
Bioinformatics Specific Cell BE ISA Extensions
Sebastian Isaza and Georgi Gaydadjiev

Computer Engineering Laboratory
Faculty of Electrical Engineering, Mathematics and Computer Science

Delft University of Technology
Makelweg 4, 2628 CD, Delft, The Netherlands

{sisaza, georgi}@ce.et.tudelft.nl

Abstract— Among other traditionally important application
domains, bioinformatics has been recently recognized as a
challenging field. The need to perform lots of processing of
huge amounts of data within reasonable times demands the
use of high performance computing systems. Although this
kind of high performance architectures already exists and can
indeed provide some speedup, efficiency levels keep being low,
both in terms of performance and power consumption. This
is understandable since the traditional design of microproces-
sors has focused on more commercially attractive application
domains like multimedia and networking. With the arrival of
the multicore era, researchers have already started mapping
bioinformatics applications onto platforms like Cell BE. This
type of heterogeneous multicore chips have been shown to be
capable of achieving significant speedups by exploiting thread-
level and data-level parallelism at the same time. However,it
has also been demonstrated that architectures like Cell BE
have shortcomings that limit the performance efficiency when
targeting bioinformatics workloads. Based on a previous work,
we have augmented the instruction-set of the Cell BE SPU,
with the aim of accelerating bioinformatics applications. We
started looking at the possible improvements of the computational
parts of a representative application of the field, i.e. ClustalW.
Four arithmetic instructions have been tested with the CellSim
simulator, achieving an accumulated acceleration of almost 14%.

Index Terms—Bioinformatics, Instruction-Set Extensions, Cell
BE, Application’s acceleration

I. I NTRODUCTION

Bioinformatics has been recently recognized as a challeng-
ing field not only for computer scientists but also for hardware
designers [9]. The rapid growth of biological databases and
the computational complexity of the algorithms require high
performance computing systems able to provide reasonable
execution times.

Recent studies have shown that heterogeneous multicore
architectures are able to provide significant performance im-
provements by means of multi-dimensional parallelism and
specialization [6], [20], [12]. In a recent work [12], we pre-
sented the architectural limitations encountered when porting
a representative bioinformatics application to Cell BE. This
processor, which was designed for the game box market, has
been demonstrated to have potential in other domains as well
[18]. Cell Be architecture [13], [10] places on the same chip
a PowerPC Processing Unit (PPU) and eight 128-bit SIMD
cores named Synergistic Processing Units (SPUs). Each SPU
has a 256KB Local Store (LS) memory and the Element

Interconnect Bus (EIB) makes the connection between the nine
processing cores. One particular feature of Cell BE is that there
two different ISAs, that is, the PPU’s ISA (PowerPC ISA)
and the SPU’s ISA. The latter is a SIMD-only instruction-
set similar to the PowerPC’s Altivec, aimed at improving
the processing performance (and power efficiency) of the
computationally intensive parts of applications.

Extending to our work presented in [12], but limiting our
analysis to the SPU’s ISA, we have added a few arithmetic
instructions in order to accelerate the most intensive compu-
tational kernel of a representative bioinformatics application,
ClustalW [11]. Although being compound-instructions, these
are rather simple operations and could still be considered
general purpose instructions useful for other applications’
domains. Experiments have been performed using CellSim
[1], an open source Cell BE simulator developed under the
UNISIM framework [5]. The GCC compiler has been modified
so that the new instructions can be called through intrinsics
from the application’s C source.

ClustalW is a widely used application to perform multiple
sequence alignment. These kind of applications to align bio-
logical data are among the most important in bioinformatics
[7]. They are used in different scenarios ranging from evolu-
tion studies to cancer research and drug design.

The main contributions of this paper are:

• the creation of new SPU instructions for the acceleration
of a bioinformatics application;

• the implementation of those instructions within the Cell-
Sim simulator;

• the incorporation of intrinsics into the GCC compiler for
the easy use of the new instructions;

• an almost 14% of acceleration obtained for the main
kernel in ClustalW, adding only simple arithmetic instruc-
tions.

This paper is organized as follows: Section 2 describes
the SPU architecture and presents a brief overview of recent
works related to the mapping of bioinformatics applications
and hardware support for its acceleration. Section 3 describes
the experimental methodology used. Section 4 describes our
example application and the newly introduced instructions.
Section 5 presents the obtained results and Section 6 the
conclusions and future work.



