROUND AND RELATED WORK

The work presented in this paper is related to the
Delft WorkBench (DWB)! project. The DWB is a semi-
automatic toolchain platform which targets the Molen
polymorphic machine organization [1], supporting the
entire design process. In the first stage, profiling and
cost estimation are performed and kernels are identi-
fied. After performing the appropriate transformations
by collapsing the identified kernels on set/execute
nodes, the compiler [2] generates the executable file,
replacing and scheduling function calls to the kernels
implemented in hardware with specific instructions for
hardware reconfiguration and execution, according to the
Molen programming paradigm. The DWARV automatic
hardware generator [3] is used to transform the selected
kernels into VHDL code targeting the Molen platform.

Several approaches ([4], [5], [6], [7], [8], [9]) are
focused on accelerating kernel loops in hardware. They
use different loop transformations (unrolling, pipelining,
etc) to exploit parallelism and speedup the kernel. Our
approach is different, as we do not aggressively optimize

"http://ce.et.tudelft.nl/DWB/

¢) Shifted loop

d) Unrolled and shifted loop

Loop containing several kernels

the kernel implementation, but focus on the optimization
of the application for any hardware implementation, by
executing multiple kernel instances in parallel.

In our previous work [10], [11] we presented results of
applying loop unrolling and loop shifting to small loops
containing only one software and one hardware function.

A. Target architecture.

Our target architecture is Molen [1], which allows
running multiple kernels/applications at the same time
on the reconfigurable hardware. The unroll factor is
computed (at compile time) taking into consideration
profiling information about memory transfers, execution
times for the kernel in hardware and in software (in GPP
cycles), area requirements for the kernel, and memory
bandwidth.

Our assumptions regarding the application and the
framework are the following:

1) There are no data dependencies between different
iterations.

2) The loop bounds are known at compile time.

3) The loops are perfectly nested.

4) Inside the kernel, all memory reads are performed
in the beginning and memory writes in the end.

5) On-chip memory shared by the GPP and the CCUs
is used for program data.

6) All necessary data are available in the shared
memory.

7) All transfers to/from the shared memory are per-
formed sequentially.

8) Kernel’s local data are stored in the FPGA’s local
memory, not in the shared memory.



9) The area constraints do not include the shape of
the design.

The placement is decided by a scheduling algo-
rithm such that the configuration latency is hidden.
The interconnection area needed for CCUs grows
linearly with the number of kernels.

10)

11)

III. MOTIVATION

The applications we target in our work have loops that
contain kernels as well as pieces of software code in the
loop body. In our previous work [10], [11] we focused on
simple loops containing only one hardware kernel that
would be accelerated on the FPGA and some software
code that will always execute on the GPP. For this kind of
simple loops, we proposed algorithms for loop unrolling
and loop unrolling plus shifting to determine which
would be the best unroll factor that would allow the
maximum parallelization and performance. We want to
extend the model to more generic loops with an arbitrary
number of kernels and pieces of software code occurring
in between the kernels, as illustrated in the example from
Fig. 1a).

The example shows a loop with several functions — the
SW; functions are executed always on the GPP, while the
K; functions are the application kernels that are meant
to be accelerated in hardware. These can be viewed as a
task chain, where we assume that there are dependencies
between consecutive tasks in the chain, but not between
any two tasks from different iterations.

In Fig. 1b) we illustrate the execution pattern of the
loop when the unrolling technique is applied: differ-
ent instances of each software function are executed
sequentially, and the different instances of each kernel
are executed in parallel. In Fig. 1c) we illustrate the
execution model of the loop when the simple loop
shifting technique is applied. In this case, the first kernel
of the loop body will execute in parallel with the first
software function from a different iteration. The loop
prologue and epilogue resulted from the shifting are not
shown on the figure. The new loop body resulted when
combining loop unrolling and loop shifting is shown in
Fig. 1d).

a) Extended shifting: 1t is obvious that for loops
containing more than one kernel, more parallelism can
be exploited. The next natural step to do is to transform
the loop such that each kernel executes in parallel with
the preceding software function. The disadvantage of this
idea is that it increases too much the loop prologue and
loop epilogue when there are more than two kernels.

