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Abstract: In this paper we implement in hardware,
a novel approach for accelerating the S-W algorithm
using Recursive Variable Expansion (RVE) technique,
which enhances inherent parallelism and exposes extra
parallelism as compared to any other technique. The
results demonstrate that applying recursive variable
expansion technique speeds up the performance by a
factor of 3.83, as compared to traditional acceleration
approaches at the cost of using up to 1.36 times more
resources.
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I. I NTRODUCTION

Smith-Waterman (S-W)is the most accurate sequence
alignment algorithm available, but its computational com-
plexity makes it very slow in real applications [1]. Faster
algorithms like FASTA [2] and BLAST [3] are available,
but they achieve high speed at the cost of reduced accuracy.
Thus it is highly desirable to accelerate the S-W algorithm
in hardware.

Various approaches have been adopted to accelerate the
S-W algorithm in hardware [4], [5], [6], [7], [8], [9]. An
overview of such approaches is given in [10].

In this paper we implement in hardware, a novel
approach for accelerating the S-W algorithm using the
Recursive Variable Expansion (RVE) technique, and com-
pared the results with the implementation using traditional
acceleration approaches. The speedups thus achieved are
reported later in the paper.

The remainder of the paper is organized as follows: Sec-
tion II gives a brief description of the S-W algorithm, dis-
cusses related work using traditional acceleration approach
and briefly explains recursive variable expansion. Section
III discusses the implementation using traditional acceler-
ation approaches. Section IV discusses the implementation

using the RVE technique. Section V discusses the results
obtained and Section VI gives a brief conclusion.

II. BACKGROUND AND RELATED WORK

The S-W algorithm [1] is a method used for local
sequence alignment and is based ondynamic programming
(DP) [11]. In the following subsections we give a brief
description of the algorithm, its inherent data dependencies
and work related to its hardware acceleration.

A. S-W Description
When calculating the local alignment, a matrixHi,j is

used to keep track of the degree of similarity between the
two sequences to be aligned (Ai and Bj). Each element
of the matrixHi,j is calculated according to the following
equation:

Hi,j = max





0
Hi−1,j−1 + Si,j

Hi−1,j − d
Hi,j−1 − d

(1)

whereSi,j is the similarity score of comparing sequence
Ai to sequenceBj and d is the penalty for a mismatch.
The algorithm consists of the following three steps:

1) Initialization step
2) Matrix fill step
3) Trace back step

The matrix is first initialized withH0,j = 0 andHi,0 = 0,
for all i and j. This is referred to as theinitialization
step. After the initialization, amatrix fill stepis carried out
using Equation 1, which fills out all entries in the matrix.
The final step is thetrace back step, where the scores
in the matrix are traced back to inspect for optimal local
alignment. The trace back starts at the cell with the highest
score in the matrix and continues up to the cell, where



the score falls down to a predefined minimum threshold.
In order to start the trace back, the algorithm requires to
find the cell with the maximum value, which is done by
traversing the entire matrix.

The time complexity of the initialization step isO(M +
N). During the matrix fill step, the entireHi,j matrix
needs to be filled according to Equation 1, making its time
complexity equal to the number of cells in the matrix or
O(MN). The time complexity of the traceback is also
O(MN), as the entire matrix needs to be traversed during
this step. Thus the total time complexity of the S-W
algorithm isO(M +N)+O(MN)+O(MN) = O(MN).
The total space complexity of the S-W algorithm is also
O(MN), as it fills a single matrix of sizeMN .

In order to reduce theO(MN) complexity of the
matrix fill stage, multiple entries of theHi,j matrix are
calculated in parallel. This is however complicated by data
dependencies, whereby eachHi,j entry depends on the
values of three neighboring entriesHi,j−1, Hi−1,j and
Hi−1,j−1, with each of those entries in turn depending on
the values of three neighboring entries, which effectively
means that this dependency extends to every other entry
in the regionHx,y : x ≤ i, y ≤ j. This implies that it
is possible to simultaneously compute all the elements in
each anti diagonal, since they fall outside each others data
dependency regions. Figure 1 shows a sampleHi,j matrix
for two sequences, with the dashed rectangles indicating
the elements that can be computed in parallel. The right
bottom cell is highlighted to show that its data dependency
region is the entire matrix. The dark diagonal arrow indi-
cates the direction in which the computation progresses. At
least 9 cycles are required for this computation, as there
are 9 dashed rectangles representing 9 anti diagonals and
a maximum of 5 cells may be computed in parallel.
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Fig. 1. A sampleHi,j matrix, showing the parallelization possibilities
The degree of parallelism is constrained to the number

of elements in the anti diagonal and the maximum number
of processing elements required will be equal to the
number of elements in the longest anti-diagonal (ld), where

ld = min(M, N) (2)

Here, we have assumed that the processing elements are
equal in number to the length of the shorter sequence. The-
oretically, the lower bound to the number of steps required
in this parallel implementation equal to the number of anti-
diagonals required to reach the bottom-right element is
m + n− 1 [12].

