
Current Trends in Resource Management of
Reconfigurable Systems

Mojtaba Sabeghi, Koen Bertels
Computer Engineering Laboratory

Delft University of Technology
{sabeghi, k.l.m.bertels}@ce.et.tudelft.nl

Abstract — Considering multiple applications on a system
which are executing concurrently, there should be mechanisms
and policies which manage the competition for resources be-
tween them and resolve the conflicts. In a traditional system,
these management activities can be summarized as storage
management for saving the required data and I/O manage-
ment to interact with the outside world. Theoretic foundations
of these activities have been fully explored in literature. In
view of reconfigurable systems, additional management tasks
would be imposed which include FPGA logic area allocation,
placement, routing, and network on chip management. This
paper presents those management activities.

Index Terms — Operating systems, Reconfigurable architec-
tures, Resource management, Scheduling

I. INTRODUCTION

Advances in reconfigurable computers (RC)[10] includ-
ing field-programmable gate arrays (FPGA)[5] made them
a practical computing platform for lots of computation de-
manding applications. The idea of FPGA has been first pro-
posed in [14] but due to technological constraint, this idea
could not be realized until recently.

An FPGA has been agreeably described as an array of
uncommitted configurable logic blocks (CLBs) surrounded
by a periphery of input/output blocks (IOBs), which are in-
terconnected by configurable routing resources, whose con-
figuration is controlled by a set of memory cells that lies
beneath[16]. A brief introduction to reconfigurable compu-
ting that adequately covers all the aspects of FPGA tech-
nology can be found in[9].

There are several benefits of using reconfigurable sys-
tems. Reconfigurable architectures present an inherently
good solution for applications consisting of a large number
of small processing units. Another advantage of reconfigu-
rability is the reusability of resources. Furthermore, it
brings fault-tolerance. Reconfigurability also makes devel-
oping and testing hardware systems cheaper and faster.
However, the most important benefit of them is the ability

to use the hardware performance while retaining the flex-
ibility of software[28].

Despite all of advantages of FPGA-based reconfigurable
systems, application developers still decline to develop ap-
plication for this platform because of the substantial prob-
lems involved. Their programming is cumbersome and re-
quired specialists using some difficult to understand
programming languages like VHDL or Verilog. Program-
ming is done at the gate level, that is, at the very lowest
level of information processing with NAND and NOR
gates[19]. The main problem arises when we want the
hardware to meet the software. Hardware and software are
developed using quite different models of computation.
Systems that comprise a mixture of hardware and software
are difficult to design because it is hard to relate C compo-
nents to VHDL components [30].

One of the major trends toward solving this problem is to
create compilers that can automatically detect the parts of
the program that can be accelerated in hardware. These
compilers then will produce both binary executable and a
bitstream file for the reconfigurable fabric. There are many
lines of research currently running on this trend [7, 8, 13,
17, 18, 26, 27, 35]

The most important drawback of this method is that the
compiler should know the exact structure of the hardware
and the produced bitstream is useful just for that hardware
which means any changes in the underlying hardware will
leads to a recompilation process[15].

These compilation tools, however, are usually tied to
traditional placement and routing back-ends and have rela-
tively slow compilation times. They also provide little or no
run-time support for dynamic reconfiguration[25].

So far, researchers tried a lot to make use of the current
programming languages and compilation tools in order to
utilize the potential of reconfigurable devices. In most of
these efforts, a single control threads has been assumed
which is executing on general purpose processor (GPP) and
controls the hardware modules. However, this model is
mainly based on the coupling strategy between the GPP and

89

reconfigurable fabric. Generally, there are four different
trends toward the coupling of the reconfigurable fabrics
with the standard general purpose processor [1, 10].

First, the reconfigurable unit can only execute functional
units on the main microprocessor datapath. Actually, the re-
configurable unit is considered as a custom instruction
which is more powerful and complex than a normal instruc-
tion. There are some registers with which one can send pa-
rameters to the function and to receive the output [10].

