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Abstract — Considering multiple applications on a system 
which are executing concurrently, there should be mechanisms 
and policies which manage the competition for resources be-
tween them and resolve the conflicts. In a traditional system, 
these management activities can be summarized as storage 
management for saving the required data and I/O manage-
ment to interact with the outside world. Theoretic foundations 
of these activities have been fully explored in literature. In 
view of reconfigurable systems, additional management tasks 
would be imposed which include FPGA logic area allocation, 
placement, routing, and network on chip management. This 
paper presents those management activities.  

Index Terms — Operating systems, Reconfigurable architec-
tures, Resource management, Scheduling 

I. INTRODUCTION 

Advances in reconfigurable computers (RC)[10] includ-
ing field-programmable gate arrays (FPGA)[5] made them 
a practical computing platform for lots of computation de-
manding applications. The idea of FPGA has been first pro-
posed in [14] but due to technological constraint, this idea 
could not be realized until recently.  

An FPGA has been agreeably  described as an array of 
uncommitted configurable logic blocks (CLBs) surrounded 
by a periphery of input/output blocks (IOBs), which are in-
terconnected by configurable routing resources, whose con-
figuration is controlled by a set of memory cells that lies 
beneath[16]. A brief introduction to reconfigurable compu-
ting that adequately covers all the aspects of FPGA tech-
nology can be found in[9]. 

There are several benefits of using reconfigurable sys-
tems. Reconfigurable architectures present an inherently 
good solution for applications consisting of a large number 
of small processing units. Another advantage of reconfigu-
rability is the reusability of resources. Furthermore, it 
brings fault-tolerance. Reconfigurability also makes devel-
oping and testing hardware systems cheaper and faster. 
However, the most important benefit of them is the ability 

to use the hardware performance while retaining the flex-
ibility of software[28]. 

Despite all of advantages of FPGA-based reconfigurable 
systems, application developers still decline to develop ap-
plication for this platform because of the substantial prob-
lems involved. Their programming is cumbersome and re-
quired specialists using some difficult to understand 
programming languages like VHDL or Verilog. Program-
ming is done at the gate level, that is, at the very lowest 
level of information processing with NAND and NOR 
gates[19]. The main problem arises when we want the 
hardware to meet the software. Hardware and software are 
developed using quite different models of computation. 
Systems that comprise a mixture of hardware and software 
are difficult to design because it is hard to relate C compo-
nents to VHDL components [30].  

One of the major trends toward solving this problem is to 
create compilers that can automatically detect the parts of 
the program that can be accelerated in hardware. These 
compilers then will produce both binary executable and a 
bitstream file for the reconfigurable fabric. There are many 
lines of research currently running on this trend [7, 8, 13, 
17, 18, 26, 27, 35] 

The most important drawback of this method is that the 
compiler should know the exact structure of the hardware 
and the produced bitstream is useful just for that hardware 
which means any changes in the underlying hardware will 
leads to a recompilation process[15]. 

These compilation tools, however, are usually tied to 
traditional placement and routing back-ends and have rela-
tively slow compilation times. They also provide little or no 
run-time support for dynamic reconfiguration[25]. 

So far, researchers tried a lot to make use of the current 
programming languages and compilation tools in order to 
utilize the potential of reconfigurable devices. In most of 
these efforts, a single control threads has been assumed 
which is executing on general purpose processor (GPP) and 
controls the hardware modules. However, this model is 
mainly based on the coupling strategy between the GPP and 
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reconfigurable fabric. Generally, there are four different 
trends toward the coupling of the reconfigurable fabrics 
with the standard general purpose processor [1, 10].  

First, the reconfigurable unit can only execute functional 
units on the main microprocessor datapath. Actually, the re-
configurable unit is considered as a custom instruction 
which is more powerful and complex than a normal instruc-
tion. There are some registers with which one can send pa-
rameters to the function and to receive the output [10]. 

The second trend considers the reconfigurable fabric as a 
coprocessor which is more independent than a functional 
unit. The GPP here initializes the coprocessor and provides 
the information on where the necessary data can be found in 
memory. This approach reduces the overhead in compari-
son with the first one. [20, 29, 39] are some of the re-
searches following this approach.  