So far this is the best technique for parallelization and
has been used by many researchers [13], [14], [5].
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Fig. 2. Circuit to compute an element in theHi,j matrix, where+ is
an adder,> is a max operator and LUT stands for Look Up Table that
generates match/mismatch scores

Figure 2 shows the implementation to compute an
element of theHi,j matrix. This unit contains three adders,
one Look Up Table (LUT) and three comparators. The time
to compute an element is 4 cycles, where each cycle is
presumably equal to the latency of one add, compare or
LUT operation.

B. Traditional Acceleration of the S-W Algorithm
As mentioned in Section II-A, the best known hardware

acceleration of the S-W algorithm takesm+n−1 steps to
complete. Since each step takes 4 cycles, the best known
time to compute the S-W algorithm is4(m+n−1) cycles.

A lot of work has been done to accelerate the S-W
algorithm using various hardware platforms. In addition
to specific architectures designed for sequence alignment,
many solutions for special purpose hardware, SIMD and
FPGAs have been devised [10].

In [4], the authors studied the improvement of computa-
tional processing time of the S-W algorithm usingcustom
instructions (CIs)on an FPGA board. This was done by
first writing the S-W algorithm in pure software and then
replacing the portion which was the most computationally
intensive with an FPGA custom instruction. Particulary,
they designed CIs on an Altera Nios II integrated devel-
opment environment. The Nios II soft microprocessor was



instantiated on an FPGA to allow rapid prototyping of new
designs. Finally, they compared the processing runtime
between the pure software and the hardware acceleration
versions to calculate the percentage of runtime improve-
ment. The results showed that the hardware accelerated
algorithm improved the processing runtime by an average
of 287%. Thus using FPGA CIs is a promising direction for
further research in improving genomic sequence searching.

In [5], an approach to realize high speed sequence
alignment using run-time reconfiguration is proposed. With
this approach, it is demonstrated that high performance can
be achieved using off-the-shelf FPGA boards. The per-
formance is almost comparable with dedicated hardware
systems. The time for comparing a query sequence of 2048
elements with a database sequence of 64 million elements
by the S-W algorithm is about 34 sec, which is about 330
times faster than a desktop computer with a Pentium-III,
1.0 GHz processor.

In [6], an implementation of the S-W algorithm is
described on a general purpose fine-grained SIMD archi-
tecture, theMicro Grained Array Processor (MGAP). The
authors of [6] show that their implementation is about 5
times faster than the rapid implementation of a genetic
sequence comparator using FPGAs, called SPLASH [15].
Showing thereby, that massively parallel processor arrays,
like the MGAP, possess the capability to solve compu-
tationally intensive problems in Computational Molecular
Biology efficiently and inexpensively.

The Kestrel parallel processor is a single-board copro-
cessor with a 512-element linear array of 8-bit, SIMD
processing elements [7]. As a case study, the authors
of [7] implemented the S-W algorithm on the Kestrel
parallel processor for different query sizes. The results
show that their implementation is 17 times faster than an
implementation on Ultra SPARC-II, 500 MHz processor,
for a query size of 100.

In [8], it has been demonstrated that the streaming
architecture ofGraphics Processing Units (GPUs)can be
efficiently used for biological sequence database scanning.
To derive an efficient mapping onto this type of architec-
ture, the authors have reformulated the S-W algorithm in
terms of computer graphics primitives and claim that the
evaluation of their implementation on a high-end graphics
card shows a speedup of almost sixteen compared to a
Pentium IV, 3.0 GHz processor. They also claim that this
is the first reported implementation of the S-W algorithm
on graphics hardware.