The second trend considers the reconfigurable fabric as a
coprocessor which is more independent than a functional
unit. The GPP here initializes the coprocessor and provides
the information on where the necessary data can be found in
memory. This approach reduces the overhead in compari-
son with the first one. [20, 29, 39] are some of the re-
searches following this approach.

In the third approach, reconfigurable unit is assumed to
be as an additional processor. The communication between
reconfigurable unit and GPP will be done through system
primitives. This type of reconfigurable hardware allows a
great deal of independent computation over reconfigurable
device which means it can execute a large part of the appli-
cation without GPP supervision. [24, 36] are among those
project which investigate this trend. The last model consid-
ers the reconfigurable fabric as a standalone processing unit
and can communicate with GPP using a network[10].

Each of these styles has distinct benefits and drawbacks.
The tighter the integration of the reconfigurable hardware,
the more frequently it can be used within an application or
set of applications due to a lower communication overhead.
However, the hardware is unable to operate for significant
portions of time without intervention from a host processor,
and the amount of reconfigurable logic available is often
quite limited. The more loosely coupled styles allow for
greater parallelism in program execution, but suffer from
higher communications overhead. In applications that re-
quire a great deal of communication, this can reduce or re-
move any acceleration benefits gained through this type of
reconfigurable hardware[9].

In this paper we will present the various management ac-
tivities for reconfigurable computers. These activities can
be carried out either statically by compilers and design tools
or dynamically using operating systems or other runtime
support mechanisms like virtualization.

II. RESOURCE MANAGEMENT

Considering multiple application on a system which are
executing concurrently, there should be mechanisms and
policies that manage the competition for resources between
different applications and resolve the conflicts. In a tradi-
tional system, these management activities can be summa-

rized as storage management for saving the required data
and I/O management to interact with the outside world.
Theoretic foundations of these activities have been fully
explored in [31, 33, 34].

In view of reconfigurable systems, additional manage-
ment activities are necessary some of which will be dis-
cussed in this paper.

A. FPGA Logic area allocation and relocation

Allocating one application to one FPGA device is the ea-
siest way to tackle the allocation problem and has been in-
vestigated in RACE [32] and Dynamically Reconfigurable
System [22] projects.

Brebner [3] was among the first who proposed an operat-
ing system approach for partially reconfigured hardware.
He suggested the idea of swappable logic units (SLUs),
which are position independent tasks that can be swapped
in and out by the operating system. SLUs are FPGA logic
segments (rectangles) of equal size which the application
could be allocated to[4]. Since it is difficult to breakdown
an application to the segments of equal size, Brebner pro-
posed the SLUs with various rectangular dimensions[2].
This idea has been extended in [6] in a way that allows var-
ious geometric shapes.

When a new arriving task cannot be allocated imme-
diately it might be possible that it can be placed onto the
FPGA after a proper rearrangement of a subset of the ex-
ecuting tasks. In [12] three methods are proposed for find-
ing such rearrangements. The goal is to increase the rate at
which waiting tasks are allocated while minimizing disrup-
tions to executing tasks that are to be moved. Two of the
methods for finding a partial rearrangement are determinis-
tic heuristics, which are referred to as local repacking and
ordered compaction, while the third method is an evolutio-
nary approach making use of a genetic algorithm.

Traditionally, the FPGA design involves static placement
of the logic elements. To do that, the designer or the design
tool should fix the location of the logic elements at the de-
sign time. Although, this approach results in a quick load-
ing of the module but, it is obvious that it lacks the flexibili-
ty in case of faulty or occupied FPGA surface.

As an example, one can consider two partial configura-
tions which were placed onto an overlapping physical loca-
tion statically and they are repeatedly using one after the
other at runtime. As it is obvious, it will reduce the perfor-
mance and increase the reconfiguration overhead dramati-
cally. A rearrangement may be necessary to get enough
contagious space to efficiently implement incoming hard-
ware modules.

Another problem that may arise during application ex-
ecution is the FPGA surface area fragmentation[11]. Over-

90

time, as partially reconfigurable modules load and unload,
the empty area of the FPGA may become fragmented and
as a results, the maximum available size to be allocated for
a hardware module decreases.

