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Abstract

In this paper, we analyze the problem of supporting conflict-free access for multiple stride families
in parallel memory schemes targeted for high performance vector processing systems. We propose the
Matched SAMS Scheme, which is based on the basic SAMS scheme, to support conflict-free vector
memory accesses for strides from multiple stride families. We compare our scheme against previously
proposed techniques, e.g. using buffers and inter-vector out-of-order access. The main advantage of
our proposal is that the atomic parallel access is supported without limiting the vector lengths. This
provides better support for short vectors. Our scheme also has the merit of better memory module
utilization compared to the solutions with additional modules. Synthesis results for TSMC 90 nm Low-
K CMOS technology indicate that the Matched SAMS Scheme has efficient hardware implementations,
with a critical path delay of less than 1 ns and moderate hardware resource utilization. To validate
the performance of proposed Matched SAMS Scheme in real applications, we applied it to IBM Cell
processor by integrating it to the Cell SPE local store, and did experiments with applications from
PARSEC benchmarks and micro-kernels from IBM Cell SDK. Simulation results show that with the
direct support of unaligned and strided memory access patterns by our parallel memory scheme, the
dynamic instruction counts drops by up to 49%, which turns into a reduction of around 46% in execution
time.

1 Introduction

One of the most critical design challenges in SIMD processors is imposed by the memory subsystem, which is
required to deliver sustained high bandwidth at reasonable latency [I3[23]. To meet these challenges, memory
subsystems with multiple memory modules have been widely considered. Parallel (or multimodule) memories
were introduced in the early years of building high performance processors [§] and later extensively adopted in
vector supercomputers [32] [I7]. Nowadays, there is a trend that general purpose systems are utilizing parallel
memories in their memory hierarchy, such as the multibank on-chip caches in Niagara [2I] and Opteron [20],
multislice caches in Power processors [35] B3] [24], parallel on-chip eDRAM banks in VIRAM processor [23],
and interleaved DRAM banks in Rambus and other commercial-off-the-shelf monolithic DRAM chips. For
simplicity of the module assignment hardware implementation, the number of memory modules was chosen as
a power of two in most of these products. For efficient hardware utilization, the designers prefer systems with
non-redundant memory schemes, i.e. schemes where each and every memory module can be referenced by any
memory access. This paper addresses non-redundant memory systems with a power of two memory modules.
Based on SAMS [I6], we introduce the Matched SAMS Scheme, which overcomes the problem of conflict-
fred] access across stride familie in multimodule parallel memory systems. The specific contributions of
our proposal are:

1Please refer to Section [Z1] for detailed explanation of “conflict-free access”.
2See the definitions in Section 2231



e We propose the Matched SAMS scheme, which support conflict-free vector accesses with strides from
multiple stride families. Moreover, the number of supported stride families is increased from 2 to
logz(#modules) + 1, compared to the original SAMS scheme;

e We present the mathematical foundations for both the SAMS and Matched SAMS schemes;

e We have implemented the entire Matched SAMS memory system, and synthesis results on TSMC 90 nm
Low-K CMOS technology suggest short critical paths (less than 1 ns). This is a strong indication for
the feasibility of the proposed scheme in practical parallel memory systems.

e We have integrated the Matched SAMS Scheme into IBM Cell SPE loclal store memory and investigated
its performance on several real applications from PARSEC benchmark and micro-kernels from IBM
Cell SDK. Simulation results show that with the direct support of unaligned and strided memory
access patterns by our parallel memory scheme, the dynamic instruction counts drops by up to 49%
on average, which turns into a reduction of around 46% in execution time.

The remainder of the paper is organized as follows. In Section 2, we present the background and motivation
of this work. In Section 3, the mathematical equations of the proposed Matched SAMS Scheme are described,
followed by the mathematical validation of the SAMS scheme and its derivative, the Matched SAMS Scheme
in Section 4. The hardware implementation and synthesis results of the Matched SAMS Scheme and discus-
sions about the hardware implementation variants are presented in Section 5. The integration of the Matched
SAMS Scheme into IBM Cell processor and its simulated performance in several applications and kernels
are investigated in Section 6. The major differences between our proposal and related art are described in
Section 7. Finally we conclude the paper in Section 8.

2 Background and Motivation

In this section, we will introduce some background on parallel memory schemes, which play a central role in
parallel memory systems. We also present some of the key existing techniques in parallel memory schemes.
Then we will present the limitation in nonredundant parallel memory schemes, which motivates us to this
work.

2.1 Parallel Memory Schemes

The parallel memory schemes are the main means to determine the performance and the hardware complexity
of the parallel memory subsystems. Given a specific physical memory organization and resources, these
schemes determine the mapping from the linear address space to the physical location identifiers, such as
the module number and row address. In other words, the memory translation scheme determines how
to distribute data to different memory banks, in order to better service memory references. Vector access,
defined by an address stream with a constant offset between any two consecutive addresses, is one of the most
important memory reference patterns in SIMD applications. Traditional parallel memory schemes in vector
computers provide conflict-free access for a single stride family. To solve the module conflicts encountered
with the cross stride family accesses, several enhancements have been previously proposed, including the use
of dynamic memory schemes [I1} [I0], use of buffers [9], and use of more memory moduled’ (i.e. memory
scheme with redundant modules) [9], and out-of-order vector access [36].

These traditional multimodule memory schemes assume that the memory access time is atomic and it
is much larger than the processor cycle time. More importantly, to keep up with the data access demand
of the fast processors, different memory schemes were proposed to make multiple memory modules work

3Note we will refer to “use of more memory modules” as “use of redundant memory modules” or “redundant memory
schemes” in this paper. Keep in mind that there is actually no data duplication in redundant memory shcemes.
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Figure 1: Inherent limitation in multimodule memory assignment

together in an interleaved manner to service single cycle data accesses from the processor, in traditional
parallel memory schemes. Particularly, if the number of memory modules equals to their latency counted
in processor cycles, the scheme is called a matched memory system, as in this case, the interleaved memory
modules are capable of servicing the processor at the throughput of one datum per processor cycle, if the data
to be referenced in one access are located in different memory modules. This condition of even distribution of
memory references is called conflict-free access in traditional interleaving schemes. In conflict-free access,
data could be accessed in parallel as there is no module conflict during the memory access.

With the advance of the semi-conductor technologies, however, the parallel memory modules of traditional
vector computers could be (partially) integrated into the processor chip working as a local store like the Cell
processor [I9]. Thus, on the one hand, for medium-sized on-chip memory arrays (such as the L1 caches
in GPPs), it is not difficult to support one access per processor cycle. On the other hand, to exploit the
available on-chip resources more efficiently, multiple SIMD data paths are deployed in modern processors.
Furthermore, accessing multiple memory data items in a single processor cycle is desirable in order to use the
multiple data paths efficiently. Therefore, we assume a memory organization where all memory modules are
on chilﬂ and each of them services one piece of data reference every clock cycle. In this work, we address such
memory organizations and refer to them as “fully-parallel multimodule memory systems”. In fully-parallel
multimodule memory systems, the processor could access as many data items as the number of memory
modules in any cycle, when the access is conflict-free. This is actually the goal of the underlining parallel
memory schemes in such memory organizations.