In the third approach, reconfigurable unit is assumed to 
be as an additional processor. The communication between 
reconfigurable unit and GPP will be done through system 
primitives. This type of reconfigurable hardware allows a 
great deal of independent computation over reconfigurable 
device which means it can execute a large part of the appli-
cation without GPP supervision. [24, 36] are among those 
project which investigate this trend. The last model consid-
ers the reconfigurable fabric as a standalone processing unit 
and can communicate with GPP using a network[10]. 

Each of these styles has distinct benefits and drawbacks. 
The tighter the integration of the reconfigurable hardware, 
the more frequently it can be used within an application or 
set of applications due to a lower communication overhead. 
However, the hardware is unable to operate for significant 
portions of time without intervention from a host processor, 
and the amount of reconfigurable logic available is often 
quite limited. The more loosely coupled styles allow for 
greater parallelism in program execution, but suffer from 
higher communications overhead. In applications that re-
quire a great deal of communication, this can reduce or re-
move any acceleration benefits gained through this type of 
reconfigurable hardware[9]. 

In this paper we will present the various management ac-
tivities for reconfigurable computers. These activities can 
be carried out either statically by compilers and design tools 
or dynamically using operating systems or other runtime 
support mechanisms like virtualization. 

II. RESOURCE MANAGEMENT 

Considering multiple application on a system which are 
executing concurrently, there should be mechanisms and 
policies that manage the competition for resources between 
different applications and resolve the conflicts. In a tradi-
tional system, these management activities can be summa-

rized as storage management for saving the required data 
and I/O management to interact with the outside world. 
Theoretic foundations of these activities have been fully 
explored in [31, 33, 34]. 

In view of reconfigurable systems, additional manage-
ment activities are necessary some of which will be dis-
cussed in this paper. 

A. FPGA Logic area allocation and relocation 

Allocating one application to one FPGA device is the ea-
siest way to tackle the allocation problem and has been in-
vestigated in RACE [32] and Dynamically Reconfigurable 
System [22] projects. 

Brebner [3] was among the first who proposed an operat-
ing system approach for partially reconfigured hardware. 
He suggested the idea of swappable logic units (SLUs), 
which are position independent tasks that can be swapped 
in and out by the operating system. SLUs are FPGA logic 
segments (rectangles) of equal size which the application 
could be allocated to[4]. Since it is difficult to breakdown 
an application to the segments of equal size, Brebner pro-
posed the SLUs with various rectangular dimensions[2]. 
This idea has been extended in [6] in a way that allows var-
ious geometric shapes. 

When a new arriving task cannot be allocated imme-
diately it might be possible that it can be placed onto the 
FPGA after a proper rearrangement of a subset of the ex-
ecuting tasks. In [12] three methods are proposed for find-
ing such rearrangements. The goal is to increase the rate at 
which waiting tasks are allocated while minimizing disrup-
tions to executing tasks that are to be moved. Two of the 
methods for finding a partial rearrangement are determinis-
tic heuristics, which are referred to as local repacking and 
ordered compaction, while the third method is an evolutio-
nary approach making use of a genetic algorithm.  

Traditionally, the FPGA design involves static placement 
of the logic elements.  To do that, the designer or the design 
tool should fix the location of the logic elements at the de-
sign time. Although, this approach results in a quick load-
ing of the module but, it is obvious that it lacks the flexibili-
ty in case of faulty or occupied FPGA surface. 

As an example, one can consider two partial configura-
tions which were placed onto an overlapping physical loca-
tion statically and they are repeatedly using one after the 
other at runtime. As it is obvious, it will reduce the perfor-
mance and increase the reconfiguration overhead dramati-
cally. A rearrangement may be necessary to get enough 
contagious space to efficiently implement incoming hard-
ware modules. 

Another problem that may arise during application ex-
ecution is the FPGA surface area fragmentation[11]. Over-
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time, as partially reconfigurable modules load and unload, 
the empty area of the FPGA may become fragmented and 
as a results, the maximum available size to be allocated for 
a hardware module decreases. 