Compton et al. in [11] presents a hardware solution to
provide relocation and defragmentation support with a neg-
ligible area increase over a generic partially reconfigurable
FPGA, as well as software algorithms for controlling this
hardware.

Gericota et al. proposed a novel active replication me-
chanism for configurable logic blocks (CLBs), able to im-
palement on-line rearrangement, defragmentation the avail-
able FPGA recourses without disturbing those functions
that are currently running[16]. This has been done by the
introducing the concept of the active CLB replication which
means relocating the functionality of a given module to
other CLBs without disturbing function execution.

B. Allocation Scheduling

After finding a suitable allocation, the task partitions
should be schedule to be allocated in a way that minimize
the total computation time. In [37] an online scheduling
system was proposed that schedules tasks according to sev-
eral non-preemptive and preemptive policies.

C. Routing

The routing between the logic blocks within the reconfi-
gurable hardware is also of great importance. Routing con-
tributes significantly to the overall area of the reconfigura-
ble hardware. Yet, when the percentage of logic blocks
used in an FPGA becomes very high, automatic routing
tools frequently have difficulty achieving the necessary
connections between the blocks. Good routing structures
are therefore essential to ensure that a design can be suc-
cessfully placed and routed onto the reconfigurable hard-
ware.

Arbitrary relocated hardware modules need to communi-
cate with each other and with I/O devices. To do that, an
online routing mechanism is necessary to enable this com-
munication. JRoute [23] is a set of java classes to route Xi-
linx FPGA devices.

D. Network on chip

Reconfigurable systems that are composed of multiple
FPGA chips interconnected on a single processing board
have additional hardware concerns over single-chip sys-
tems. In particular, there is a need for an efficient connec-
tion scheme between the chips, as well as to external mem-
ory and the system bus. This is to provide for circuits that
are too large to fit within a single FPGA, but may be parti-
tioned over the multiple FPGAs available. Because of the
need for efficient communication between the FPGAs, the

determining the inter-chip routing topology is a very impor-
tant step in the design of a multi-FPGA system.

III. RUN-TIME REQUIREMENTS

With development of reconfigurable computers contain-
ing FPGAs with millions of systems gates, it is now feasi-
ble to consider the possibility of serving multiple concur-
rent applications executing on a shared logic area. This will
improve the resource utilization and reduce the costs. How-
ever, it will increase the degree of complexity in order to
manage the shared resources. Needless to say, dynamic and
partial reconfiguration[21] are important factors in sharing
the FPGA logic area and allow to take advantage of the
hardware virtualization. Run-time reconfiguration provides
the ability to change the configuration not only between ap-
plications, but also within a single application[11]. For ex-
ample, applications that are not able to fit onto the fabric at
once can be partitioned and to be loaded into the FPGA at
different points in time.

Generally, to run an application on a specific hardware
platform, one needs to have a run-time environment in
which an execution environment plus some services and
APIs has been provided.

A. Run-time Abstractions

The operating system kernel provides an execution envi-
ronment in which application may run. Therefore the kernel
must implement a set of services and corresponding inter-
faces. Applications use those interfaces and do not usually
interact with hardware resources.

The kernel offers several subroutines or functions in user
space, which allow the end-user application programmer to
interact with the hardware.

The main abstraction is the hardware task which cap-
tures application functionality in as much as possible de-
vice-independent way[38].

B. APIs and Services

Here is a list of the APIs that the OS should provide to
applications: Creating hardware/software tasks, Loader,
Destroying hardware/Software tasks, Task to task commu-
nication, Suspend hardware/software task, Resume hard-
ware/software task, Query Task states, Scheduling.

IV. SUMMARY

In this paper we presented the various resource manage-
ment activates that should be done for a reconfigurable
computer. System developer can address these issues either
at run-time or compile time.

91

REFERENCES

[1] Barat, F. and Lauwereins, R. Reconfigurable Instruc-
tion Set Processors: A Survey. Proceedings. 11th In-
ternational Workshop on Rapid System Prototyping.