2.2 Motivation: The Limitation in Nonredundant Parallel Memory Schemes

In traditional matched parallel memory schemes, it is impossible to simultaneously support parallel strided
vector accesses with strides from multiple stride families [36]. Figure [ illustrates an example with four
memory modules. Under the constraint of unit-stride conflict-free access, the module assignment function
of the scheme is completely fixed. Note in Figure[Ilthe constant repeat of module assignment pattern of the
first four addresses. When the system is accessed with stride 2, half of the memory modules are not utilized
(indicated by the shadowed cells in Figure[I]).

There is a large number of strided vector accesses in many scientific and engineering applications which
have significant impact on the performance of the workloads on traditional vector supercomputers [6]. In the
meanwhile, we certainly could not neglect the unit-stride access pattern, as it is the most common one in
vectorized scientific and engineering applications [18, 22] [34]. Even in vectorized SPEC95 benchmarks it is
the second most frequent stride [28]. Furthermore, there are many occasions in which simultaneous support
of vector memory accesses with strides from multiple stride families is desired, as the same data block is
accessed with different vector patterns. When we have to access data in parallel memories with multiple
strides, the problem occurs that we have to either modify the interleaving scheme (that is, to redistribute
data to memory modules in a different way), or to have the scheme optimized for conflict-free access with
one type of access while suffer from the non-conflict-free access with the other. The former would incur data

4Three are already many GPPs with multimodule on-chip SRAMs, see [24] [19] 21] for examples.



flushing into and reloading from the lower level memory in the memory hierarchy whenever there is a change
of access stride, whereas the latter would incur additional processor cycles waiting for the vector access.

2.3 Definitions

For the sake of clarity, we now give the definitions of some terminologies used in this paper.

Definition 1. A sequence of independent memory access stream issued by the SIMD processor in parallel
is called vector access. Vector access could be either regular (with constant stride) or irregular (such as
the scatter/gather memory access), however we only discuss regular vector access in this paper.

Definition 2. Base address is the first memory address in a given regular vector access stream.

Definition 3. Stride is the constant interval between subsequent memory addresses in a given regular
vector access stream.

Definition 4. Unit stride denotes stride 1.

Definition 5. A stride family is a set of infinite number of strides, {S||S = 0 -2°, s € N, o is odd}. This
follows the definitions given in [T, 10, [36].

Definition 6. The exponential part of the stride family {S|S = o -2°% s € N, o is odd}, s, is called
the stride family number. The stride family number completely defines the set of strides belonging to
the stride family. For example, stride family 0 is the stride set {1, 3, 5, 7,---} while stride family 1 is
{2, 6, 10, 14, -- }.

3 The Matched SAMS Scheme

In this section, we introduce the Matched SAMS Scheme, which is derived from SAMS, the Single-Affiliation
Multiple-Stride conflict-free parallel memory scheme. SAMS was initially proposed to simultaneously support
conflict-free unit-stride and strided memory accesses from one single stride family in [16], by first constructing
a single-affiliation interleaving scheme, and then making data lines wider to solve the module conflicting
problem in unit-stride access. The Matched SAMS Scheme takes a step further in that it supports conflict-
free vector accesses for strides from multiple stride families.

3.1 SAMS Parallel Memory Scheme

As described in [I6], the SAMS scheme consists of three functions: (1) the module assignment function
which assigns an item in linear address space to a specific module; (2) the row assignment function which
determines the row in which the item is placed; and (3) the offset assignment function which calculates the
offset of the item in the row, as listed in the following:

e module assignment function:



a%24, 5=
m(a’) = Qq - s, (G®TH.s—1,q+1)%2s_1>a 1<s Sq (Sa qu)
a® Ty, ) %2, 5>q

e row assignment function:

r(a) = a_ 1<s<q (s,q€N)

o offset assignment function:

g, s=0
ola) =% as—1, 1<s<q (s,q€N)
aq, s>

where, a is the n bit linear address, which is implemented by the 2¢ memory modules in the SAMS scheme; s
is the stride family number to be supported with conflict-free access by the scheme; a; is the i-th bit of a. The
notation %y means & modulo y, and Notations z/y and £ mean the quotient of integer division between

rand y. <..., --- > denotes binary bits concatenation. Ty, , is the XOR scheme address transformation
matrix taken from [10]. Tx, , = Hg:g(x’y)*l Tt max(z,y), k» Where T; ; is defined to be the identity matrix

with a single off-diagonal 1 in T'(4, j). The binary matrix T is arranged in a form such that the bottom-right
element is 7'(0,0), and the row index grows when moving up and the column index grows when moving left
so that the top-left element is T'(l — 1,1 — 1) (assume the size of T" is [ x [). For example,

110 100 110
T=1011|=[011]-|0 1 0]|=T -Tos
00 1 00 1 00 1

The ® symbol in this paper is used for binary vector-matrix multiplication. For instance, consider

then

3.2 The Matched SAMS Scheme

In this paper, we define the special case of SAMS scheme under the condition s = ¢ as Matched SAMS
Scheme. In the Matched SAMS Scheme, the system parameter s is fixed to ¢, thus the module assignment
function, the row assignment function and offset assignment function are simplified as follows:

m(a) = <aq7 (a®THq—1,q+1) %2q_1>
rga; = T (¢ €N) (1)
ola = Qg-1
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Figure 2: Address mapping in the Matched SAMS Scheme with 4 modules

Let’s consider ¢ = 2, which means the Matched SAMS Scheme with 4 memory modules, for example.
With ¢ = 2 we have

m(a) = <a27 (a®TH1,3) %2>
= (a2, (a® 15, 0) %2)
= <a2; asz & a’0>

. Therefore, the address mapping of the Matched SAMS Scheme with 4 memory moduels is

m(a) (a2, a3 @ ao)
r(a) = anp—13

o(a) a1

. Figure [2] illustrates the address mapping of the above example. Taking the base address 1 for example,
the referenced linear address groups for stride 1, 2 and 4 vector accesses are {1, 2, 3, 4}, {1, 3, 5, 7} and
{1, 5, 9, 13}, respectively. As Figure[2shows, all addresses in each group could be accessed in parallel within
the Matched SAMS Scheme. Thus the Matched SAMS Scheme is capable of supporting conflict-free vector
access with strides from more than 2 stride families, which will be proved in next section.

4 Proof of Conflict-Free Vector Access

In this section, we will present the mathematical fundations of the basic SAMS scheme, and its derivative,
the Matched SAMS Scheme. As already discussed in Section 211 “conflict-free” conventionally means that
data to be referenced in one access are located in different modules so that they could be accessed in parallel.
However the concept of conflict-free in this paper is slightly extended such that it includes the cases whenever
there are more than one references located in the same module whereas they could also be accessed in parallel
as they are in the same row. For the sake of clarity, we will use the term “strictly conflict-free” when we
refer to the conventional meaning. Now we will first illustrate some properties of the SAMS scheme, and
then give the proof of its capability of supporting conflict-free access in theorems later.

