
High Quality Simulation Tool
for Memory Redundancy Algorithms

Kaname Yamasaki Said Hamdioui Zaid Al-Ars Arjan van Genderen Georgi N. Gaydadjiev
Delft University of Technology, Faculty of Electircal Engineering, Mathematics and Computer Science,

Computer Engineering Laboratory, Mekelweg 4, 2628 CD Delft, The Netherlands
E-mail: kaname@dutepp0.et.tudelt.nl

Abstract—This paper presents a high quality simulation tool
that evaluates the efficiency of redundancy algorithms (RAs) for
repairable memory devices. The tool can generate various faulty
memory models to be analyzed by a given RA. Furthermore
it can provide useful information for the feedback to RA
under evaluation when the RA fails to repair any theoretically
repairable model. The approach and the external specifications
are described according to the properties required for the tool.
Keywords: Redundancy algorithm (RA), efficiency, yield,
built-in self repair (BISR), faulty memory model.

I. M OTIVATION

Modern system-on-chips (SoCs) involve increasing number
of various Intellectual Properties (IPs). Most of the IPs are apt
to include their own dedicated memories. This is the reason
why more memories with different types, sizes and operating
frequencies have been embedded in a single SoC. It is also
increasing the memory share of the overall chip area budget,
which is more than 50 % in some present SoCs. Consequently,
the yield of a chip depends more on that of the memories it
embeds. A repairable memory, or a memory equipped with
the redundancy circuits such as spare rows, columns and
data-bits, is effective to keep the yield at acceptable level.
Small faults in the memory can be repaired by replacing with
the redundancy circuits. One dimensional (1D) redundancy
employs either of the above redundancy circuits. Moreover
two dimensional (2D) redundancy employs the spare columns
or data-bits with the spare rows. A way how to repair the faults
on a memory with 2D redundancy is referred as redundancy
algorithm (RA). The RA problem has been shown to be
NP-complete [5] hence many heuristic approaches have been
previously developed and proposed. At the same time, a built-
in self repair (BISR) scheme must be implemented because it
is not economical to repair many large embedded memories
using external automatic test equipment (ATE). The proposed
RAs for BISR are in general less efficient than the ATE
based ones due to the chip area overhead limitations of the
BISR schemes. Therefore more efficient and compact RA is
necessary for improved yield and reduced test time.

Some simulation tools for evaluating the efficiency
of RA have been developed and proposed by Virage
Logic [8] [10] [9] [12], National Tsing Hua University [2] [3],
and others [13] [7] [14]. However, for simplicity, they limit
variety of faults in a memory model to be analyzed by RA.
This limitation may cause incorrect evaluations. Moreover,

their tools don’t provide any feedback information to RA under
evaluation. In short, they don’t help the RA improve but only
evaluate it.

According to Nakahara et. al [6], even a simple RA is
comparable in efficiency to other superior RAs such as repair
most [11] and branch & bound [5], if simple failures can be
fixed effectively. Their approach was experimentally evaluated
using their simple RA and hundreds of repairable faulty
models sampled from identical real memory devices. Actually,
the sample contained more than 75% of models with simple
failures. That means models with simpler failures increasethe
efficiency while those with more complicated ones decrease
it. In other words, an over- or under-estimation of RA may
happen if simpler or more complicated failures in models are
assumed than common ones in real devices. Therefore, the
faults in a memory model should be realistic from the point
of view of type, probability and location.

This paper presents a new simulation tool for proposing
compact and efficient RAs especially for BISR, which evalu-
ates them using realistic memory models and also provides
feedback information in case of failed repairs. Section II
discusses the specification and functions required for the
tool. Section III discusses the ways to satisfy the above
properties. Section IV describes the external interfaces of the
tool. Section V concludes this paper.

II. TOOL PROPERTIES

The purpose of the tool development is to propose and eval-
uate an optimum RA according to the memory configuration,
redundancy circuits and process technology. The following
items are required for the tool.

1) The efficiency of a given RA, or RA efficiency, should
be evaluated quantitatively but fast: Various faults can
occur in a memory device during the manufacturing
process. So many faulty memory models should be
considered, and then analyzed by RA. Generally quanti-
tative approach causes complex computations. So some
techniques to simplify the computation are also required.

2) Realistic faults in a faulty memory model should be
considered for more exact evaluation: The faults should
be realistic in view of the types, probability and location.
Because non-realistic faults may cause over- or under-
estimation as described above.

