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Abstract—In this paper, we investigate Residue Number System
(RNS) to decimal conversion for a three moduli set with a common
factor. We propose a new RNS to binary converter for the moduli
set {2n + 2, 2n + 1, 2n} for any even integer n > 0. First, we
demonstrate that for such a moduli set, the computation of the
multiplicative inverses can be eliminated. Secondly, we simplify the
Chinese Remainder Theorem (CRT) to obtain a reverse conveter
that uses mod-n instead of mod-(2n + 2)(2n) or mod-2n required
by other state of the art equivalent converters. Next, we present a
low complexity implementation that does not require explicit use
of the modulo operation in the conversion process as it is normally
the case in the traditional CRT and other state of the art equivalent
converters. In terms of area, our proposal requires four 2:1 adders
and 2 multipliers while the best state of the art equivalent converter
requires one 3:1 adder, two 2:1 adders, and four multipliers. In
terms of critical path delay, our scheme requires 3 additions and 1
multiplication with mod-n operations whereas the best state of the
art equivalent converter requires 2 additions and 2 multiplications
with mod-2n operations. Consequently, our scheme outperforms
state of the art converters in terms of area and delay. Moreover,
due to the fact that our scheme operates on smaller magnitude
operands, it requires less complex adders and multipliers, which
potentially results in even faster and smaller implementations.

Index Terms—Residue Number System, RNS-Decimal Conver-
sion, Moduli Set With Common Factors, Multiplicative Inverses,
Chinese Remainder Theorem.

I. INTRODUCTION

The Residue Number System (RNS) has interesting inherent

features such as parallelism, modularity, fault tolerance, and

carry free operations. These features make RNS to be widely

used in Digital Signal Processing (DSP) applications such as

digital filtering, convolution, fast Fourier transform, and image

processing [4], [10]. For successful application of RNS, data

conversion must be very fast so that the conversion overhead

doesn’t nullify the RNS advantages. Data Conversion, which

is usually based on either the Chinese Remainder Theorem

(CRT) [1], [3], [4], [6], [7], [9] or the Mixed Radix Conversion

(MRC) [2], [12] has been actively investigated. The RNS for

a three moduli set has been studied for a long time with

{2n+1, 2n, 2n−1} being the most popular one [7]. However,

the moduli set {2n + 2, 2n + 1, 2n} is a strong alternative

candidate for decimal numbers which fall beyond the range

specified by the {2n + 1, 2n, 2n − 1} moduli set resulting

in the use of next higher index for n [7], [8], and [9]. The

moduli set {2n + 2, 2n + 1, 2n} is desirable because the

numbers are consecutive, enabling nearly equal width adders

and multipliers in the hardware implementation and also two

of the numbers share a common factor. Based on the weight

concepts, the decoding of RNS numbers for the moduli set

{2n+ 2, 2n+ 1, 2n} has been presented in [9].

In this paper, we propose a new RNS to binary converter

for the moduli set {2n + 2, 2n + 1, 2n} for any even integer

n > 0. First, we demonstrate that for such a moduli set, the

computation of the multiplicative inverses can be eliminated.

Secondly, we simplify the Chinese Remainder Theorem (CRT)

to obtain a reverse conveter that uses mod-n instead of mod-

(2n + 2)(2n) or mod-2n required by other state of the art

equivalent converters. Next, we present a low complexity

implementation that does not require the explicit calculation of

modulo operation in the conversion process as it is normally

the case in the traditional CRT and other state of the art

equivalent converters. In terms of area, our proposal requires

four 2:1 adders and 2 multipliers while the best state of

the art equivalent converter [4] requires one 3:1 adder, two

2:1 adders, and four multipliers. In terms of critical path

delay, our scheme requires 3 additions and 1 multiplication

with mod-n operations whereas the converter in [4] requires

2 additions and 2 multiplications with mod-2n operations.

Moreover, due to the fact that our scheme operates on smaller

magnitude operands, it requires less complex adders and

multipliers, which potentially results in even faster and smaller

implementations.

The rest of the article is organised as follows: Section II

presents the necessary background. In Section III we describe

the proposed algorithm. Section IV presents the hardware

realization of the proposed algorithm and a comparison with

the state of the art, while the paper is concluded in Section V.