Compton et al. in [11] presents a hardware solution to 
provide relocation and defragmentation support with a neg-
ligible area increase over a generic partially reconfigurable 
FPGA, as well as software algorithms for controlling this 
hardware.  

Gericota et al. proposed a novel active replication me-
chanism for configurable logic blocks (CLBs), able to im-
palement on-line rearrangement, defragmentation the avail-
able FPGA recourses without disturbing those functions 
that are currently running[16]. This has been done by the 
introducing the concept of the active CLB replication which 
means relocating the functionality of a given module to 
other CLBs without disturbing function execution. 

B. Allocation Scheduling 

After finding a suitable allocation, the task partitions 
should be schedule to be allocated in a way that minimize 
the total computation time. In [37]   an online scheduling 
system was proposed that schedules tasks according to sev-
eral non-preemptive and preemptive policies. 

C. Routing 

The routing between the logic blocks within the reconfi-
gurable hardware is also of great importance. Routing con-
tributes significantly to the overall area of the reconfigura-
ble hardware. Yet, when the percentage of logic blocks 
used in an FPGA becomes very high, automatic routing 
tools frequently have difficulty achieving the necessary 
connections between the blocks. Good routing structures 
are therefore essential to ensure that a design can be suc-
cessfully placed and routed onto the reconfigurable hard-
ware. 

Arbitrary relocated hardware modules need to communi-
cate with each other and with I/O devices. To do that, an 
online routing mechanism is necessary to enable this com-
munication.  JRoute [23] is a set of java classes to route Xi-
linx FPGA devices. 

D. Network on chip 

Reconfigurable systems that are composed of multiple 
FPGA chips interconnected on a single processing board 
have additional hardware concerns over single-chip sys-
tems. In particular, there is a need for an efficient connec-
tion scheme between the chips, as well as to external mem-
ory and the system bus. This is to provide for circuits that 
are too large to fit within a single FPGA, but may be parti-
tioned over the multiple FPGAs available. Because of the 
need for efficient communication between the FPGAs, the 

determining the inter-chip routing topology is a very impor-
tant step in the design of a multi-FPGA system. 

III. RUN-TIME REQUIREMENTS 

With development of reconfigurable computers contain-
ing FPGAs with millions of systems gates, it is now feasi-
ble to consider the possibility of serving multiple concur-
rent applications executing on a shared logic area. This will 
improve the resource utilization and reduce the costs. How-
ever, it will increase the degree of complexity in order to 
manage the shared resources. Needless to say, dynamic and 
partial reconfiguration[21] are important factors in sharing 
the FPGA logic area and allow to take advantage of the 
hardware virtualization. Run-time reconfiguration provides 
the ability to change the configuration not only between ap-
plications, but also within a single application[11]. For ex-
ample, applications that are not able to fit onto the fabric at 
once can be partitioned and to be loaded into the FPGA at 
different points in time. 

Generally, to run an application on a specific hardware 
platform, one needs to have a run-time environment in 
which an execution environment plus some services and 
APIs has been provided.  

A. Run-time Abstractions 

The operating system kernel provides an execution envi-
ronment in which application may run. Therefore the kernel 
must implement a set of services and corresponding inter-
faces. Applications use those interfaces and do not usually 
interact with hardware resources. 

The kernel offers several subroutines or functions in user 
space, which allow the end-user application programmer to 
interact with the hardware. 

The main abstraction is the hardware task which cap-
tures application functionality in as much as possible de-
vice-independent way[38]. 

B.  APIs and Services 

Here is a list of the APIs that the OS should provide to 
applications: Creating hardware/software tasks, Loader, 
Destroying hardware/Software tasks, Task to task commu-
nication, Suspend hardware/software task, Resume hard-
ware/software task, Query Task states, Scheduling. 

IV. SUMMARY 

In this paper we presented the various resource manage-
ment activates that should be done for a reconfigurable 
computer. System developer can address these issues either 
at run-time or compile time.  
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