133



3) Configuration of the memory array and redundancy
circuits in a memory model should be variable: The
efficiency is defined only for a same type of memory
device that has same architecture and configuration.
Therefore the numbers of regular rows and columns, and
spare rows and columns should be based on a repairable
memory device that employs RA.

4) A handmade faulty memory model should be also an-
alyzed by a given RA: There are several well-known
faulty memory models as difficult problems for most
RAs [1]. A proposed RA should be applied to such
models in order to check the superiority.

5) When RA fails to repair a faulty memory model, ad-
ditional information should be also available: First, the
fault bit map is definitely necessary to know whether it
has really complicated but repairable faults. Second, the
locations of consumed spare rows and columns are also
useful to know whether they are effectively allocated.
Moreover, the ratio of repaired fault classes to all fault
ones is defined as the repair rate for class (Rc), which
is useful to know how many classes RA recognizes.
Similarly, the ratio of repaired fault bits to all fault ones
is defined as the repair rate for bit (Rb), which is useful
to know whether RA miss large fault classes.

III. A PPROACH

The ways to satisfy the above properties are discussed in
this section.

A. Concept and Definition of RA Efficiency

Figure 1 shows the categorization of a memory device based
on the faultiness and repairability. All memories set represents
many identical memory devices with the redundancy circuits,
which have the same architecture and configuration, and are
fabricated by the same process technology. All memories
are first categorized into fault-free ones and faulty ones.
Furthermore, the faulty ones are categorized into theoretically
unrepairable ones and theoretically repairable ones basedon
the redundancy configuration. General RAs sometimes fail
to repair theoretically repairable ones because of the NP-
complete problem as described in I. Therefore, theoretically
repairable ones are categorized into unrepaired ones and
repaired ones based on the analysis result of a given RA. The
RA efficiency orE is expressed as the following equation.

E =
Number of Repaired Memories

Number of Theoretically Repairable Memories

As various faults can cause randomly in a memory device,
enormous numbers of faulty memory models are required for
the exact evaluation. Additionally, the order of detectingfault
bits in a memory device affects the analysis results of some
RAs especially for a repair system without enough memory
resources, such as BISR and low-end ATE. In other words,
the border between the set of repaired memories and that of
unrepaired ones is not so clear as shown in Figure 1. Because
such RAs start to allocate a spare element on some fault bits

Fig. 1. Categorization of Memory Device

if the memories or registers in the system for storing fault
bits are full even before recognizing all of them. The order
usually depends on the used test algorithm, the behavior of
fault bits etc. Therefore,E should be independent of the order.
All considerable orders of handling fault bits for each faulty
memory model must be analyzed by RA. Needless to say, it
is impossible to apply such analysis to enormous number of
faulty memory models. In order to reduce the computational
complexity, sampling is applied to the evaluation. Furthermore,
all fault bits in a fault class are assumed to be detected
not discretely but sequentially. In other words, some memory
models are randomly selected as a sample from all memory
models, and the order of detecting fault classes for each model
is determined in the same fashions described in III-C. Figure 2
shows an example of categorization in the case of 20 models.
Note that all fault-free models are represented as different
points for the countability although they are the same from the
view of fault bit map. The number of theoretically repairable
ones is 10, and that of repaired ones is 6. ThereforeE is 60
%. This method will provide approximate evaluation when the
number of models is small, but more exact evaluation when
larger.

Fig. 2. Example of Categorization

Consequently, RA evaluation is composed of four pro-
cedures; sampling, ordering, categorization and calculation.
In the first procedure, some memory models are randomly
selected as a sample from all memory models with or without
faults. The configuration of the models is based on the
memory device that employs RA. A designated model is
also available instead of random selection. The number of
models is changeable according to the exactness. In the second
procedure, the order of detecting fault bits in each model is
determined. In the third procedure, each model is categorized
based on the repairability. When a given RA fails to repair
a model, information about the faults and analysis result is
provided. In the final procedure,E is calculated according

134



to the categorization data. The detail of each procedure is
described in the following sections.

B. Sampling

Faulty memory models generated randomly can be regarded
as a sample. However, some models may be fault-free or
theoretically unrepairable because it is difficult to generate
theoretically repairable models selectively for evaluating RA.
Therefore the following methods are proposed for generating
the models.