II. BACKGROUND

RNS is defined in terms of a set of relatively prime moduli

set {mi}i=1,n such that gcd(mi,mj) = 1 for i �= j, where

gcd means the greatest common divisor of mi and mj , while

M =
∏n

i=1 mi, is the dynamic range. The residues of a deci-

mal number X can be obtained as xi = |X|mi
thus X can be

represented in RNS as X = (x1, x2, x3..., xn), 0 ≤ xi < mi.

This representation is unique for any integer X ∈ [0,M − 1].
We note here that in this paper we use |X|mi

to denote the

X mod mi operation and the operator Θ to represent the

operation of addition, subtraction, or multiplication. Given any

two integer numbers K and L RNS represented by K =
(k1, k2, k3, ..., kn) and L = (l1, l2, l3, ..., ln), respectively,
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W = KΘL, can be calculated as W = (w1, w2, w3, ..., wn),
where wi = |kiΘli|mi

, for i = 1, n. This means that the

complexity of the calculation of the Θ operation is determined

by the number of bits required to represent the residues and

not by the one required to represent the input operands.

For a moduli set {mi}i=1,n with the dynamic range M =∏n
i=1 mi, the residue number (x1, x2, x3, ..., xn) can be con-

verted into the decimal number X, according to the Chinese

Reminder Theorem, as follows [10]:

X =

∣∣∣∣∣
n∑

i=1

Mi

∣∣M−1
i xi

∣∣
mi

∣∣∣∣∣
M

, (1)

where M =
∏n

i=1 mi, Mi = M
mi

, and M−1
i is the multi-

plicative inverse of Mi with respect to mi. We note here

that the moduli set {mi}i=1,n must be pairwise relatively

prime for Equation (1) to be directly used. The moduli set

{2n+ 2, 2n+ 1, 2n} has a common factor of 2. This implies

that to utilize Equation (1) in the conversion this moduli set

must be first mapped to a set of relatively prime moduli. If

a moduli set is not pairwise relatively prime, then not every

residue set (x1, x2, x3, ..., xn) corresponds to a number and

this results into inconsistency. As discussed in [10], a set

of residues is consistent if and only if |xi|k = |xj |k where

k = gcd(mi,mj) for all i and j. If this holds true the decimal

equivalent of (x1, x2, x3, ..., xn) for moduli set which are not

pairwise relatively prime can be computed as follows:

|X|ML
=

∣∣∣∣∣
n∑

i=1

αixi

∣∣∣∣∣
ML

, (2)

where ML is the Lowest Common Multiple (LCM) of

{mi}i=1,n, the set of moduli sharing a common factor, X is

the decimal equivalent of {xi}i=1,n, αi is an integer such that

|αi|ML
μi

= 0 and |αi|μi
= 1, and {μi}i=1,n is a set of integers

such that ML =
n∏

i=1

μi and μi divides mi. It should be noted

that αi may not exist for some i. In [4], Equation (2) has

been represented as:

|X|ML
=

∣∣∣∣∣
n∑

i=1

βi

∣∣β−1
i

∣∣
μi

xi

∣∣∣∣∣
ML

, (3)

where ML = LCM {mi}n
i=1 =

n∏
i=1

μi, βi = ML

μi
,
∣∣β−1

i

∣∣
μi

is

the multiplicative inverse of βi with respect to μi.
For the moduli set under investigation, the following ex-

pressions have been derived as the decimal equivalent of the

residues (x1, x2, x3) in [9] and [7], respectively:

X =
∣∣∣m2m3

2
x1 −m1m3x2 +

m1m2

2
x3

∣∣∣
ML

(4)

X = x2

+m2

∣∣∣(x2 − x3) + (x1 − 2x2 + x3)
m1

2

∣∣∣
m1
2 m3

(5)

For the same moduli set, a reverse converter that outperforms

[7] was presented in [4] and represented by the following

expression:

X = (x1 + x2)

+
m1m2

2

∣∣∣k1x1 + k2x2 +
m1

2
x3

∣∣∣
m3

, (6)

where

k1 =
2

(
(m2m3)(m3

4 + 1)− 1)
(m1m2)

,

k2 =
2

(
(m1m3)

2 (m2 − 2)− 1
)

m1m2
.

In the following section we present a reverse converter for

the moduli set {2n+2, 2n+1, 2n} by simplifying Equation (1).

The resulting converter uses smaller modulo operation when

compared to Equations (4), (5), and outperforms, in terms of

both area and speed, the reverse converter presented in [4]

represented by Equation (6).