2. Brebner, G. Automatic Identification of Swappable
Logic Units in XC6200 Circuitry. in Lecture Notes
In Computer Science, Springer, London, 1997, 173-
182.

3. Brebner, G., The swappable logic unit: a paradigm
for virtual hardware. in Proceedings of 5th IEEE
Symposium on FPGA-Based Custom Computing
Machines, (1997), IEEE Computer Society.

4. Brebner, G. A Virtual Hardware Operating System
for the Xilinx XC6200 6th International Workshop
on Field-Programmable Logic, Smart Applications,
New Paradigms and Compilers, Springer-Verlag,
1996.

5. Brown, S., Francis, R.J. and Rose, J. Field-
Programmable Gate Arrays. Springer, Boston, US,
1992.

6. Burns, J., Donlin, A., Hogg, J., Singh, S. and Wit,
M.d. A Dynamic Reconfiguration Run-Time System
IEEE Symposium on FPGAs for Custom Computing
Machines, 1997.

7. Cardoso, J.M.P. and Neto, H.C. Compilation for
FPGA-based reconfigurable hardware. Design &
Test of Computers, IEEE, 20 (2). 65-75.

8. Cardoso, J.M.P. and Neto, H.C. Fast hardware com-
pilation of behaviors into an FPGA-based dynamic
reconfigurable computing system. The XII Sympo-
sium on Integrated Circuits and System Design.
150–153.

9. Compton, K. and Hauck, S. An Introduction to Re-
configurable Computing. Invited Paper, IEEE Com-
puter.

10. Compton, K. and Hauck, S. Reconfigurable compu-
ting: a survey of systems and software. ACM Com-
puting Surveys, 34 (2). 40.

11. Compton, K., Li, Z., Cooley, J., Knol, S. and Hauck,
S. Configuration relocation and defragmentation for
run-time reconfigurable computing. Very Large
Scale Integration (VLSI) Systems, IEEE Transac-
tions on, 10 (3). 209-220.

12. Diessel, O., ElGindy, H., Middendorf, M., Schmeck,
H. and Schmidt, B. Dynamic scheduling of tasks on
partially reconfigurable FPGAs. Computers and

Digital Techniques, IEE Proceedings-, 147 (3). 181-
188.

13. Dimitroulakos, G., Kostaras, N., Galanis, M.D. and
Goutis, C.E. Compiler assisted architectural explora-
tion for coarse grained reconfigurable arrays. Pro-
ceedings of the 17th great lakes symposium on Great
lakes symposium on VLSI. 164-167.

14. Estrin, G., Bussel, B., Turn, R. and Bibb, J. Parallel
Processing in a Restructurable Computer System.
IEEE Transactions on Electronic Computers, 12 (5).
747-755.

15. Fu, W. and Compton, K. An execution environment
for reconfigurable computing 13th Annual IEEE
Symposium on Field-Programmable Custom Com-
puting Machines, 2005.

16. Gericota, M.G., Alves, G.R., Silva, M.L. and Ferrei-
ra, J.M. On-line Defragmentation for Run-Time Par-
tially Reconfigurable FPGAs. Proc. 12th Interna-
tional Conference on Field Programmable Logic
and Applications. 302-311.

17. Goldstein, S.C., Schmit, H., Budiu, M., Cadambi, S.,
Moe, M. and Taylor, R.R. PipeRench: a reconfigur-
able architecture and compiler. Computer, 33 (4).
70-77.

18. Hammes, J., Rinker, B., Bohm, W., Najjar, W., Dra-
per, B. and Beveridge, R. Cameron: High Level
Language Compilation for Reconfigurable Systems.
Department of Computer Science, Colorado State
University, Conference on Parallel Architectures
and Compilation Techniques, Oct. 12-16.

19. Hartenstein, R. Basics of Reconfigurable Compu-
ting. Embedded Computing-A Low Power Perspec-
tive, Springer-Verlag.

20. Hauser, J.R. and Wawrzynek, J. Garp: A MIPS Pro-
cessor with a Reconfigurable Coprocessor IEEE
Symposium on FPGAs for Custom Computing Ma-
chines, IEEE Computer Society, 1997.