II. RELATED WORK

The most innovative component of the Cell BE is the SPU.
It was designed with the aim of achieving high data processing
throughput while keeping a low power consumption. The SPU
has a 256KB non-cacheble local store memory that can be
accesses in 6 cycles. With the help of a DMA engine, data can
be moved to and from the main memory, and this happening
in parallel to the SPU program execution. The processing core

Fetch

Instruction
line buffers

Issue/
branch

Vector
register file

Vector
floating-point

unit

Vector
fixed-point

unit

Data
formatting and
permute unit

Load/store
unit

2 instructions

64 bytes

128 bytes

16 bytes

16 bytes x 2
16 bytes x 3 x 2

Local
store

Single
port

SRAM

Fig. 1: SPU block diagram

of the SPU along with its local store are shown in figure 1.
There are 128 registers of 128 bits width and two pipelines
of 20 stages. Both scalar and SIMD execution take place in
the same pipiline so that control complexity associated to
handling separte scalar units is avoided. This however makes
scalar processing less efficient. Schedulling of instructions and
branch prediction are left to the compiler so that control logic
can be simplified, achieving high frequencies at low power.
Control-dominated codes with many conditionals should be
left to the PPU since the SPU will poorly process them.
Further circuitry simplification is pursued by only allowing
16-byte aligned memory accesses (both to the local store and
through the DMA engine). The compiler should make sure
accesses are aligned by introducing additional loads/stores
and data reorganization instructions. This in turns may affect
performance depending on the data-access patterns.

Since the release of the Cell BE processor, there have
been a number of articles reporting experiences of mapping
bioinformatics applications to this new architecture. Some of
them have used sequence alignment applications and explored
parallelization strategies and manual code optimizations[6],
[20], [18], [17], but none of them have evaluated the in-
struction set efficiency. Those works have shown that both
parallelization and the use of specialized cores can provide
significant speedups, yet staying within a general-purpose
platform. However, the traditional focus on multimedia and
networking applications have not allowed bioinformatics to
efficiently benefit from current architectures. In our previous
article [12], we investigated the limitations of the Cell BE
architecture when targeting bioinformatics. Some of the limi-
tations mentioned there have been considered here by adding

new instructions.
Hardware support for bioinformatics has been explored in

the form of fully custom accelerators, most of them using
FPGAs [9], [15], [16], [21], [8] and some ASICs [19].
Although capable of achieving very significant speedups,
FPGA solutions suffer from low power efficiency and pro-
gramability issues. On the other hand there is also the case
of Anton [19]. D.E. Shaw Research is about to finish the
implementation of this new special-purpose machine to tar-
get molecular dynamics simulations. Although containing a
programmable processor core, Anton’s architecture is fully
application-specific aiming at very high speedups for a single
application regardless of the high cost of such a solution.

To the best of our knowledge, there has not been previous
works on instruction-set extensions targeting bioinformatics
applications. It should be noticed however, that in a timid
attempt Intel has recently announced that SSE4.2 (the newest
version of their SIMD instruction-set extensions) will fea-
ture one instruction aimed at genome mining (an application
closely related with sequence alignment). Although this fact
shows a new interest to offer support for bioinformatics
applications from the general-purpose perspective, stillmuch
is to be investigated so that efficiency gains are significant.

III. E XPERIMENTAL METHODOLOGY

The evaluation of our instruction-set extensions has been
done using CellSim. Based on UNISIM framework, CellSim
is a modular cycle-level simulator that allows one to test mod-
ifications to Cell BE architecture. The behavior of instructions
can be described in C language. Additionally, in order to make
easy use of the new instructions, we have added them as
intrinsics to the CellSim GCC compiler. The code running on
the SPU has been instrumented in order to call the CellSim
profiler to measure the cycles taken by the function of interest.

Since our proposed instructions are independent of the use
of multiple cores and due to the long simulation times, we have
only simulated the kernel function of ClustalW running on one
SPU and processing two 50-symbols long input sequences.
The previous conditions do not affect the analysis since the
number of loop iterations and computations only depend on
the inputs size but not on the data content. That is, the speedup
will remain the same for any other input data.

IV. A DDING INSTRUCTIONS TO THESPU ISA

New instructions have been chosen by first profiling and
then by manual inspection of the kernel code. This section
describes ClustalW application, in particular its most time
consuming function and then present the instructions proposed.

A. Application’s description

ClustalW [11] is an application used to perform multiple
sequence alignment. Profiling of the code revealed that the
first phase of the application consumes most of the execution
time. A function called forward pass takes between 60%
and 80% of the total runtime depending on the inputs sizes.
This function implements a slightly modified version of the
Needleman-Wunsch algorithm [14], computing a similarity



measure of two sequences. In our experiments we have used
the vectorized and optimized version offorward passthat we
presented in [12].forward pass is composed of two nested
loops that iterate over the entire length of the input sequences.
The body of the inner loop is then the target of our analysis
for new instructions.

