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Abstract—This paper investigates the conversion of
Residue Number System (RNS) operands to decimal,
which is an important issue concerning the utilization
of RNS numbers in digital signal processing applications.
We present a Mixed Radix Conversion (MRC) technique
for efficient RNS to decimal conversion using the moduli
set {2n + 2,2n + 1,2n}, which has a common factor
of 2. First, we provide two important theorems which
show that, using such a moduli set, the computation of
multiplicative inverses can be eliminated. The usage of
these theorems with the traditional MRC results into
two reverse converters. In terms of area, the proposed
converters require 3 adders, 4 mutipliers and mod-m.
and mg3 operations. The proposed converters also require
2 additions, 2 multiplications with mod-m3 operation in
terms of critical path delay. Our proposals outperform
state of the art equivalent Chinese Remainder Theorem
(CRT) based reverse converter in terms of delay and due
to the fact that the numbers involved in the calculations are
smaller it results in less complex adders and multipliers.

Index Terms—Residue Number System, Mixed Radix
Conversion, Data Conversion, Mixed Radix Digits, arith-
metic operations

I. INTRODUCTION

The usage of Residue Number System (RNS) in Dig-
ital Signal Processing (DSP) applications has received
considerable attention due to its attractive carry-free
property which yields arithmetic processors that are in-
herently parallel, modular and fault isolating [1],[2],[7].
For successful application of RNS, data conversion must
be very fast so that the conversion overhead doesn’t
nullify the RNS advantages [7].

The work on residue to binary conversion is based
on Chinese Remainder Theorem (CRT) [6],[8]-[12] or
on Mixed Radix Conversion (MRC) [3]-[5],[13]. CRT
is desirable because the computation can be parallelized
while MRC is by its very nature a sequential process.

However many up to date RNS to binary/decimal con-
verters are based on MRC due to the complex and slow
modulo-M operation (M being the system dynamic range
thus a rather large constant) required by CRT. The main
problem with the MRC is that the computations of the
MR digits is done in a serial manner and requires a large
number of arithmetic operations.

In this paper, we present an MRC technique for
efficient RNS to decimal conversion using the moduli
set {2n + 2,2n + 1,2n}, which has a common factor
of 2. First, we provide two important theorems which
show that, using such a moduli set, the computation
of multiplicative inverses can be eliminated. The usage
of these theorems with the traditional MRC results into
two reverse converters. In terms of area, the proposed
converters require 3 adders, 4 mutipliers and mod-ms
or mg operations. The proposed converters also require
2 additions, 2 multiplications with mod-mg operation in
terms of critical path delay. Our proposals outperform
state of the art equivalent Chinese Remainder Theorem
(CRT) based reverse converter in terms of required
operations and due to the fact that the numbers involved
in the calculations are smaller it results in less complex
adders and multipliers.

The rest of the article is organised as follows: Section
IT presents the necessary background. In Section III
we describe the proposed algorithm. In Section IV, we
evaluate the performance of our proposal while the paper
is concluded in Section V.

II. BACKGROUND

RNS is defined in terms of a set of relatively prime
moduli set {m;}i—1, such that ged(m;,m;) = 1 for
i # j, where gcd means the greatest common divisor
of m; and m;, while M = [[i; m;, is the dynamic
range. The residues of a decimal number X can be
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obtained as x; = |X|,, thus X can be represented in
RNS as X = (z1,x2,23...,25), 0 < x; < my. This
representation is unique for any integer X € [0, M — 1].
We note here that in this paper we use [X[, to
denote the X mod m; operation and the operatof S
to represent the operation of addition, subtraction, or
multiplication. Given any two integer numbers K and
L in RNS represented by K = (ky, ko, ks, ..., k,,) and
L = (l1,19,13,...,1,), respectively, W = KOL, can be
calculated as W = (w1, wsq,ws, ..., w,), where w; =
|ki®l;|,,, , for i = 1,n. This means that the complexity
of the calculation of the © operation is determined by
the number of bits required to represent the residues and
not by the one required to represent the input operands.