-0

a) Loop

b) Extended-shifted loop

Fig. 2.
b
?
?
@ !
®
@)Loop

¢) Unrolled and ext-shifted loop

Applying extended shifting to a loop with two kernels

|

. B
@ )

lo-0-0-- o

b)Distributed loop(1) c)Execution model d)Distributed loop(2)

Fig. 3. Possibilities of loop distribution

Therefore, we propose the extended shifting to be the
transformation that relocates only the software functions
placed in the beginning and in the end of one loop
iteration, in order to eliminate the data dependencies and
allow the software and hardware functions to be executed
in parallel.

In Fig. 2b) we illustrate the execution model of the
loop when the extended shifting is applied. In this case,
the first and the last kernels of the loop body will
execute in parallel with software functions from different
iterations. The new loop body resulted when combining
loop unrolling and the extended loop shifting is shown
in Fig. 2¢).

b) Loop distribution: We have proven in [11] that
for a loop containing a hardware kernel and a software
function, it is always beneficial to apply loop shifting and
parallelize (if the data constraints allow it). However,
if a loop contains more than one kernel, it might be
more beneficial to distribute it into smaller loops where
different unroll factors might be applied due to different
area or memory constraints for the kernels, leading to



better performance.

Assuming that between two kernel tasks there is a
software task, a decision has to be made whether to
distribute the software task with the first kernel or with
the second one. This kind of decision has to be taken at
each breaking point of the loop.

Figure 3a) shows a loop with two hardware kernels
and three software functions. The possibilities of break-
ing this loop between the two kernels are illustrated in
Fig.3b) and Fig.3d). In Fig.3c) we illustrated the parallel
execution model for each of the three cases of a loop
containing one hardware kernel inside, depending on the
position of the software code — where ¢ — 1, ¢, and 7 + 1
are iteration numbers.

We consider that a performant distribution algorithm
is a Deep First Search algorithm, applied to the sorted
list of kernels. The sorting is performed according to
a heuristic based on the hardware execution time and
the memory-constrained maximum unroll factor for each
kernel.

IV. EXPERIMENTAL RESULTS

For the experimental results, we created a random test
generator. We generated loops with sizes between 2 and
8 (the size is given by the number of kernels inside) and
for each loop size we created 600 tests.

For each test, the performance improvement has been
estimated based on the algorithms for parallelization
through extended shifting and parallelization through
loop distribution. A test case is determined by the
following parameters:

e N - the number of iterations;

o Tsw[j] - the execution time for each software func-
tion SW; (cycles);

e MAX (sw) - the maximum of the execution times
of the software functions (cycles):

MAX (sw) = mj{iX(Tsw[j])Q

o Tx(sw)li] - the execution time in software for each
kernel K; (cycles);

o SJi] - the speedup for K; kernel (S[i] € R);

e Ali] - the area occupied by K; in hardware, in
percents (Afi] € R);

o Tk(hw)li] - the execution time in hardware for K;
(cycles):

TK (sw) M .

T (hw)li] = (int) SO

TABLE I

PARAMETER VALUES

Parameter Min. value Max. value
N 64 256%256
Tswlj] 0 800
TK(sw)[i] 1.5 * MAX (sw) | 41.5 * MAX (sw)
S[d] 2.0 10.0
Ald] 1.2% 12.0%
Tx[i] ! TK(hW) [i]/3
Twli ! Ty (hw)[71/6

o Ti[i] - the time for memory read for K; running in
hardware (cycles);

o Tyl[i] - the time for memory write for K; running
in hardware (cycles);

o T¢.[i] - the time for computation for K; running in
hardware (cycles):

Tc M = TK(hw) [Z] —Tr [Z] Ty [Z]

The values for the presented parameters have been
generated according to the Table 1. Note that in some
cases, the maximum value of a parameter depends on
the generated value of another parameter (for instance,
the kernel time for read is at most one third of the total
execution time of the kernel in hardware).

In Fig. 4 we illustrate the performance improvement
for the different loop sizes when applying the loop
distribution method, compared to the extended shifting
method. The results show that there is no performance
improvement in more than 55% of the cases for loop size
equal to 2, but the greater the loop size, the less cases
without improvement (less than 10% for loop sizes 7 or
8). More than 20% of the test cases for loop size greater
than 2 present an improvement between 10 and 20% and
more than 20% of the test cases for loop size greater
than 3 present an improvement between 20 and 30%. A
speedup of more than 50% is achieved in approximately
2% of the test cases.