B. Instructions added

As mentioned before, the SPU ISA is based on SIMD
processing, that is, instructions operate on 128-bit vector
operands. In the case offorward pass, vectors contain eight
16-bit elements to be processed in parallel. The instructions
proposed in this work are also SIMD.

Inspection of the loop body code shows that it is based
on additions, subtractions and conditionals that find maximum
values. According to this observation we have tested four new
arithmetic instructions whose functionality is shown in table I.

INSTRUCTION FUNCTION

MAX Rt,Ra,Rb if(Ra>Rb) Rt=Ra
else Rt=Rb

MAX3Z Rt,Ra,Rb,Rc if(Ra>Rb&&Ra>Rc) temp=Ra
else if(Rb>Rc) temp=Rb
else temp=Rc
if(temp>0) Rt=temp
else Rt=0

SUBMX Rt,Ra,Rb,Rc temp=Ra-Rb
if(Rc<temp) Rt=temp
else Rt=Rc

ADDS Rt,Ra,Rb S=Ra+Rb
if(Ra>0&&Rb>0&&S<0)
Rt=216-1
else if(Ra<0&&Rb<0&&S>0)
Rt=-216

else Rt=S

TABLE I: Functionality of the new SPU instructions

In short, MAX and MAX3Z find maximums, SUBMX finds
a maximum after a subtraction and ADDS perform saturated
(signed) addition.

V. RESULTS

Using the CellSim profiler we have instrumented the source
code running on the SPU. Numbers reported correspond to the
cycles consumed by ClustalW kernel,forward pass. Table II
shows the percentage of acceleration achieved with respect
to the vectorized and optimized version using the original
SPU ISA. The third column indicates how many old SPU
instructions are needed to emulate the proposed ones. It should

INSTRUCTION ACCELERATION EQ. IN.

MAX 5% 2
MAX3Z 3% 6
SUBMX 4% 3
ADDS 3.5% 9
TOTAL 13.8% -

TABLE II: Kernel acceleration results after adding the new
instructions and equivalent ”old” SPU instructions

be noticed that the total acceleration achieved does not equals

the sum of individual contributions. This is because the useof
MAX3Z overlaps some instances of MAX.

Although in principle these instructions should be able to
provide more speedup, many cycles are being consumed by
data reorganization instructions (masks creation, rotates, shifts,
shuffles). These instructions are inserted by the compiler in
order to make possible scalar manipulations and unaligned
memory accesses, not supported by the SPU hardware.

VI. CONCLUSIONS AND FUTURE WORK

We have presented the performance results of adding 4
instructions to the Cell BE SPU, targeting bioinformatics
applications. Acceleration of almost 14% has been achieved
for the hot-spot function in ClustalW. Irregular memory access
patterns in forward pass are responsible for a lot of time
consumed in the body loop. These need scalar manipulations
and unaligned memory accesses that are costly in the SPU. Our
next step is to focus on this issue in order to add instructions
that facilitate these operations.

One important observation is that our proposed instructions
are fundamental not only inforward passkernel but in various
other critical functions of ClustalW, and in other applications
of the same field like Ssearch (FASTA package [2]) and
Hmmer [3]. Incorporating our instructions into those other
functions and applications is part of our future work.

Our mid term intention is to explore hardware acceleration
of different granularities. We are starting by investigating the
potential of rather simple general-purpose-like instruction-set
extensions. Afterwards we will evaluate more coarse-grained
and complex instructions and lastly we will explore the design
and integration of large and more customized accelerators
into the heterogeneous multicore architectural template being
developed in the SARC project [4].

ACKNOWLEDGMENTS

This work is being supported by the European Commission
in the context of the SARC integrated project #27648 (FP6).

REFERENCES

[1] Cellsim, http://pcsostres.ac.upc.edu/cellsim/doku.php.
[2] Fasta web site, http://fasta.bioch.virginia.edu/fastawww2/fasta list2.shtml.
[3] Hmmer web site, http://hmmer.janelia.org/.
[4] Sarc project, http://www.sarc-ip.org/.
[5] Unisim, http://unisim.org/site/.
[6] F. Blagojevic, A. Stamatakis, C. Antonopoulos, and D. Nikolopoulos,

Raxml-cell: Parallel phylogenetic tree inference on the cell broadband
engine, Proceedings of the 21st IEEE/ACM International Parallel and
Distributed Processing Symposium, March 2007.