Property 1. The period of SAMS module assignment function is 2975,

Proof. There are three cases in the SAMS scheme.

I) s=0. m(a) = a%2? = (a + 297%) %27 = m(a + 291%).
Imi<s<g
m(a) = <aq “ag, (a®THb 1q+1) %25~ 1>
— fagan (@427 © Ty, ) %25) 2)
= m(a+ 2‘1'“) .
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Figure 3: Binary bits representation of b=a + 6 -2° when 1 < s < g
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Figure 4: Binary bits representation of b=a+ ¢ -2' when 1 < s <g¢q

Equation (@) stands because the module assignment function of Harper’s XOR scheme, namely (a ® Ty %251,

has a period of 2(s=D+(a+1) — ga+s [T7].

S—lyq+1)

IIT) s > ¢. In this case the module assignment function is precisely that of Harper’s XOR scheme
configured with 29 banks and stride 2%, which has a period of 29+* [I1]. O

Property 2. When 1 < s < g, the SAMS scheme is conflict-free for any stride S = 25’ (0<s <s—1).

Proof. The SAMS scheme is conflict-free, if we could guarantee that the conflicting items in linear address
space are mapped to the same row. Described in mathematics, given two different addresses a and b, we
need prove 7(a) = r(b) under the conditions m(a) = m(b) and b=a+§-25 (1 < § < 2¢ — 1)(without loss of
generality we assume b > a).

First we examine the equation m(a) = m(b). Note when 1 < s < ¢ m(a) = m(b) means
<aq TG, (a’ ® THs—l,LH»l) %2571> = <a’q © s, (a & THs—l,LH»l) %2571> )
ie.

aq...as — bq...bs (3)
(a ® THs—LqH) %27t = (b ® THs—LqH) %2°7" (4)

According to the definition, equation {@l) could be further expanded as

ao D ag+1 = bo & bgt1
a1 D agt2 = b1 D bg2 (5)
as—2 D Agts—1 = bs—2 @ bq+s—1

When s’ = 0, we have b = a + §. The binary bits representation of the addition process is depicted in
Figure Bl Consider a, = by(from equation (B])) together with Figure B, we could see that there is no carry
input from bit ¢ — 1 to bit ¢ during the addition. Accordingly, the high order bits(from bit ¢ on) of a are
not affected by the addition of §, which means a, 1+ agr1 =bp—1---bgy1, ie. 557 = 24%, which means

r(a) =r(b).

When s’ = 1, we have b = a+2-4, which is depicted in Figure[@l Note the addition on bit 0 is by = ag+0,
thus by = ag. Combined with equation (Bl), we have by+1 = a4+1, which indicates that there is no carry input
from bit ¢ to bit ¢+ 1. Hence an—1 -+ agq1 = b1+ bgi1, L. 5%t = 5%+, which means r(a) = r(b).



Similarly, for s’ = k(k=2,...,5— 1), i.e. b=a+ J-2*, we have

ap = b()
al = b1 (6)
Qg = bk

by examing the process of addition. Considering (@) together with (&), we know

Ag+1 = bgt1

a = b

o A ™
Ggikt1 = bgyri

This indicates that there is no carry input from bit g+k to bit ¢+k-+1. Therefore the high order bits(from bit
g¢+k+1 on) of a are kept untouched during the addition. Consequently we have an_1 - - ag41 = bp—1 - - - b1,
ie. 52+ = b+, which means r(a) = r(b). O

Property 2 reveals a very interesting feature of the SAMS scheme: it could potentially support conflict-
free vector accesses with strides across multiple stride families, under the condition s < gq. Moreover, it is
exactly where the idea of the Matched SAMS Scheme originates. We will see how this feature works for the
Matched SAMS Scheme later.

Before proving the conflict-free access support of SAMS scheme, first we have to prove that it is a bijection
on E. Only when the interleaving scheme is a bijection from the linear address space to the transformed
space(the module-row-offset trinity in SAMS) could it be consistent in both theory and practice.

Theorem 1. The mapping from linear address a to the module-row-offset trinity in the SAMS scheme is a
bijection on E”.

Proof. As there are three cases in the SAMS scheme, we will discuss them one by one.

I) s = 0. By concatenating the binary bits of the memory module assignment, row assignment, and offset
assignment, we get

= <a%2q, 2q+17 aq>
_ q i>
= <a%2 54
It’s clear that the mapping from a to the trinity (m(a), r(a), o(a)) is a bijection on E™.

II) 1 < s < q. By concatenating the binary bits of the memory module assignment, row assignment, and
offset assignment, we get

(m(a), () o(a))

_ a
= <a(1 - Qs ®TH5—1,5+1)%28 17 2q+17 a/s—1> (8)
bij ectwn s— a
j (@@ Th, ) %2, sy g, ) 9)
a
© (o . w

Note expression ([0) is virtually the Harper XOR scheme configured with 25~1 memory modules and stride
251 (the first part of the binary concatenation is the module assignment function, and the last part is the

5Denote E™ = {0,1,...,2" — 1}.



row assignment function). Therefore, mapping from a to [I0) is a bijiection on E™. As the transform between
[@®) and (@) is also a bijiection, hence mapping from a to (m(a), r(a), o(a)) is a bijection on E".

IIT) s > ¢. By concatenating the binary bits of the memory module assignment, row assignment, and
offset assignment, we get

(m(a), r(a), o(a))
(a®Th,.) %27, ( 1) %2m7) /2, @)

(( (5 +

= (e, ) %20 ((55+1)%2") /2, ((5 +1) %2"™) %2)
((
(

a

29
a

29

a®Ty,.) %29, (%4‘1) %2“*‘1> (11)

bijectwn

23+ 1) %279, (e Ta,,) %27) (12)
a

Note the transform between ([II]) and ([I2)) is a bijection. As we know the Harper’s XOR scheme which maps
linear address a to the row-module concatenation <2q, (a ® THW) %2q> is a bijection on E™, therefore the
mapping from a to [<2%, (a ® THW) %2q> + 2‘1} %2™ is also a bijection with fixed ¢q. Therefore, the mapping
from linear address a to (m(a), r(a), o(a)) is a bijection on E™. O

- (a®Tn,,) %27) +27] %2" . (13)

Theorem 2. The SAMS scheme is conflict-free for both unit-stride and stride family {S||S = o -2°, o odd}.

Proof. T) s = 0. In this case the stride family becomes {S||S = o, ¢ odd}, which includes the unit stride.
The SAMS module assignment function when s = 0 is the same as that of the simple low-order interleaving
scheme, hence it is conflict-free for all odd stride accesses.

I 1<s<gq.
a) Strided access with stride S = 2°.