V. CONCLUSION

In our previous work we discussed the performance
enhancement obtained by parallelizing a loop with a
hardware kernel and some software code, using loop
unrolling and loop shifting. In our ongoing work we
analyze the effects of extending these transformations to
loops containing several kernels and pieces of software
code. One solution is to extend the shifting technique in



60%
55% [
50%
45%
40%
35%
30%
25% |
20% |
15%
10%

5%

0%

EOEOOEO

o N O VA WwN

0.00% 0-5% 5-10% 10-20% 20-30% 30-40% 40-50% > 50%

Fig. 4. Performance distribution

order to execute in parallel with the software both the
first and the last kernels in the loop. Another solution
is to distribute the loop and apply the loop unrolling
and loop shifting transformations to the resulted smaller
loops. Preliminary results on randomly generated tests
show that there is potential for improving the perfor-
mance by distributing the loops. However, we are aware
of the fact that the loop distribution overhead can be quite
expensive, depending on the amount of intermediary
results that are needed.

REFERENCES

[1] S. Vassiliadis, S. Wong, G. Gaydadjiev, K. Bertels, G. Kuz-
manov, and E. M. Panainte, “The MOLEN polymorphic pro-
cessor,” IEEE Transactions on Computers, vol. 53, no. 11, pp.
1363-1375, November 2004.

[2] E. M. Panainte, K. Bertels, and S. Vassiliadis, “The Pow-
erPC backend Molen compiler,” in Proceedings of the 14th

(3]

(4]

(3]

(6]

(7]

(8]

(9]

(10]

(1]

International Conference on Field-Programmable Logic and
Applications (FPL’04), August 2004, pp. 434-443.

Y. D. Yankova, G. Kuzmanov, K. Bertels, G. Gaydadjiev,
J. Lu, and S. Vassiliadis, “DWARV: DelftWorkbench automated
reconfigurable VHDL generator,” in Proceedings of the 17th
International Conference on Field Programmable Logic and
Applications (FPL’07), August 2007, pp. 697-701.

Z. Guo, B. Buyukkurt, W. Najjar, and K. Vissers, “Optimized
generation of data-path from C codes for FPGAs,” in DATE
'05: Proceedings of the conference on Design, Automation and
Test in Europe, March 2005, pp. 112-117.

S. Gupta, N. Dutt, R. Gupta, and A. Nicolau, “Loop shifting and
compaction for the high-level synthesis of designs with complex
control flow,” in DATE ’04: Proceedings of the conference on
Design, Automation and Test in Europe, February 2004, pp.
114-119.

B. Mei, S. Vernalde, D. Verkest, H. D. Man, and R. Lauwereins,
“Exploiting loop-level parallelism on coarse-grained reconfig-
urable architectures using modulo scheduling,” in DATE ’03:
Proceedings of the conference on Design, Automation and Test
in Europe, March 2003, pp. 296-301.

J. M. P. Cardoso and P. C. Diniz, “Modeling loop unrolling:
Approaches and open issues,” in Proceedings of the 4th Inter-
national Workshop on Computer Systems: Architectures, Mod-
elling, and Simulation (SAMOS’04), July 2004, pp. 224-233.
M. Weinhardt and W. Luk, “Pipeline vectorization,” [EEE
Transactions on Computer-Aided Design of Integrated Circuits
and Systems, pp. 234-248, February 2001.

J. Liao, W.-F. Wong, and T. Mitra, “A model for hardware real-
ization of kernel loops,” in Proceedings of the 13th International
Conference on Field-Programmable Logic and Applications
(FPL’03), September 2003, pp. 334-344.

O. S. Dragomir, E. Moscu-Panainte, K. Bertels, and S. Wong,
“Optimal unroll factor for reconfigurable architectures,” in
Proceedings of the 4th International Workshop on Applied
Reconfigurable Computing (ARC’08), March 2008, pp. 4-14.
O. S. Dragomir, T. Stefanov, and K. Bertels, “Loop unrolling
and shifting for reconfigurable architectures,” in Proceedings
of the 18th International Conference on Field Programmable
Logic and Applications (FPL’08), September 2008.