The conversion from RNS to decimal using MRC can
be formulated as follows [2]:

Given an n-digit number X = (z1,x2, 3, ..., Ty) in
an RNS with the set of relatively prime integer moduli
{m;}i=1, find a set of digits {a1,az,as, ..., a,}, which
are the mixed radix digits (MRD), such that Equation (1)
holds true.

X = a1+ agmi +azmims + ... (1)
+ apmimoms...My—1

The mixed radix digits can be computed as follows
[13]:

a, = I

as =

!

(z2 —a1) ’ml_

‘((l’g —ay) ‘mfl‘ - (12) ’mgl
ms

mo me

a3z =

ms ms

(2)
(e — ar)|my i, — a2)|my i, — -

_an_l)’m;illmn‘mn

anp =

Given the MRD a;,0 < a; < m;, any positive
number in the interval [0, Hﬁilmi — 1] can be uniquely
represented.

For a moduli set {m,};—1, with the dynamic range
M = [Ii-, m;, the residue number (z1,x2,x3, ..., Tp)
can be converted into the decimal number X, according
to the Chinese Reminder Theorem, as follows [2]:

n
> M; |M; ’
=1 i M
where M = [[nymi, M; = mMi, and MZ-_1 is the
multiplicative inverse of M; with respect to m;.

The proposed MRC presented in the last section
can be further simplified if certain moduli such as
{2n+2,2n + 1,2n} are utilized. For this moduli set,

X - 9 (3)

different converters have been presented based on the
simplification of the well known traditional CRT. The
best of such converters is given in [6] and represented
as :

{(3:1 —x3) + onnJ
2
on {(a:l — 2x9 + x3) + 2201

2 @

where zg is the XOR over the least significant bits of x;
and x3.

We assume the same moduli sets {2n+2,2n+1,2n}
and we introduce an RNS to decimal converter based on
the traditional MRC. We first show that the computation
of the required multiplicative inverses can be eliminated
using this moduli set. By doing that we obtain relations
that use lesser number of arithmetic operations when
compared to Equation (4).

In the following section we present two reverse con-
verters using the moduli set {2n + 2,2n + 1,2n}. The
two converters use smaller moduli operation compared
to Equation (4).

T2 + Mo

_l’_

III. PROPOSED ALGORITHM

Given the RNS number (x1,x2,x3) with respect to
the moduli set {m,mg, m3} in the form {2n + 2,2n +
1,2n}, the proposed algorithm computes the decimal
equivalent of this RNS number based on the well-known
traditional MRC. First, we demonstrate that the compu-
tation of the multiplicative inverses can be eliminated
using this moduli set. Next, based on the compact forms
of the multiplicative inverses, we obtain two reverse
converters that use modulo mo and modulo mj3 instead
of modulo mims3 used by the state of the art CRT based
equivalent converter.

Theorem 1: Given the moduli set {2n+2,2n+1,2n}
with m; = 2n+ 2, mgo = 2n+ 1, m3 = 2n, for any even
integer n > 0, the following hold true:

() e = 2, 5)
[(m2) ", = 1, (6)
G My = S ™

Proof: 1f it can be demonstrated that [2x % |,,,, = 1,
then 2 is the multiplicative inverse of “3- with respect
to ma. |2 X |y, is given by: [2 X (n 4 1)|2py1 =
127 + 1l2n+1 + [12nt1|2n41 = [0 + 12441 = 1, thus
Equation (5) holds true.

In the same way if |1 X mal|m,, = 1, then 1 is the
multiplicative inverse of mgy with respect to ms. |1 X
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M2|m, 18 given by: |1x (2n+1)|2, = |12n|2n+]|1]2n]2n =
|0 4 1|25, = 1, thus Equation( 6) holds true.