In [9], a software-only implementation of the S-W
algorithm is profiled on Pentium-IV, 3.2 GHz processor,
using the GNU profiler. The profiling results identify that a
specific small part of the algorithm consumes a dispropor-
tionately large amount of computational time, amounting
to 72.33 % of the total runtime. This part is then designed

in VHDL. The processing run time of the software-only
implementation on Pentium-IV, 3.2 GHz processor and
hardware implementation on a Virtex II Pro FPGA are
compared to evaluate the % runtime improvement. The re-
sults show that the hardware implementation is 35.82 times
faster than its equivalent software-only implementation.

C. Recursive Variable Expansion

Recursive Variable Expansion (RVE)[16] is a kind
of loop transformation which removes all the data
dependencies from a program, so that the program gets
prone to maximum parallelism. The basic idea is that if
any statementGi is dependent on statementHj for some
iterationi andj, then instead we wait forHj to complete
and then executeGi, we will replace all the occurrences
of the variable inGi that create dependency withHj

with the computation of that variable inHj . This way
there is no need to wait for the statementHj to complete
and statementGi can be executed independently ofHj .
Similarly, if Hj is dependent on some other statement,
we will imbed the computation of that statement into
Hj to make it independent of that statement. This step
is recursively repeated until the statementGi is not
dependent on any other statement other than inputs or
known values, which essentially means thatGi can be
computed without waiting for the computation of any
other statement. This transformation can be explained
clearly by Example 1, which adds the loop counter.
Therefore after applying the RVE, we get an expression
with five terms to be added as shown in Example 2. In
this way, the whole expanded statement in Example 2 can
be computed in any order by computing the large number
of operations in parallel and efficiently using binary tree
structure as shown in Figure 3. The major drawback of
this technique is that the speed up is achieved at the cost
of redundancy, which consumes a lot of resources.

Example 1: A simple example which adds the loop counter

A[1] = 1
for i = 2 to 5
A[i] = A[i-1] + i ( Gi)
end for

Example 2: After applying RVE on Example 1

A[5] = A[4] + 5
= A[3] + 4 + 5
= A[2] + 3 + 4 + 5
= A[1] + 2 + 3 + 4 + 5
= 1 + 2 + 3 + 4 + 5
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Fig. 3. Circuit for Example 2

III. I MPLEMENTATION USING TRADITIONAL

ACCELERATION APPROACH

Figure 4 shows a block diagram of a basic cell for
computing elements of theHi,j matrix according to a
traditional acceleration approach normally referred to as a
systolic array approach. In Figure 4 Comp1 is a comparator
that compares the two input sequences and outputs the
corresponding value ofSi,j , depending on the values of the
match and mismatch scores, such thatSi,j = match score, if
the corresponding characters of Sequence1 and Sequence2
are equal, otherwiseSi,j = mismatch score. Add1 is an
adder that adds the diagonal elementHi−1,j−1 and the
value of Si,j . Comp2 is a comparator that compares the
output of the Add1 with a constant value 0 and outputs
the greater of the two numbers. Add2 is an adder that
adds the left elementHi−1,j and -d, where d is the gap
penalty. Add3 is an adder that adds the upper element
Hi,j−1 and -d. Comp3 compares the outputs of Add2 and
Add3 and outputs the greater of the two numbers. Comp4
compares the outputs of Comp2 and Comp3 and results
the greater of the two numbers. The output of Comp4 is
the correspondingHi,j value, which is stored in register
Ri,j .

The block diagram shown in Figure 4 is implemented
in VHDL and the post place and route simulations show
that the time consumed by such a cell is 9.8 ns, where
the frequency of the clock used is 50 MHz and the
clock period is 20 ns. The synthesis report shows that
while implemented on Xilinx XC2VP30 FPGA, one cell
consumes 19 out of 13696 slices.

The cell design shown in Figure 4 can be used to
implement a systolic array of any size depending on the
availability of hardware resources. As a case study, we
implemented a 2×2 systolic array, as shown in Figure 5.