1) The number of defects causing faults in a memory
is determined statistically. Here a defect means like
a crystal defect in Si or a cluster on Si, which has
a potential to cause any type of fault. The number
is assumed to depend on a probability distribution, or
Poisson distribution as a default. Others such as Polya-
Eggenberger distribution, gamma distribution, negative
binominal distribution, uniform distribution should be
also available according to the practical application. The
number can be determined from the used cumulative
distribution function and uniform random number gen-
erator.

2) The transformation from a defect to a fault class is
performed also statistically. In fact, it can be done
according to the probability of each fault type as well
as using a uniform random number generator. As many
as 8 types shown in Figure 3 are considered as a fault
class. Figure 4, 5 and 6 shows physical topology of each
fault type. Each linear fault class like RS, RD, LS and
LD includes full or partial linear fault. A partial one is
assumed to consist of sequential faulty cells in line from
the beginning.

Fig. 3. Categorization of Fault types for Memory Circuit

3) The length of each linear fault class is determined ran-
domly or using a uniform random number generator. The
minimum length is as long as must repair is possible,
and the maximum one is equal to the length of row or
column. For example, when the number of spare rows
(or columns) ism, the minimum length of a column (or
row) fault is m + 1.

4) The location of each fault class is determined randomly,
or using a uniform random number generator. An over-
lap of 2 or more fault classes is allowed because it can

Fig. 4. Topology of single and cluster faults

Fig. 5. Topology of row faults

be occurred in a real device. Figure 7 shows a model
after allocating faults.

C. Ordering

A model generated automatically in the above procedures
or by hand provides only the location of fault classes, which
is not sufficient for evaluating RA. Here the order of detecting
fault bits for each model is determined in the following fashion
for simplicity. First, all fault bits in a class are assumed to be
always detected not discretely but sequentially. Furthermore,
all fault classes of the same type are assumed to be always
detected sequentially and randomly. Generally, the earlier
detection of large fault classes makes it easier to repair the
model, which may cause an over-estimation of RA efficiency
or E. On the contrary, the later detection of them makes it
more difficult, which may cause the under-estimation. Both of
them are not preferable, but are useful to guess the range of
E. Additionally if a fault class is randomly detected, it will
provide the average ofE. Therefore the following ways are
proposed for ordering fault bits.

1) The order of detecting fault classes in a model is
determined from 3 options; order of size starting with
the smallest class, that of size starting with the largest
class, or at a random. The 1st option, the easiest order
to repair the model, will provide the highest range ofE.
The 2nd option, the most difficult order, will provide the
lowest range. The 3rd option will provide the average.
Figure 8 shows an order of size starting with the smallest
fault class, which is ordered as below: (1) CS, (2) CR,
(3) CL, (4) CQ, (5) RS, (6) LS, (7) RD and (8) LD.

135



Fig. 6. Topology of column faults

Fig. 7. Memory Circuit after Allocating Faults

2) Each fault class is decomposed into fault bits because
RA analyzes every model bit by bit. A model after the
decomposition is shown in Figure 9 This is generally
called as a fault bit map (FBM).

3) All fault bits are assigned to an array data in the deter-
mined order of fault classes. It may be better for the tool
implementation to transform their 2-dimensional (2D)
addresses to 1-dimensional (1D) ones or cell addresses
before the assignment.

D. Categorization

Models generated in the above procedures are categorized
here. They may include fault free ones as described above.
Therefore the following ways are proposed for categorizing
models.

1) Only faulty models are selected.
2) Only theoretically repairable models are selected from

the above faulty ones according to the redundancy
configuration. The selection is based on a golden re-
dundancy algorithm such as comprehensive exhaustive
search method [4].

3) Each theoretically repairable model is also analyzed by
a given RA if it is repaired or not. The RA is given as a
source code in C language. The memory resources on a
repair system that employs the RA must be considered.
For example, on-the-fly RA on a BISR scheme may only
handle fault bits as given because the scheme does not
have so many memory resources. On the other hand, RA
on ATE can analyze after storing all fault bits because
ATE has a lot of the resources.

4) If the given RA fails to repair any model, the feedback

Fig. 8. Order of Size starting with the Smallest Fault Class

Fig. 9. FBM for RA Evaluation

information is provided for improving RA efficiency. It
contains the repair rates of Rc and Rb, the location of
all fault classes, and the location of replaced rows and
columns. The repair rates are expressed as the following
equations.