Suppose the starting address of the strided access is b. Then the accessed items in linear address space are
b, b+2% ..., b+2%(29—1), which is shown in Figure[Hl In the figure the address sequence is rearranged into
a matrix, where the address increases in a column-major manner, and each row consists of all the references
to the same subgroup (Note there are 297571 subgroups in total.). Now we will prove each and every item
in the matrix is distributed into a different memory module, by the SAMS module assignemnt function
<aq - ag, (a ® THquH) %25’1>. By examing the address matrix we could see that item k - 29T1(k =
0,1,...2%—1) does not affect a, - - - as, and the only determinant factor is item b+k-25(k = 0,1,...2975F1 1),
which results different a4 - - - a5 for different k. In other words, the high order bits of the module assignment
function is different for different rows. Now we look into the row. For the i-th row(i = 0,1,...,2¢75F1 — 1),
the address sequence is precisely that generated by the strided access with starting address b + ¢ - 2° and
stride 2971, Consequently, the second part of the SAMS module assignment function, which is actually the
Harper’s XOR scheme configured with conflict-free access for stride 2971, designates different module indices
to different address items in the same row. In other words, (a ® Ty,_, ,,,) %2°~" is different for each and
every items in the same row. Together with the fact that a4 ---a, is different for different rows, we could
know that each and every items in the address sequence referenced by the strided access are assigned to
different memory modules. Hence the SAMS scheme is strictly conflict-free for access stride S = 2°.

b) Strided access with stride family {S||S = o - 2°, o odd}.
Since the SAMS scheme is strictly conflict-free for stride S = 2° in the sense that all referenced addresses

in one access are distributed in different modules, it is also strictly conflict-free for the stride family {S||S =
o -2%, o odd}, according to Theorem 3 in [I1].
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Figure 5: The accessed addresses with stride S = 2°

<an_1...aq+s, Agts-1-.-ds, As-...dq, aq_l...a0>
+ 5 .5,

g1+

<by1...bgsss Dgrs-t..-bes betoo-bgs by.1...bg>

Figure 6: Binary bits representation of b = a + § when s > ¢

¢). Unit-stride access.

This has already been proved in Property 2.

III) s > q.

a) Strided access with stride family {S||S = o - 2°, ¢ odd}.

When s > ¢, as the SAMS scheme adopts the module assignment function from Harper’s XOR scheme
directly, therefore it is strictly conflict-free for strided access with stride family {S||S = o - 2°, o odd}.

b) Unit-stride access.

To prove the SAMS scheme to be conflict-free for unit-stride access, we only have to prove that the
conflicting items in linear address space are mapped to the same row. Depicted in mathematics, given two
different addresses a and b, we need prove r(a) = r(b) under the conditions m(a) = m(b) and 1 < |b—a| <
29 — 1.

Assume b = a+ 0(1 < § < 29 —1). Consider the binary bits representation of b = a + J, as depicted
in Figure[@l From the figure we could see that, if ag_1...a9 = bg—1...bo, then § = 0, which means a = b.
Therefore ag—1 ...ap # bg—1 ... bo. In addition we know m(a) = m(b), i.e.

ao @ as = by D bs
a1 ® asy1 = b1 ®bsy1
ag—1 D ag4s—1 = bqfl b qursfl

Therefore we know agqs—1...as # bgys—1...bs. Consequently we know that there should be a carry input
from bit s — 1 to bit s, which is the only possible way to make the equation in Figure[@] stand. Furthermore,
as the carry outcome of bit s — 1 could only come from that of bit ¢ — 1, therefore we have

as—1...0q = 1...1 (14)
bs—1...b4 = 0...0 (15)
bnfl...bq = an,l...aq—i—l. (16)

As by = 0(from Equation (IH)), we could further get

bu_i...bg b1 ...bg+1
= . 17
5 5 (17)
Combining equation [I6] and Equation [I7, we know
an_l...aq—f—l o bn_l...bq—f—l
2 B 2 ’
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Figure 7: Parallel memory system based on the Matched SAMS Scheme

i.e.

(5 +1)/2 = (2—bq+1>/2,

which indicates that r(a) = r(b)(please refer to Section B for the definition of row assignment function).
This means that any conflicting items(items located in the same memory module) under unit-stride access
in the SAMS scheme are assigned to the same row, therefore they could be referenced simultaneously in one
access. O

Corollary 1. The Matched SAMS Scheme is conflict-free for stride 1(unit stride), 2,...,2971 and stride
family {S||S = o -2, o odd}.

Proof. In the Matched SAMS Scheme, the parameter s is set to ¢, therefore Corollary 1 is virtually the
direct application of Property 2 and Theorem 2. O

The Matched SAMS Scheme is simple yet powerful, because of the large stride range it covers. In general,
the Matched SAMS Scheme is capable of supporting conflict-free accesses with strides from loga (#modules)+
1 families. For example, if we have a parallel memory system with 8 memory modules which deploys the
Matched SAMS Scheme, then it could provide conflict-free access for unit stride, stride 2, stride 4, and any
stride of 8 - 0(0 odd). Thus the potential benefit is very promising in high performance vector processing
systems, where a large number of processor clocks are spent on loading, packing and unpacking data from
memory. With careful choice of design parameters and proper implementation trade-offs (we will discuss
them in next section), the Matched SAMS Scheme could be utilized to accelerate the vector memory access
in specific application domains such as scientific and engineering computing with high data-level parallelism.
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Figure 8: Module assignment function in Matched SAMS Scheme

5 Hardware Implementation and Discussions

Above, we have presented the mathematical foundations of the SAMS scheme, and particularly the Matched
SAMS Scheme. For any parallel memory scheme to be practically useful, it is important to have efficient
hardware implementation as the scheme logic is in the critical path of every memory access. In this sec-
tion, we will examine the hardware implementation issues of the Matched SAMS Scheme. We generated
the Verilog RTL source code of the SAMS memory subsystem with the help of our visual SAMS design
tool and synthesized them by Synopsys Design Compiler tool chain (version A-2007.12) with SMTC 90 nm
Low-K CMOS technology. Furthermore, we will also present some discussions about the variants of SAMS
implementation with different address generation schemes and support for different write patterns, its over-
head compared to the low order interleaving scheme, the scalability regarding the total memory capacity,
its capability for unaligned memory access, and its potential applications. Unless explicitly stated, all im-
plementations are done with parameters that the total capacity of all SAMS memory modules is 1MB, and
data width of each vector element are 32 bits. Considering the hardware complexity and the popularity of
vector strides, the supported access strides are {1, 2, 4,..., 27} (i.e. the strides o - 27 with o > 1 are not
supported in the implementations presented in this section).