Again, if [("5*)("5*)|m, = 1, then %* is the multi-
plicative inverse of "5 with respect to m3. [(“5* ) ("5*) [,
is therefore given by |(n + 1)(n + 1)|2n, = |[n? + 2n +
Lon = |In2|2n + 127220 + |1|2n|2n = [0+ 0 + 1|2, = 1,
thus Equation( 7) holds true. [ |

Theorem 2: Given the same moduli set {2n+ 2, 2n +
1,2n} with my; = 2n + 2, mg = 2n + 1, mg = 2n, for
any odd integer n > 1, the following hold true:

[(m1) i, = 1, ©)
[(mg) Hma = 1, ©)
()M = T (10)

Proof: If it can be demonstrated that |1 X
(m1) Y m, = 1, then 1 is the multiplicative inverse of
my with respect to ma. |1 x (mq)~Y,, is given by:
1 x (2n + 2)|2n+1 = |2n + 2|2n+1 = 1, thus Equation
(8) holds true.

In the same way if |1 X mgo|ms = 1, then 1 is the
multiplicative inverse of mso with respect to 2. |1 X
ma|ms is given by: |1 x (2n+41)|, = ||12n]n + |1]n]2n =
|0+ 21|n = 1, thus Equation( 9) holds true.

Again, if [("#)my|ms = 1, then () is the multi-
plicative inverse of mq with respect to . | (" )my | ma

is therefore given by: |((2n47+2))(2n+ 2)p=|(n+1)(n+

Dl = [0 +2n 4 1 = |00 + 20]n + (1] =
|04+ 0+ 1|, = 1, thus Equation(10) holds true. [

Proposition 1: For RNS  with  moduli  set
{m1,ma,m3} sharing a common factor, (z1,x2,xs3)
represents a valid number if and only if (x1 + x3) is
even.

Proof: This proposition has been proved in [6]. W

Making the appropriate substitution in Equation (1),
we can particularize it for 3-moduli RNS sharing a
common factor as follows:

Corollary 1: For the moduli set {2n + 2,2n +1,2n}
the decimal equivalent X of the residue set {1, x2, z3},
(z1 + x3) being even, can be computed as follows:

1) If nis even, n > O:

a, = I
az = [2(z2 —a1)|m,

mi
a3 = [(—(z3—a1) = a2)|m,

2
2) If nis odd, n > 1:

al = X

2(z2 — a1)|m,
m
(G (@3 — a1) = a2)|m,

az

as =

[ Operations [ [6] [ CI for n-even [ CII for n-odd |
Additions 7 5 5
Multiplications 2 4 3
Reduced M mims mo and ms3 meo and ms3
Table 1

PERFORMANCE COMPARISON

Proof: Trivial with proper substitutions from The-
orem 1 and Theorem 2 and also due to Proposition 1.
|

IV. PERFORMANCE EVALUATION

Clearly, it can be seen that the numbers involved in
the multiplication are very small when compared to the
numbers involved in the direct CRT or MRC implemen-
tations. Additionally, the large modulo M calculations in
the traditional CRT are replaced by modulo calculations
with the mo and mg3 moduli in the moduli set under
consideration.

Previous work on 3-moduli RNS in [6,8] has demon-
strated improvement over traditional CRT in terms of
operands magnitude as this determines the complexity
and delay of the associated RNS hardware. Additionally,
[6] outperformed [8] in terms of the operands magnitude
thus we compare our proposal with this approach. Table I
presents performance comparison in terms of the number
of arithmetic calculation and magnitude of the modulo
operation. We note here in Table I that the following
notations are utilized: CI for n-even stands for the
proposed converter for n-even while CII for n-odd stands
for the proposed converter n-odd. As indicated in Table I
converter for n-even requires more arithmetic operations
but smaller modulo calculations than [6] whereas con-
verter for n-odd requires the same arithmetic operations
as [4] but also smaller modulo calculations than [6].
Consequently, the operands magnitude is significantly
reduced which is more important for the hardware com-
plexity.