Rc =
Number of Repaired Fault-Classes

Number of All Fault-Classes

Rb =
Number of Repaired Faulty Bits

Number of All Faulty Bits

Note that a fault class is not exclusively but only
randomly allocated. Therefore it may be partly or fully
included by 1 or more other fault classes. In the case
of counting fault classes, a partly included class is
countable, but a fully included class is not countable.
Similarly, in the case of fault bits, 2 or more bits on the
same location must not be counted again.

E. Calculation

The RA efficiency orE is expressed as the following
equation.

E =
Number of Repaired Models

Number of Theoretically Repairable Models

It is calculated as the transient RA efficiency every time a
theoretically repairable model is analyzed and categorized. The
exactness of the transient efficiency is low when the number
of models is small, but becomes higher when larger.

F. Techniques for Fast Evaluation

The simulation time for evaluation may be still long due to
the following reasons even if only an order of detecting fault
bits is considered for each model.

1) Much more than the optimal number of models is always
required because it is impossible to estimate the optimal
number in advance according to the exactness.

136



2) Models for a large memory require much memory
resource on a computer in the categorization because
a linear fault class contains many fault bits according
to the size of memory. Furthermore they require much
computation in the sampling and categorization because
there are more faulty bits on a large memory.

3) A memory with many redundancy circuits requires much
computation in the categorization because comprehen-
sive exhaustive search method as a golden RA is com-
posed of permutations of allocating all spare rows and
columns. Especially a theoretically unrepairable model
wastes most computation because it is always analyzed
by all solutions.

The 1st and 2nd problems can be solved. The final problem
is not perfectly avoidable because it exactly originates from its
NP-complete problem. Therefore the following solutions are
proposed.

1) The number of models can be automatically determined
according to the convergence of the transient efficiency,
which is calculated from the cumulative models. The
target for the convergence degree or change of transient
efficiency can be given as one of the input parameters.
If it is low convergence, small numbers of models
generated provide fast and rough evaluation. It is useful
for relative evaluation, for example, judging if a new
proposed algorithm is better than conventional ones.
On the other hand, if it is high convergence, large
numbers of models generated provide slow but more
exact evaluation. In order to avoid the infinite generation,
the maximum number should be also given as one of
the input parameters. Furthermore, in order to avoid
stopping the simulation at a temporary convergence,
the change of the transient efficiency is evaluated af-
ter analyzing 100 or 1000 repairable models. In other
words, the current transient efficiency should be always
compared with the last 100 or 1000 transient efficiency
to check if the change reach the target.

2) The dimension of a memory model can be reduced
independent of that of a memory device to which RA
is applied, but only according to the number of spare
rows and columns. The reduced model is called as
Fault Array Graph (FAG) and is defined as the array of
m∗(n+1)×n∗(m+1), which has been proposed by Y.
Zorian et. al for their RA evaluation method [10] [9].m

andn mean the number of spare rows and columns, re-
spectively. This model can be much smaller in dimension
than the original model, and can solve the computation
problems for a large memory. However, a fault class
includes partly or fully another one more often, which
may give less exact evaluation.

3) The number of models to be categorized can be reduced
if clearly unrepairable models are removed in advance.
A simple detection method is to count the number of
independent fault classes, which don’t share row or
column with another fault class. If the number is more

than the number of all spare elements, the model is
unrepairable. Another method is to count the number of
faulty rows (or columns) after detecting independent row
(or column) fault classes, which are not partly included
by another linear fault class in parallel. If the number is
more than that of all spare rows (or columns), the model
is unrepairable.

IV. EXTERNAL SPECIFICATION

The specifications such as architecture and interfaces of the
tool are determined below according to the above sections.

A. Tool Organization

Figure 10 shows a block diagram of the tool. The tool is
composed of 4 logical procedures as described above. A model
to be analyzed by a given RA is generated and categorized
each iteration. All inputs and outputs are composed in text
format. The input 1, input 2 and input 3 specify all input
parameters, the RA and external model data, respectively.
When the RA fails to repair any theoretically repairable model,
the repair rates and FBM are added to the output 1. When the
RA analyzes any theoretically repairable model, the updated
RA efficiency E is added to the output 2. The iteration
continues until the exactness∆E reaches the target.

Fig. 10. Block Diagram of Tool

B. Input

Figure 11 shows an example form of input 1 as all in-
put parameters, which indicates memory configuration, fault
probability, evaluating condition and assignment of output
files. delta e andnrsef are parameters for the fast or exact
evaluation. The former is for the change of transient efficiency,
and the latter for the intervals between the results to be
compared in transient efficiency. The form of input 2 as a
given RA describes a source code of RA in C language. The
resources of registers and memories on a repair system that
employs the RA are considered here. Figure 12 shows an
example form of input 3 as an external model data, which
indicates number and address of each fault class, and length
of each linear fault class.