Figure [1 illustrates the organization of parallel memory system based on our Matched SAMS Scheme.
The vector processor core issues the memory access commands, with the base address and striddd to the
Address Generation Unit(AGU), where the 29(in Figure[1] 2¢ = 8) linear addresses are calculated in parallel
and then sent down to the SAMS memory system. The eight linear addresses are resolved by the Address
Translation Unit(ATU) into eight module assignments, eight row addresses and eight row offset addresses.
After that, the eight groups of row-offset pair and eight data items from input data port (on a memory
write) go to the address & data switch and get routed to the proper memory modules according to their
corresponding module assignments. In case of a read memory access, after the read latency of the memory
moduled] eight read data are fed back to the vector processor via the data switch at the bottom of Figure [7.
It should be noted that in our current SAMS implementation, the delay starting from the moment when
the vector memory access command is issued by the vector processor until the addresses and data reach the
accessed memory modules, costs one cycle of the SAMS memory system (we will refer it as the “inbound
path”), and the delay starting from the time when the read data are available at memory module ports
until they arrive the vector processor takes another clock cycle (we will refer it as the “outbound path”).
We have found that the critical path of the SAMS memory system is the inbound path, starting from the
vector processor and ending at the SRAM memory modules. When we mention “SAMS memory system” or
“SAMS implementation”, we mean the entire memory system, which contains all the components excluding
the vector processor in Figure[ll Also, when we say logic consumption, we mean logic consumption of entire
SAMS memory system excluding the SRAM modules.
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Figure 9: Matched SAMS Scheme with distributed address generation

5.1 Address Translation Unit

As shown in Figure[7, address translation plays a central role in a parallel memory scheme for two reasons.
First, it determines the address mapping from the linear address seen by the vector processor to the physical
locations; Secondly, it is constantly in the critial path of memory access. Thus we will first examine the
address translation logic of the Matched SAMS Scheme. Checking the mathematical description of the
address mapping procedure in Equation [I} it is clear that the row assignment function m(a) and offset
assignment function o(a) are just static bits selections, which are fixed at system design time, therefore
they don’t involve any hardware logic. The hardware logic of the module assignment function is shown in
Figure[8 We could see that the critical path of the module assignment function is a simple XOR gate, which
is also the critical path of the address translation logic. The simplicity of the address translation logic is
utmost desirable since it potentially allows for fast and efficient vector access at the system level.

5.2 Centralized Address Generation vs. Distributed Address Generation

In general, there are two address generation schemes for vector processors: the centralized scheme and
distributed scheme [15] 26} 25]. In the centralized scheme, the Address Generation Unit (AGU) generates all
memory addresses to be accessed and then they are routed to the corresponding memory modules properly
through an address routing circuit, as the In Switch shown in Figure M. SAMS, the address routing
circuit is a 29-to0-2971 switch, which could be implemented with 2971 29-to-1 multiplexors. In the distributed
scheme, however, the vector memory access command (including information of base, stride, and vector
length) is broadcasted to each and every memory module, and the row and offset addresses for all accessed
memory modules are generated locally, in a distributed manner, as shown in Figure @ The distributed
address generation scheme normally has the advantage over its centralized counterpart that it does not
require the address routing circuit, because local addresses are generated at the site of memory modules.
We have implemented both address generation schemes for the Matched SAMS Scheme, and compared their
performance in terms of critical path delay and logic consumption.

As we could see in Figure [I0] the two address generation schemes did not show much difference in
SAMS. The critical path delay of the distributed scheme is even slightly higher than that of the centralized

6The vector length here equals the number of memory modules.

"The latency of the memory module may be more than one clock cycle, depending on the absolute memory module latency
(which is mainly determined by the memory capacity) and the critical path latency of the Matched SAMS Scheme. Here we
assume the memory modules are fully pipelined.

8Note, the In Switch in Figure [[] routes not only addresses but also data from the vector processor.
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Figure 10: Centralized Address Generation vs. Distributed Address Generation

counterpart for implementations with 8 and 16 memory modules, although the area consumption is a little
bit lower. One major reason why the distributed address generation didn’t gain much benefit in SAMS
implementations is that, although the address routing circuit is removed in the distributed address generation
scheme, however, as we could see from Figure [ and Figure [@ the input data switch circuit, which routes
data from the vector processor to memory modules, are kept untouched in both SAMS implementations.
Actually the critical path in the SAMS implementation with distributed address generation is exactly the
data routing circuit, which consists of the In Data Switch unit and the routing information generator, i.e. the
Module/Offset Assignment Generation unit. Besides the critical path delay, the data routing network also
contributes to the majority of the overall logic consumption. In fact, in almost all SAMS implementations,
around 80% of the logic consumption exclusively comes from the input and output data switches.

5.3 Unit-Stride Memory Write vs Multi-Stride Memory Write

The above implementation supports both unit-stride and strided vector stores. Through our initial investi-
gation into real applications, we found that the multi-stride memory write pattern is not frequently used. If
the set of supported strided memory write patterns is reduced, it is hopeful that the complexity of input data
routing circuit could also be reduced. This could be quite beneficial for the entire SAMS memory system,
as the input data switch consumes the largest portion of the overall logic consumption, and more impor-
tantly, its latency also dominates the inbound path, which is the critical path of the SAMS implementations.
Therefore another trade-off in the implementation of the Matched SAMS Scheme could be such as to reduce
the hardware complexity by supporting only the unit-stride memory write pattern. Using the distributed
address generation scheme, the critical path delay and logic consumption of the two SAMS implementations
with unit-stride memory write support and multi-stride memory write support are compared in Figure [l

We could see from the figure that the critical path delay is decreased when SAMS is implemented to
support only unit-stride vector stores. The reduction in critical path delay is trivial for the case of SAMS
implementation with 4 memory modules; However, it is quite significant for the cases with 8 modules
(around 27%) and 16 modules (around 25%). The difference in logic consumption is negligible. Although
Figure [ only shows the difference between SAMS implementations with unit stride write support only
and support for all strides write in {1, 2, 4,..., 27}, it is also possible to choose to support a subset of
the entire stride spectrum. Consequently, different design options are available at different points in the
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Figure 11: Unit-stride memory write vs. multi-stride memory write

supported write patterns - hardware complexity curve, and choices could be made for vector processors
targeting different application domains. Similarly, support for strided read patterns could also be tailored
to meet the performance - cost specifications of different applications.

5.4 Overhead Compared with Low Order Interleaving

With many parallel memory schemes proposed in literature, the most popular one is still the simple low
order interleaving scheme in engineering practice [32, [I7, 21], which maps data elements with consecutive
linear addresses to consecutive memory modules. As already shown in Figure [I the low order interleaving
scheme is unable to support conflict-free even strided vector access. The Matched SAMS Scheme comes up
with the capability of providing conflict-free memory access for more access patterns, inevitably at certain
hardware cost. To see the hardware cost of the extra functionality more clearly, we have implemented low
order interleaving scheme with the same systematic parameters as those in the Matched SAMS Scheme with
distributed address generation and unit-stride write support. Figure [I2] shows the critical path delay and
logic consumption for both Matched SAMS and low order interleaving schemes.