III. PROPOSED ALGORITHM

Given the RNS number (x1, x2, x3) with respect to the

moduli set {m1,m2,m3} in the form {2n + 2, 2n + 1, 2n},
the proposed algorithm computes the decimal equivalent of

this RNS number based on further simplification of the well-

known traditional CRT. First, we show that the computation of

the multiplicative inverses can be eliminated for this moduli

set. Next, we obtain a reverse converter that uses modulo-
m3
2 instead of modulo-m1

2 m3 or modulo-m3 used by the

state of the art equivalent converters. We then propose a low

complexity implementation that does not require explicit use

of the modulo operation at the final stage of computation. It

should be noted that Equation (1) cannot be directly used for

the conversion since in the moduli set {2n + 2, 2n + 1, 2n},
the moduli 2n + 2 and 2n share a common factor of 2. The

moduli set must be first mapped into a set of relatively prime

integers. In [9], it has been demonstrated that such a mapping

can easily be done and that the set of relatively prime moduli

for {2n+2, 2n+1, 2n} moduli set, for any even integer n > 0,
is given by {n+ 1, 2n+ 1, 2n}, meaning that the new moduli

set is
{

m1
2 ,m2, m3

}
.

Theorem 1: Given the moduli set {2n+2, 2n+1, 2n} with

m1 = 2n+2,m2 = 2n+1,m3 = 2n, the following hold true:∣∣∣(m1

2
m2)−1

∣∣∣
m3

= n+ 1, (7)

∣∣(m2m3)−1
∣∣

m1
2

=
n

2
+ 1, (8)

∣∣∣(m1

2
m3)−1

∣∣∣
m2

= 2n− 1. (9)

Proof: If it can be demonstrated that∣∣(n+ 1)× (m1
2 m2)

∣∣
m3

= 1, then (n + 1) is

the multiplicative inverse of (m1
2 m2) with respect

to m3.
∣∣(n+ 1)× (m1

2 m2)
∣∣
m3

is given by:

|(n+ 1)(n+ 1)(2n+ 1)|2n =
∣∣(2n3 + 5n2 + 4n+ 1)

∣∣
2n
=

| ∣∣2n(n2 + 5n
2 )

∣∣
2n
+ |2(2n)|2n+ |1|2n|2n = |0+0+1|2n = 1,

thus Equation (7) holds true.

In the same way if
∣∣(n

2 + 1)× (m2m3)
∣∣

m1
2
= 1, then

(n
2 + 1) is the multiplicative inverse of (m2m3) with respect
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to m1
2 .

∣∣(n
2 + 1)× (m2m3)

∣∣
m1
2

is given by: |(n
2 + 1)(2n +

1)(2n)|n+1 = |2n3 + 5n2 + 2n|n+1 = ||2n2(n + 1)|n+1 +
|3n2+2n|n+1|n+1 = |0+1|n+1 = 1, thus Equation( 8) holds

true.

Again, if |(2n − 1) × (m1
2 m3)|m2 = 1, then 2n − 1 is

the multiplicative inverse of (m1
2 m3) with respect to m2.

|(2n− 1)× (m1
2 m3)|m2 is given by:

|(2n − 1)(n + 1)(2n)|2n+1 = |4n3 + 2n2 − 2n|2n+1 =
||2n2(2n + 1)|2n+1 + | − 2n|2n+1|2n+1 = |0 + 1|2n+1 = 1,
thus Equation (9) holds true.
As stated in Section II, for moduli sets with a common

factor, not all remainder sets are valid numbers. The following

proposition state the condition for a 3-residue set to represent

a valid number.

Proposition 1: For RNS with the moduli set {m1,m2,m3}
sharing a common factor, (x1, x2, x3) represents a valid num-

ber if and only if (x1 + x3) is even.

Proof: This proposition has been proved in [7].
The following theorem introduces a simplified way to compute

the decimal equivalent of the RNS number (x1, x2, x3) with

respect to the moduli set {m1,m2,m3} in the form {2n +
2, 2n+ 1, 2n} for any even integer n > 0.

Theorem 2: The decimal equivalent of the RNS number

(x1, x2, x3) with respect to the moduli set {m1, m2, m3} in

the form {2n + 2, 2n + 1, 2n} for any even integer n > 0 is

computed as follows:

X =
∣∣∣m2m3

2
x1 −m1m3x2 +

m1m2

2
x3

∣∣∣
ML

, (10)

where ML = m1m2m3
2 .