The matrix is initialized with the value zero. The gap
penalty is assumed to have a value zero and a simple
scoring scheme is assumed, such thatSi,j = 2, if there
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Fig. 4. Block diagram description of a basic cell for computingHi,j
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Fig. 5. Block diagram description of a 2×2 systolic array

is a match otherwiseSi,j = 0. The remaining values of
the Hi,j matrix are computed using the systolic array
structure, shown in Figure 5. Table I shows the filled
matrix obtained using this systolic array implementation.
The bold digits in Table I show the trace back path. Since
the elements within each anti diagonal are independent
of each other, they are computed in parallel in the array.
Therefore the time consumed by an anti diagonal is the
same as the time consumed by one cell, which is 9.8 ns.
Furthermore, since there are 3 anti diagonals in a 2×2
systolic array, the speedup factor (calculating the elements
in anti diagonals in parallel) = 4/3 = 1.33. The latency for
the entire computation, as obtained from the post place
and route simulation is equivalent to 49.8 ns. The synthesis
report shows that the resources utilized for implementation

TABLE I
FILLED MATRIX OBTAINED USING THE SYSTOLIC ARRAY

IMPLEMENTATION , AS SHOWN IN FIGURE 5.

A G
0 0 0

G 0 0 2
G 0 0 2



of a 2×2 systolic array are equivalent to 70 slices.
We considered a software equivalent of the basic sys-

tolic cell written in C language. We run it on a 100 MHz
IBM power PC and measure its runtime, which was 2790
ns. This runtime when compared with the runtime of the
basic systolic cell in hardware gives the relative speedup.

Speedup = 2790 / 9.8 = 284.7.
Speedup for 2×2 systolic array = 284.7×1.33 = 378.65.

IV. I MPLEMENTATION BY APPLYING RECURSIVE

VARIABLE EXPANSION

Figure 6 shows the way to fill a 2x2Hi,j matrix using
RVE, as per Equations 3, 4, 5 and 6. In each case the cell
to be filled is highlighted along with the cells which are
required for its computation.

H11 = max





H00

H01

H10

(3)

H12 = max





H00

H01

H02

H10

(4)

H21 = max





H00

H01

H10

H20

(5)

H22 = max





H00

H01

H02

H10

H20

(6)

We define the size of RVE block as theblocking factor
(b). So for a 2×2 array implemented using RVE, the
blocking factor b = 2. When implemented in VHDL, this
block with b = 2 consumes 13 ns, where the clock period
is 30 ns and the frequency is 33.33 MHz. Using this block
as a macro design, an array of any larger size may be
implemented, depending on the availability of hardware
resources. Figure 7 shows the block diagram representation
of this RVE design with b = 2. The synthesis report shows
that the design consumes 95 out of 13696 slices.

Performance gain in terms of latency, as compared to
a 2×2 traditional systolic array = 49.8/13 = 3.83. This
performance gain is achieved at the cost of utilizing 95/70
= 1.36 times more resources.

V. D ISCUSSION ANDRESULTS

Systolic array is the best known implementation of the
S-W algorithm known so far, as it exploits the maximum
parallelism available in the algorithm. This inherent paral-
lelism is limited by the data dependencies in the algorithm.

RVE b=2

Hi-2,j-2

Gap_Penalty
Hi,j-2

Hi-2,j

Hi-1,j-2

Hi-2,j-1

Si

Si-1

Tj

Tj-1

O1

O2

O3

O4

Fig. 7. Block diagram representation of an RVE design with b = 2

The RVE technique applied in this paper eliminates this
limitation by expanding all the variable to their maximum
capacity. The result is an improved performance at the cost
of using additional resources. The degree of expansion for
the variables depends on the availability of resources on
the device being utilized. So its a trade off between the
speedup achieved and the resources utilized.

The results achieved from our implementations, as
reported in Table II, demonstrate that the systolic array
implementation is 378.65 times faster than its equiva-
lent software implementation. Moreover applying recursive
variable expansion technique speeds up the performance
by a factor of 3.83, as compared to the systolic array
implementation at the cost of utilizing 1.36 times more
resources. The speedup achieved by applying RVE tech-
nique increases with the increasing blocking factor (b), but
resource utilization also increases as a consequence. Thus
the limiting factor is the availability of resources on the
device being utilized for implementation (Xilinx XC2VP30
in our case).

VI. CONCLUSION

In this paper, we implemented the S-W algorithm by
applying the RVE technique. This helps to explore more
parallelism and to eliminate the limitation inherited by the
data dependencies. The result is an improved performance
at the cost of higher resource utilization as compared to tra-
ditional acceleration approaches. The results demonstrate
that the implementation using this technique improves the
performance by a factor of 3.83, as compared to the imple-
mentation using traditional acceleration approaches, at the
cost of using 1.36 times more resources. The performance
may further be improved by utilizing even more resources.
So the performance gain is actually a trade off between the
speedup desired and the resources available.
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