We could see from Figure that there is some moderate increase in the critical path delay, and a
substantial increase in the logic consumption. We have also identified that the increases in both sides come
from the input and output data switch. In fact, if the implementation of a low order interleaving scheme
needs a 29 x 2¢ crossbar, then a 291! x 29 crossbar is required in the Matched SAMS Scheme. Therefore,
the penalty of the Matched SAMS Scheme is much the same as the use of redundant memory modules, as
far as the data alignment logic is concerned. However, as the Matched SAMS Scheme uses less memory
modules than redundant memory schemes, memory module resources incurred by extra memory modules
such as the address wires and decoding logic could be saved, thus the Matched SAMS Scheme potentially
allows for higher density of memory arrays, which preferable in CMOS process technologies.
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Figure 12: Overhead compared with low order interleaving
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Figure 13: Scalability with regard to memory capacity

16



5.5 Scalability with Regard to Memory Capacity

Above we assume that the total capacity of SAMS memory system is 1IMB. Now we will examine the
scalability of different SAMS implementations, as shown in Figure I3l Here we set the number of memory
modules to 8, and both SAMS implementations with distribute and centralized address generation support
multiple stride vector stores. As we could see from Figure [[3] the fluctuation in the critical path delay and
logic consumption in both SAMS implementations is almost negligible when the entire memory capacity is
increased from 1MB to 4GB. Actually when we look back into Equation[I} we could find out that none of the
logic of the module assignment function, row address function and offset assignment function is related to
n (the number of bits of the SAMS memory system address space), which means that the ATU in Figure[T]
is not related to the memory capacity. It is also clear that the input and output switches are not relevant
to the memory capacity. Therefore, only the AGU is related to n, where the stride (or multiple of stride)
is added to the base address to generate the addresses for vector elements, and the increases in the critical
path delay and logic consumption come from the adders. Note, as we choose to support only the strides
{1, 2, 4,..., 2%}, the adders are not full n-bit adder thus the logic could be quite simplified. In fact, the
AGU accounts for a very small portion of the entire logic consumption (much less than 10%). Therefore
the increase in n doesn’t remarkably impact the critical path delay and the logic consumption of the entire
SAMS memory system. It should be noted also that, although there is no AGU in Figure [ the addition
logic to generate the proper vector element addresses is scattered into local address functions (Local Addr
Func 0,...,7) and the Module/Offset Assignment Generation logic.

5.6 Unaligned Vector Access

Unaligned vector memory access is one of the critical problems in SIMD processing systems [27, [31]. It should
be noted that all SAMS implementations described above, are capable of supporting unaligned vector access.
The SAMS implementation with multi-stride memory write capability supports unaligned unit-stride and
strided vector load and stores; Whereas SAMS with unit-stride memory write capability supports unaligned
unit-stride and strided vector loads and unaligned unit-stride stores. Additionally, with multiple independent
memory modules as backup storage, the store granularity could be reduced from 27 elements to a single one,
compared to the single memory module implementation. For example, the monolithic local store of IBM
Cell SPE only supports loads/stores at the granularity of 128 bits (that could be, 4 integers/floating point
numbers or 2 double precision numbers); while with the Matched SAMS Scheme with 4 memory modules,
the store granularity could be reduced to 1 integer/floating point number, and stores of 1/2/4 32 bits data
(that could be, 1/2/4 integers/floating point numbers or 1/2 double precision numbers) are all supported.

5.7 Applications

Regarding the application, the Matched SAMS Scheme could be applicable wherever the data level parallelism
is exploited in the form of (regular) vector processing, to boost the performance of vector processing with
multiple stride memory accesses. First, it could be considered in memory subsystem in traditional vector
supercomputers, where the system performance could benefit from the high memory throughput provided
by SAMS. Moreover, it is quite common that there are many on-chip memory modules even in mainstream
microprocessors, as on-chip SRAM arrays are usually split into a group of subarrays, in order to reduce the
memory access latency or to pipeline the memory access [30, [12]. Therefore, the Matched SAMS memory
system could also be adopted as on-chip storage in microprocessors. For example, it could be used in the
on-chip data memory for SIMD processors, such as SPU Local Stores (LS) in the Cell processor [19], to
improve the flexibility of vector memory accesses. It could also be considered for integration as on-chip data
buffer for GPP SIMD extensions, where the data alignment and permutation problems, which result from
the lack of flexible memory access support, remain to be the major bottlenecks for many applications [27, [31].
It should be noted that the integration of a SIMD buffer into a GPP introduces coherence problem, as it
will be deployed at the same level as the data caches in memory hierarchy. However, this problem could be
solved by either snooping mechanisms or by the use of non-cacheable regions in the address space.
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Table 1: Selected benchmark suit

Program | Source | Type | Application Domain | ‘Working Set
streamcluster PARSEC application data mining medium
fluidanimate PARSEC kernel animation large

complex multiplication Cell SDK micro-kernel - small
matrix transpose Cell SDK micro-kernel - small

6 Experimental Evaluation

The manipulation of data movement between the processing elements and the storage, including data
loads/stores and permutations, has long been a major challenge in high-performance data-parallel processing
systems design. For example, data permutation and alignment problems are among the critical bottlenecks
which undermine the performance of GPP SIMD extensions [27, [31]. The Matched SAMS Scheme pro-
posed in this paper provides efficient hardware support for unaligned multi-strided memory accesses with
improved store granularity, therefore it has the potential of alleviating the data manipulation penalties and
consequently freeing the power of SIMD processing.

To validate the performance of proposed Matched SAMS parallel memory scheme in real applications, we
applied it to the IBM Cell processor, which is designed for computation-intensive applications with high data-
level parallelism [19, 29]. The integration of our parallel memory scheme into Cell processor is illustrated in
Figure[[4l Figure[I4la) shows the original local store memory organization in Cell SPE; while Figure [[4[(b)
shows the modified local store memory hierarchy with the integration of the Matched SAMS Scheme. Note
only the data buses for local store accesses are shown in Figure [[4] and the 1024-bit data port between LS
and the DMA engine in SPE [I4] remains untouched therefore it is not shown there. It should also be noted
that the total size of the four memory modules in Figure [[4[(b) is kept the same as the original local store
size.