137



Fig. 11. Example of Input 1

Fig. 12. Example of Input 3

C. Output

Figure 13 shows an example form of output 1, which always
indicates categorization of each model, and additionally repair
rates of Rc and Rb, location of replaced rows and columns,
and location of each fault class when RA fails to repair a
model. Figure 14 shows an example form of output 2, which
indicates the serial number for all models, transient efficiency,
categorization, and number of fault classes.

Fig. 13. Example of output 1

V. CONCLUSION

This paper presents a high quality simulation tool that
evaluates the efficiency of RA applied to repairable memory
devices. According to the tool properties, the approach and
external specifications are discussed and determined. More

Fig. 14. Example of output 2

various fault types in a memory model enable a more exact
evaluation of RA. The 3 different orders of detecting fault bits
in a model give upper-limit, lower-limit and average efficiency
of RA. The information such as Rc and Rb is provided for
the feedback to a given RA. A software tool implementing
the proposed approach is being developed currently. We will
also present the validation and application results of the tool
in our future work.

REFERENCES

[1] J. R. Day,A fault-driven, comprehensive redundancy algorithm, IEEE
Design and Test of Computers, vol. 2, 1985, pp. 35–44.

[2] R.-F. Huang, J.-F. Li, J.-C. Yeh, and C.-W. Wu,A simulator for evaluat-
ing redundancy analysis algorithms of repairable embeddedmemories,
Proc. Of IEEE intl. workshop on Memory Technology, Design and
Testing, 2002.

[3] R.-F. Huang, J.-C. Yeh, J.-F. Li, and C.-W. Wu,Raisin: Redundancy
analysis algorithm simulation, IEEE Design and Test of Computers,
vol. 24, Jul. 2007, pp. 386–396.

[4] T. Kawagoe, J. Ohtani, M. Niiro, T. Ooishi, M. Hamada, and H. Hidaka,
A built-in self-repair analyzer (cresta) for embedded drams, Proc. Of
IEEE Intl. Test Conference, 2000, pp. 567–574.

[5] S.-Y. Kuo and W. K. Fuchs,Efficient spare allocation for reconfigurable
arrays, IEEE Trans. on Computers, vol. 41, 1992, pp. 221–226.

[6] S. Nakahara, K. Higeta, M. Kohno, T. Kawamura, and K. Kakitani,
Built-in self-test for ghz embedded srams using flexible patterngenerator
and new repair algorithm, Proc. Of IEEE Intl. Test Conference, 1999,
pp. 301–310.

[7] P. Ohler, S. Hellebrand, and H.-J. Wunderlich,An integrated built-in test
and repair approach for memories with 2d redundancy, Proc. Of IEEE
European Test Symposium, 2007.

[8] S. Shoukourian, V. Vardanian, and Y. Zorian,An approach for evaluation
of redundancy analysis algorithms, Proc. Of IEEE Intl. Workshop on
Memory Technology, Design and Testing, 2001, pp. 51–55.

[9] , A methodology for design and evaluation of redundancy
allocation algorithms, Proc. Of IEEE VLSI Test Symposium, 2004,
p. 249.

[10] , Soc yield optimization via an embedded-memory test and repair
infrastructure, IEEE Design and Test of Computers, vol. 21, 2004,
pp. 200–207.

[11] M. Tarr, D. Boudreau, and R. Murphy,Defect analysis system speeds test
and repair of redundant memories, Electronics, Jan. 1984, pp. 175–179.

[12] V. Vardanian and G. Gabrielyan,A tool for evaluation and comparison
of redundancy allocation algorithms for static random access memo-
ries, Proc. Of Intl. Conference on Computer Science and Information
Technologies, 2003, pp. 391–394.

[13] C.-L. Wey and F. Lombardi,On the repair of redundant ram’s, IEEE
Trans. on Computer-Aided Design of Integrated Circuits and Systems,
vol. 6, 1987, pp. 222–231.

[14] P. hler, S. Hellebrand, and H.J. Wunderlich,Analyzing test and repair
times for 2d integrated memory built-in test and repair, IEEE Design
and Diagnostics of Electronic Circuits and Systems, 2007.

138