V. CONCLUSIONS

In this paper, we investigated the conversion of
RNS operands to decimal, which is an important issue
concerning the utilization of RNS numbers in DSP
applications. We present an MRC technique for effi-
cient RNS to decimal conversion using the moduli set
{2n + 2,2n + 1,2n}, which has a common factor of
2. First, we provided two important theorems which
show that, using such a moduli set, the computation
of multiplicative inverses can be eliminated. The usage
of these theorems with the traditional MRC results into
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two reverse converters. In terms of area, the proposed
converters require 3 adders, 4 mutipliers and mod-mso
or ms operations. The proposed converters also require
2 additions, 2 multiplications with mod-mgs operation in
terms of critical path delay. Our proposals outperform
state of the art CRT based reverse converter in terms
of delay and due to the fact that the numbers involved
in the calculations are smaller it results in less complex
adders and multipliers.

(1]
(2]
(3]

(4]

(5]

(6]

(71

(8]

(9]

(10]

(11]

[12]

(13]

REFERENCES

H.L. Garner, The residue Number System, IRE Trans. on
Electronic Computers, pp. 140-147, 1959.

Szabo, N., and Tanaka, R. : Residue arithmetic and its applica-
tion to computer technology, McGraw-Hill, New York, 1967.
N.B. Chakraborti, J.S. Soundararajan and A.L.N. Reddy, An
implementation of mixed-radix conversion for residue number
applications, IEEE Trans. computer, Vol. C-35, Aug., 1986.
C.H. Huang, A fully parallel mixed-radix conversion algorithm
for residue number applications, IEEE Trans. computer, Vol.
C-32, pp. 398-402, April, 1983.

D.F. Miller and W.S. McCormick, An arithmetic free parallel
mixed-radix conversion algorithm, IEEE Trans. Circuits Syst.
I Analog and Digital Signal Processing, Vol. 45, pp. 158-162,
Jan., 1998.

M.O. Ahmad, Y. Wang, M.N.S Swamy, Residue to Binary
Converters for three moduli set, IEEE Trans. Circuits Syst. II,,
Vol. 46, pp. 180-183, Feb., 1999.

M. A. Soderstrand, W. K. Jenkins, G. A. Jullien, and F. J. Taylor,
Residue Number System Arithmetic: Modern Applications in
Digital Signal Processing. New York, IEEE press, 1986.

A. B. Premkuma, An RNS to Binary Converter in a Three
Moduli Set with Common Factors, IEEE Trans. on Circuits and
Systems-1I: Analog and Digital Processing, Vol. 42, No. 4, pp
298-301, April, 1995.

A. B. Premkuma, Corrections to An RNS to Binary Converter
in a Three Moduli Set with Common Factors, IEEE Trans. on
Circuits and Systems-II: Analog and Digital Processing, Vol.
51, No.1, pp 43, January, 2004.

W. Wang, M.N.S. Swamy, M.O. Ahmad and W. Wang, A study
of Residue to Binary Converters for the Three-Moduli Sets,
IEEE Trans. on Circuits and Syst-Fundamental Theory and
Applications, Vol. 50, No. 2, pp 235-245, 2003.

Y. Wang, New Chinese Remainder Theorems, in Proc. Asilomar
Conference, USA, pp. 165-171, Nov., 1998.

A. B. Premkumar, An RNS to Binary Converter in 2n + 1,
2n, 2n — 1 Moduli Set, IEEE Trans. on Circuits and Systems-
II: Analog and Digital Signal Processing, Vol. 39, No. 7, pp.
480-482, July, 1992.

H.M. Yassine and W.R. Moore, Improved mixed-radix conver-
sion for residue number architectures, IEEE proceedings, Vol.
138, No.l pp120-124, Feb. 1991.

321