6.1 Experimental Setup

We use CellSim developed at BSC [2], which is a cycle-level full system simulator for IBM Cell/BE pro-
cessor. The benchmarks of our experiments consist of some full applications from PARSEC [I], and some
micro-kernels from IBM Cell SDK [4] as well. Table [ lists the major features of the selected benchmarks.
Streamcluster from PARSEC is an online clustering kernel which takes streaming data points as input and
uses a modified k-median algorithm to do the online clustering. The parameters of streamcluster workload
in our study are set as follows: 2048 input points, block size 512 points, 10 point dimensions, 5-10 centers,
up to 500 intermediate centers allowed. Fluidanimate is an Intel RMS application and it uses an extension
of the Smoothed Particle Hydrodynamics (SPH) method to simulate an incompressible fluid for interactive
animation purposes [7]. The fluidanimate workload in our experiments uses the simsmall input set provided
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Table 2: Changes over original SPE and their impact on overall performance

+/- Changes over original SPE Impact on overall performance
- Latency of store is increased from 4 clock | Increase in store latency could be negligible in SPU context with the help
cycles to 5 cycles of large register file and a modern compiler such as gcc
- Latency of load is increased from 6 cycles | Increase in load latency (33%) could significantly degrade system perfor-
to 8 cycles mance if instruction scheduling could not hide the load latency
- Penalty of a taken branch is increased | Increase in branch penalty is around 11%. Considering the fact that the
from 18 cycles to 20 cycles portion of (taken) branches in the total amount of executed instructions
is not likely to be very large in applications targeted by Cell, this impact
on overall performance might be moderate
- Hardware overhead The logic consumption of the SAMS scheme implemented in the new SPE
equals approximately to that of 3 32-bit adders/subtractersﬂ
+ Reduction of # of executed load/store in- | Reduction in execution time and memory traffic. (This reduction is par-
structions as a result of direct support for | ticularly favorable for Cell SPE since reduction in LS traffic also decreases
unaligned and strided memory access the chance of LS port conflict (remember LS is single port memory which
is shared by data load/store, instruction fetch and DMA transfer))
+ Reduction of “glue” instructions which | The reduction in execution time may be considerable, since the # of glue
are indispensable for realignment and instructions are usually nontrivial.
pack/unpack tasks
+ Harware (and architectural and ISA Programmer & compiler -friendly: since HW takes care of much of the data
level) support for unaligned and strided | alignment and pack/unpack job , it relieves programmers and compilers
memory access from such burden and leaves more opportunities of higher-level optimiza-
tions for them

by PARSEC. The 3D working domain has been shrunk and the maximal number of particles inside a cell has
been reduced to 6, to fit the relatively small local store size of SPE in our study. The simulation runs for one
timestep to compute one frame. Streamcluster and fluidanimate are chosen for our experiments because they
are applications with high level data parallelism at fine- to medium- granularities (as reported in Table 1
in [7]), which fits well to the target application domains of the Cell processor. Besides full applications, we
also include some micro kernels, including complex number multiplication and 4x4 matrix transpose. We
take the source code of complex number multiplication from [3]. The workload of the complex multiplication
experiment is set to 10K multiplications. Matrix transpose is frequently used in matrix algebra. The 4x4
matrix transpose is particularly important for 4-way SIMD paradigms, for example, it is used in 2D-FFT
kernel in Cell SDK. We took the source code of 4x4 matrix transpose from IBM Cell SDK library [4]. The
work load of the matrix transpose is set to 10K transposes. To compile the C code, we use a compiler suit
comprising two stand-alone compilers: ppu32-gcc for PPU (which is from PPU toolchain 2.3 based on gcc
version 3.4.1) and spu-gcc for SPU (which is from SPU toolchain 3.3 based on gcc version 4.1.1). The two
micro-kernels are compiled with -O1 optimization option.

One of the major impact to the SPU microarchitecture with the incorporation of the Matched SAMS
Scheme into the SPU local store memory hierarchy is that, the SPU load/store pipeline is lengthened, since
the parallel memory scheme introduces additional delay for scheme logic. In our experiments, we choose
to implement the distributed address generation and unit-stride memory write schemes, as discussed in
Section According to our synthesis results in Table 7?7, the logic delay of the Matched SAMS Scheme
implementation with distributed address generation and unit-stride memory write for 4 memory modules is
0.27 ns. With the same technology and synthesis tool, the critical path of a 32-bit signed adder/subtracter
is 0.52 ns, which indicates that the critical path delay of the Matched SAMS Scheme is around half of that
of the 32-bit signed adder/subtracter in our study. In Cell SPU, the fixed-point ALU is pipelined into two
stages, therefore we project the deployment of the Matched SAMS Scheme in SPE’s local store will introduce
one additional pipeline stage for the inbound path, and another pipeline stage for the outbound path. As
the load and store instructions take 6 and 4 clock cycles to accomplish respectively [29], they will cost 8 and
5 clock cycles in the new pipeline with integration of our parallel memory scheme.

Although, there are major difficulties in projecting the accurate circuit delay of the Matched SAMS
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Table 3: New instructions and intrinsics added to CellSim and spu-gcc

Name Type Operation Alignment
(Bytes)
lqd § instruction load a quad word (QW) with unit stride, d-form 4
lgx instruction load a quad word (QW) with unit stride, x-form 4
lga I instruction load a quad word (QW) with unit stride, a-form 4
lgr § instruction load a quad word (QW) with unit stride, r-form 4
lqds2 instruction load a quad word (QW) with stride 2, d-form 4
lgxs2 instruction load a quad word (QW) with stride 2, x-form 4
lqas2 instruction load a quad word (QW) with stride 2, a-form 4
Iqrs2 instruction load a quad word (QW) with stride 2, r-form 4
lqds4 instruction load a quad word (QW) with stride 4, d-form 4
lgxs4 instruction load a quad word (QW) with stride 4, x-form 4
lqas4 instruction load a quad word (QW) with stride 4, a-form 4
Iqrs4 instruction load a quad word (QW) with stride 4, r-form 4
stwd instruction store a word, d-form 4
stwx instruction store a word, x-form 4
stwa, instruction store a word, a-form 4
stwr instruction store a word, r-form 4
stdwd instruction store a double word (DW), d-form 8
stdwx instruction store a double word (DW), x-form 8
stdwa instruction store a double word (DW), a-form 8
stdwr instruction store a double word (DW), r-form 8
stqd 1 instruction store a quad word (QW), d-form 4
stax I instruction store a quad word (QW), x-form 4
stqa instruction store a quad word (QW), a-form 4
stqr I instruction store a quad word (QW), r-form 4
spu-lgs2(ra, rb) C intrinsic load a QW at base address (ra+rb) with stride 2; 4
unified intrinsic for lqds2, lqxs2 and lqas2
spu_lgs4(ra, rb) C intrinsic load a QW at base address (ra+rb) with stride 4; | 4
unified intrinsic for lqds4, lqxs4 and lqas4

I: These instructions are taken from the original SPU ISA, with the alignment changed from 16 bytes to 4 bytes with the integration
of the Matched SAMS Scheme.
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Scheme logic on the Cell processor die, such as the significant differences between synthesis results using
standard cell library and full-custom circuit implementation, and the different characteristics of the Matched
SAMS Scheme logic (which is dominated by the crossbar circuitry, as discussed in Section [ and the adder
logic (which is fundamentally a parallel-prefix problem [37]), nevertheless we use the adder-based projection
described above because of its simplicity. It should be noted that the local store memory array is already
split into submodules and accesses to them are fully pipelined in the SPE implementation [12], therefore
the implementation of four independent memory modules based on current Cell physical design may not be
a problem; furthermore, there is a potential of implementing the memory scheme logic in parallel with the
original partial address decoding logic and data address routing wires, to hide the Matched SAMS Scheme
logic delay inside the long memory access pipeline. Taking these factors into account, we feel that the
above 8 cycles load and 5 cycles store may be some realistic estimation for the extra delays incurred by the
integration of our proposed memory scheme inside the SPU pipeline.