Proof: For n = 3, Equation (1) becomes:

X =

∣∣∣∣∣
3∑

i=1

Mi

∣∣M−1
i xi

∣∣
mi

∣∣∣∣∣
ML

. (11)

By substituting Equations (7), (8), and (9) into Equation (11)

we obtain the following:

X =
∣∣∣(m2m3)

(m3

4
+ 1

)
x1 +

(m1

2
m3(m2 − 2)

)
x2

+
(m1

2
m2

) m1

2
x3

∣∣∣
ML

=
∣∣∣
(m2m3m3

4

)
x1 +m2m3x1 +

m1m2m3

2
x2

−m1m3x2 +
m1m1m2

4
x3

∣∣∣
ML

=
∣∣∣
(m2m3

4

)
x1(m1 − 2) +m2m3x1 +MLx2

−m1m3x2 +
m1m2

4
x3(m3 + 2)

∣∣∣
ML

Further simplifications give:

X =

∣∣∣∣∣
∣∣∣∣
ML

2
(x1 + x3)

∣∣∣∣
ML

+
∣∣∣(m2m3

2
)x1

∣∣∣
ML

−|m1m3x2|ML
+

∣∣∣(m1m2

2
)x3

∣∣∣
ML

∣∣∣∣
ML

(12)

Since each of the terms m2m3
2 x1, m1m3x2, and m1m2

2 x3 in

Equation (12) is positive and less than ML and also from

Proposition I, (x1 + x3) must always be even, which implies

that,
∣∣(x1 + x3)ML

2

∣∣
ML

= 0. Equation (12) therefore reduces

to:

X =
∣∣∣m2m3

2
x1 −m1m3x2 +

m1m2

2
x3

∣∣∣
ML

(13)

Thus, Equation (10) holds true.

This equation is exactly the same as Equation (4) previously

proved in [9] using the weight concepts. We propose to further

simplify Equation (10) using the following theorem:

Theorem 3: The decimal equivalent of the RNS number

(x1, x2, x3) with respect to the moduli set {m1,m2, m3} in

the form {2n + 2, 2n + 1, 2n} for any even integer n > 0 is

computed as follows:

X = (x2 − x1)m1 + x1

+m1m2

∣∣∣∣
(x1 + x3)

2
− x2

∣∣∣∣
m3
2

(14)

Proof: To prove this theorem we use the following lemma

presented in [11]:

|am1|m1m2
= m1 |a|m2

. (15)

From Equation (10), we have

X =
∣∣∣m2m3

2
x1 −m1m3x2 +

m1m2

2
x3

∣∣∣
ML

Putting m3 = m2 − 1 in the above equation, we obtain:

=
∣∣∣m2m3

2
x1 −m1x2(m2 − 1) + m1m2

2
x3

∣∣∣
ML

= m1x2

+
∣∣∣m2m3

2
x1 −m1m2x2 +

m1m2

2
x3

∣∣∣
m1m2m3

2

Applying Equation (15) to the above equation gives:

X = m1x2

+m2

∣∣∣m3

2
x1 −m1x2 +

m1

2
x3

∣∣∣
m1m3

2

(16)

Putting m3 = m1 − 2 in the above equation, we obtain:

= m1x2

+m2

∣∣∣∣
(m1 − 2)

2
x1 −m1x2 +

m1

2
x3

∣∣∣∣
m1m3

2

= m1x2 −m2x1

+m2

∣∣∣∣m1
(x1 + x3)

2
−m1x2

∣∣∣∣
m1m3

2

Applying Equation (15) to the above equation gives:

X = m1x2 − x1(m1 − 1)
+m1m2

∣∣∣∣
(x1 + x3)

2
− x2

∣∣∣∣
m3
2

Further simplifications give:

X = (x2 − x1)m1 + x1

+m1m2

∣∣∣∣
(x1 + x3)

2
− x2

∣∣∣∣
m3
2
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Thus, Equation (14) holds true.

It can be observed that Equation (14) is processing smaller

numbers when compared to Equations (4), (5), and (3), thus

the magnitude of the involved values in the proposed con-

version is smaller than the one in state of the art equivalent

converters.

IV. HARDWARE REALIZATION

The hardware realization of the proposed scheme is depicted

by Figure 1. The implementation follows Equation (14) but

the following should be noted. At a first glance, D is a 3:1

adder. However, the extra input x2 can be embedded into

the partial product matrix of the m1 multiplier according to

the merged arithmetic principle. Furthermore, the modulo-
m3
2 operation associated with the adder C doesn’t have to

be explicitly computed. It can be replaced by at most one

corrective addition.