[7] J. Cohen,Bioinformatics-an introduction for computer scientists, ACM
Computing Surveys (2004), 122–158.

[8] P. Faes, B. Minnaert, M. Christiaens, E. Bonnet, Y. Saeys, D. Stroobandt,
and Y. Van de Peer,Scalable hardware accelerator for comparing dna
and protein sequences, Proceedings of the First International Conference
on Scalable Information Systems, May 2006.

[9] M. Gokhale and P. Graham,Reconfigurable computing, Springer, Dor-
drecht, The Netherlands, 2005.

[10] M. Gschwind, H.P. Hofstee, B. Flachs, M. Hopkins, Y. Watanabe, and
T. Yamazaki, Synergistic processing in cell’s multicore architecture,
IEEE Micro (2006), 10–24.

[11] D. Higgins, J. Thompson, T. Gibson, and J.D. Thompson,Clustal w:
improving the sensitivity of progressive multiple sequence alignment
through sequence weighting, position-specific gap penalties and weight
matrix choice, Nucleic Acids Research22 (1994), 4673–4680.

http://pcsostres.ac.upc.edu/cellsim/doku.php
http://fasta.bioch.virginia.edu/fasta_www2/fasta_list2.shtml
http://hmmer.janelia.org/
http://www.sarc-ip.org/
http://unisim.org/site/


[12] S. Isaza, F. Sanchez, G. N. Gaydadjiev, A. Ramirez, and M. Valero,
Preliminary analysis of the cell be processor limitations for sequence
alignment applications, Proceedings of the 8th International Workshop
SAMOS 2008, July 2008.

[13] J.A. Kahle, M.N. Day, H.P. Hofstee, C.R. Johns, and D. Shippy,
Introduction to the cell multiprocessor, IBM Systems Journal49 (2005),
no. 4/5, 589–604.

[14] S. Needleman and C. Wunsch,A general method applicable to the search
for similarities in the amino acid sequence of two proteins, Journal of
Molecular Biology48 (1970), 443–453.

[15] T. Oliver, B. Schmidt, and D. Maskell,Hyper customized processors
for bio-sequence database scanning on fpgas, Proceedings of 17th
International Symposium on Field Programmable Gate Arrays, February
2005.

[16] T. Oliver, L.Y. Yeow, and Schmidt,High performance database search-
ing with hmmer on fpgas, Proceedings of the 6th Workshop on High
Performance Computational Biology, February 2007.

[17] F. Petrini, G. Fossum, J. Fernandez, A.L. Varbanescu, M. Kistler,
and M. Perrone,Multicore surprises: Lessons learned from optimizing
sweep3d on the cellbe, IEEE International Parallel and Distributed
Processing Symposium, IPDPS (2007), 1–10.

[18] V. Sachdeva, M. Kistler, E. Speight, Tzeng, and T.H.K.,Exploring the
viability of the cell broadband engine for bioinformatics applications,
Proceedings of the 6th Workshop on High Performance Computational
Biology, 2007, pp. 1–8.

[19] D. E. Shaw, M. Deneroff, R. Dror, J. Kuskin, R. Larson, J.Salmon,
C. Young, B. Batson, K. Bowers, J. Chao, M. Eastwood, J. Gagliardo,
J. Grossman, R. Ho, D. Ierardi, I. Kolossvry, J. Klepeis, T. Layman,
C. McLeavey, M. Moraes, R. Mueller, Y. Shan E. Priest, J. Spengler,
M. Theobald, B. Towles, and S. Wang,Anton: A special-purpose
machine for molecular dynamics simulation, Proceedings of the 34th
Annual International Symposium on Computer Architecture,June 2007.

[20] H. Vandierendonck, S. Rul, M. Questier, and K. De Bosschere, Ex-
periences with parallelizing a bio-informatics program onthe cell be,
Proceedings of the 3th International Conference on High Performance
and Embedded Architectures and Compilers, 2008, pp. 161–175.

[21] J.P. Walters, X. Meng, V. Chaudhary, T. Oliver, L.Y. Yeow, D. Nathan,
B. Schmidt, and J. Landman,Mpi-hmmer-boost: Distributed fpga accel-
eration, Journal of VLSI Signal Processing (2007), 223–238.


	Introduction
	Related Work
	Experimental Methodology
	Adding instructions to the SPU ISA
	Application's description
	Instructions added

	Results
	Conclusions and future work
	References