21. Hutchings, B.L. and Wirthlin, M.J. Implementation
Approaches for Reconfigurable Logic Applications
International Workshop on Field-Programmable
Logic and Applications, 1995.

22. Jean, J., Tomko, K., Yavgal, V., Cook, R. and Shah,
J. Dynamic Reconfiguration to Support Concurrent
Applications "IEEE Symposium on FPGAs for Cus-
tom Computing Machines, 1998.

92

23. Keller, E. JRoute: A run-time routing API for FPGA
hardware 7th Reconfigurable Architectures Work-
shop, Springer-Verlag, Mexico 2000.

24. Laufer, R., Taylor, R.R. and Schmit, H. PCI-
PipeRench and the SWORDAPI: a system for
stream-basedreconfigurable computing IEEE Sym-
posium on Field-Programmable Custom Computing
Machines, 1999.

25. Lechner, E. and Guccione, S.A. The Java Environ-
ment for Reconfigurable Computing. Proceedings of
the 7th International Workshop on Field-
Programmable Logic and Applications, FPL. 284-
293.

26. Luk, W., Shirazi, N. and Cheung, P.Y.K. Compila-
tion tools for run-time reconfigurable designs. IEEE
Symposium on Field-Programmable Custom Com-
puting Machines. 56–65.

27. Panainte, E.M., Bertels, K. and Vassiliadis, S. The
Molen compiler for reconfigurable processors. ACM
Transactions on Embedded Computing Systems
(TECS), 6 (1).

28. Radunovic, B. and Milutinovic, V.M. A Survey of
Reconfigurable Computing Architectures. Proceed-
ings of the 8th International Workshop on Field-
Programmable Logic and Applications, From
FPGAs to Computing Paradigm. 376-385.

29. Rupp, C.R., Landguth, M., Garverick, T., Gomersall,
E. and Holt, H. The NAPA Adaptive Processing Ar-
chitecture IEEE Symposium on FPGAs for Custom
Computing Machines 1998.

30. Satnam, S. Integrating FPGAs in high-performance
computing: programming models for parallel sys-
tems -- the programmer's perspective Proceedings of
the 2007 ACM/SIGDA 15th international symposium
on Field programmable gate arrays, ACM Press,
Monterey, California, USA, 2007.

31. Silberschatz, A. Operating System Concepts 7th Edi-
tion. John Wiley & Sons, 2005.

32. Smith, D. and Bhatia, D. RACE: Reconfigurable and
Adaptive Computing Environment International
Workshop on Field-Programmable Logic, Smart
Applications, New Paradigms and Compilers, 1996.

33. Stallings, W. Operating systems : internals and de-
sign principles. Prentice-Hall, 2001.

34. Tanenbaum, A. Modern Operating Systems, 2nd edi-
tion. Prentice Hall PTR, 2001.

35. Venkataramani, G., Najjar, W., Kurdahi, F., Bagher-
zadeh, N., Bohm, W. and Hammes, J. Automatic
compilation to a coarse-grained reconfigurable sys-
tem-opn-chip. ACM Transactions on Embedded
Computing Systems (TECS), 2 (4). 560-589.

36. Vuillemin, J., Bertin, P., Roncin, D., Shand, M.,
Touati, H. and Boucard, P. Programmable Active
Memories: Reconfigurable Systems Come of Age
IEEE Transactions on VLSI Systems, 4 (1). 14.

37. Walder, H. and Platzner, M. Online scheduling for
block-partitioned reconfigurable devices. Design,
Automation and Test in Europe Conference and Ex-
hibition, 2003. 290-295.

38. Walder, H. and Platzner, M. Reconfigurable Hard-
ware Operating Systems: From Design Concepts to
Realizations. Proceedings of the 3rd International
Conference on Engineering of Reconfigurable Sys-
tems and Architectures (ERSA). 284–287.

39. Wittig, R.D. and Chow, P. OneChip: an FPGA pro-
cessor with reconfigurable logic IEEE Symposium
on FPGAs for Custom Computing Machines, 1996.

93