In order to demonstrate that no explicit modulo operation is

required by our proposal, we analyze the two possible extreme

cases as follows:

Case 1: (x1 + x3) = 0 and x2 = 2n. This results in the

most negative value one may get. In this case Equation (14)

reduces to | − x2|m3
2

. To perform the modulo m3
2 operation,

we need to do corrective additions. Given that m3+(−x2) =
(2n)+(−2n) = 2n−2n = 0, for any positive even integer n,

only one corrective addition with m3 is required to compute

the modulo.

Case 2: (x1 + x3) is even and has the maximum possible

value and x2 is zero. This is the largest positive value one

may get and Equation (14) reduces to | (x1+x3)
2 |m3

2
. Given that

m3 − (x1+x3)
2 = (2n) − (2n+1+2n−1)

2 = 2n − 2n = 0 the

maximum sum in the modulo adder cannot exceed m3, thus

only one correction is required. This means that the modulo

m3 operation can be implemented with at most one corrective

addition.

Figures 2 and 3 describe the hardware realization of the

converters proposed in [4] and [7], respectively. The area, the

delay, and the modulo operations required by our proposal

and the one in [4] and [7] are summarized in Table I. As

one can observe in the Table, our proposal requires less

delay and operates on smaller magnitude operands with the

same or less area. In particular, our proposal requires four

2:1 adders and two multipliers, Figure 2 requires one 3:1

adder, two 2:1 adders, and four multipliers while Figure 3

requires one 3:1 adder, three 2:1 adders and two multipliers.

In terms of critical path delay, our scheme requires 3 additions

and 1 multiplication with mod-n operations, the converter in

[4] requires 2 additions and 2 multiplications with mod-2n
operations whereas the converter in [7] requires 3 additions,

2 multiplications with mod-m1
2 m3 operations. Consequently,

the new converter introduced in this paper requires less delay

with the same or less area. Moreover, due to the fact that our

scheme operates on smaller magnitude operands, it requires

less complex adders and multipliers, which potentially results

in even faster and smaller implementations.

Metrics [7] [4] Our proposal

Area 4 adders 3 adders 4 adders
2 multipliers 4 multipliers 2 multipliers

Delay 3 additions 2 additions 3 additions
2 multiplications 2 multiplications 1 multiplication

Mod operations m1
2

m3 m3
m3
2

Table I
PERFORMANCE COMPARISON

X

X

x x

m

X

x

m  m

A B

C

D

1 2

2

1 2

x 2

x 1

2
x 3

2

3

2mod−
m

1

Figure 1. Hardware Realization of Our Proposal

X X X

X

x x kk

mod−m

X

A1 A2

A3

1 2 1 2

3

x x x1 2 3

m m1 2

2

m 1

2

Figure 2. Converter Data Path for [4]
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x x

X

x 2

B1 B2

B3

B4

2 3
xxx 21 32

X

mod−
m  m

2
1 3

2
m 1

m 2X

Figure 3. Converter Data Path for [7]

V. CONCLUSIONS

In this paper, we investigated RNS to decimal conversion

which is an important issue concerning the utilization of RNS

numbers in DSP applications. We proposed a new RNS to

decimal converter for the moduli set {2n+2, 2n+1, 2n} for

any even integer n > 0. First, we demonstrated that for such

a moduli set, the computation of multiplicative inverses can

be eliminated. Secondly, we simplified the Chinese Remainder

Theorem (CRT) to obtain a reverse conveter that uses mod-n
instead of mod-(2n + 2)(2n) and mod-2n required by other

state of the art equivalent converters. Next, we presented

a low complexity implementation that does not require the

explicit use of the modulo operation in the conversion process

as it is normally the case in the traditional CRT and other

state of the art equivalent converters. In terms of area, our

proposal requires four 2:1 adders and 2 multipliers while

the best state of the art equivalent converter requires one

3:1 adder, two 2:1 adders, and four multipliers. In terms of

critical path delay, our scheme requires 3 additions and 1

multiplication with mod-n operations whereas the best state

of the art equivalent converter requires 2 additions and 2

multiplications with mod-2n operations. Consequently, our

scheme outperforms the best state of the art converter in

terms of area and delay. Moreover, due to the fact that our

scheme operates on smaller magnitude operands, it requires

less complex adders and multipliers, which potentially results

in even faster and smaller implementations.
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