To make the enhanced load/store capabilities resulted from our Matched SAMS Scheme available to
software, we have extended the SPU ISA by introducing a set of new instructions for strided and unaligned
memory accesses. We have also created the required C intrinsics that facilitate the use of strided memory
access instructions in C programming. Table 3] shows all new instructions and C intrinsics. To reflect
the changes in architecture, we have modified the spu-gcc backend to make it capable of analyzing the
unaligned memory access requirement and generating proper code with the newly added instructions. The
load latency has also been updated to 8 in spu-gcc for proper code scheduling with the pipeline change.
Besides the compiler, the CellSim has also been modified to adopt all the changes.

Before digging into the experiments, we now list all major changes of our newl'd SPE model over the
original SPE and their impact on overall performance in Table 2l In the table “4+” denotes positive effects
and “-” means negative effects. From the preliminary analysis we could get the impression that the Matched
SAMS Scheme could be beneficial for applications with data alignment problem in Cell SPE.

It should be noted that although there are eight SPEs available in Cell processor, we only use a single
one in our experiments. This is because we want to focus on the performance impact of the Matched SAMS
Scheme in SIMD processing elements, instead of exploiting the extent to which our benchmarks could be
parallelized on the eight SPEs. Virtually, the advantages introduced by our parallel memory scheme within
a single SPE can be extended to all SPEs in Cell.

6.2 Parallelization of Benchmarks

The PARSEC benchmarks are written using C++ and pthread library, with the aim of measuring the system-
level performance of multi-core processors. Since the aim of our experiments is to reveal the performance of
the Matched SAMS Scheme on SIMD devices like the Cell SPU, we use the single thread version of the source
code and run the applications with a single SPU. In both applications of streamcluster and fluidanimate, the
data preparing task and OS interface (such as file I0) is implemented in PPU, while majority of the data
processing is offloaded to SPU. After data has been ready in main storage, the PPU triggers SPU to start
processing. Since large arrays are allocated in Cell’s main memory, SPU reads a portion of them each time
via DMA transfers, process them and then writes the temporary results back to the main storage again by
DMA transfers (if the temporary results are too large to be held in LS). It continues by reading the next
chunk of data and so on.

The greatest modifications to the source code come with hand SIMDization of the code inside the critical
loops. For SIMDization, we use SPU C instrinsics instead of assembly code as we want to designate specific
SPU instructions while leaving low-level optimizations such as register allocation and instruction scheduling
to the compiler. Original algorithms and major data layout in the source code have been respected, with
exceptions that necessary changes in data layout and accordingly the dataflow have been made in order to
fit the relatively small LS size of the SPE.

10Hereafter we will refer to the SPE model with the integration of Matched SAMS Scheme in its local store as the new SPE,
and the baseline standard Cell SPE as the original one.
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Table 4: Comparison of SPU dynamic instruction count and execution time

N Memory Instruction Count Total Instruction Count Execution Time (cycles)
ame
Original New l Original New l Original New l
(load/store) (load/store)
streamcluster| 319,188,572 174,355,761 45% | 754,225,152 | 410,966,630 | 46% | 3,118,623,559| 2,056,226,698 | 34%
(231,429,310/ (132,889,953/
87,759,262) 41,465,808)
fluidanimate | 95,528,046 67,786,359 29% | 257,433,162 | 237,021,420 | 8% 1,052,323,740| 1,028,511,341| 2%
(67,734,900/ (48,001,912/
27,793,146) 19,784,447)
complex 15,392 15,421 0% 42,008 31,815 24% 96,242 84,602 12%
multiplica- (10,256/5,136) (10,274/5,147)
tion
matrix 81,950 81,979 0% 167,766 85,893 49% 283,121 154,042 46%
transpose (40,974/40,976) | (40,992/40,987)

For the micro-kernels of complex number multiplication and 4x4 matrix transpose, to reduce the impact
of DMA transfer overhead on the performance comparison between the baseline and enhanced SPE, we
assume an in-place computing paradigm, in which the kernel functions processes the data at the same LS
address. In this way DMA transfers are avoided in our experiments for micro-kernels.

It should be noted that, for all experiments, the source C codes for both original SPE and new SPE
versions are kept the same. The only exceptions are: 1)glue code for handling the unaligned memory access
in original SPE are removed from new SPE since they are no longer necessary with the new architecture, and
2) the C instrinsics in Table Bl are explicitly used in new SPE context where there are performance gains by
using them. The specific instructions with the new SPE for unaligned memory access and small granularity
memory access (such as store a word or double word) are invoked automatically by our modified spu-gcc
compiler when appropriate.

6.3 Experimental Results

We measure the performance by counting the application execution time on SPU. Note the entire execution
time of the application also includes the portion of PPU execution time which is not overlapped with SPU.
Nevertheless, we only compare the SPU execution time since the PPU time is small and it is the same for
both original and new SPE configurations in our experiments. Table @ shows the performance comparison
of the original SPE and the new one with our Matched SAMS parallel memory scheme integrated in its
local store memory hierarchy. We could see that the major performance gain comes from the reduction of
executed instruction count (either load/store instructions or glue instructions, or both).

The most critical loop in streamcluster source code is to calculate the distance between current point
and one of the candidate cluster centers. Therefore, loading the point data (both for current point and the
candidate center) efficiently is the key to good performance for SIMD paradigm. Unfortunately, the point
data are not normally aligned to 16 byte boundary (alignment is guaranteed only when the dimension is
multiple of 4). As a consequence, with the original SPE we have to explicitly realign the point data, which
incurs not only more loads and stores but also more glue instructions compared with the new SPE version,
as shown in Table [ To summarize, the new SPE gains dramatic benefits from the capability of accessing
the unaligned point data directly supported by our Matched SAMS Scheme.

In fluidanimate, most of the execution time is used to compute the density and the consequent force
between two particles within effective range in two neighbor cells, which is inside a 6-level nested loop with 3
conditional jumps. Each of the particle data comprise of fields such as position, density, velocity, acceleration
(which furthermore consists of 3D or 1D float numbers), and they are not aligned to 16B memory addresses.
Again, the alignment problem occurs here. Similar to streamcluster, the amount of memory accesses is
remarkably reduced by the unaligned vector access capability in fluidanimate. However, since the critical
loop consists of 6 nested loops and 3 conditional jumps, the weakness of SPU with branchy code is magnified
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here, which leads to a huge number of cycles wasted on pipeline stall due to taken branches. As a consequence,
the contribution from the reduction in memory instructions to the reduction in total executed instruction
count is amortized by frequent pipeline stalls. The reduction in total execution time is further undermined
by the increase in branch penalty with new SPE (as described in Table 2).

In complex number multiplication, with the capability of unaligned stride-2 vector access, the real (in-
phase) vector and imaginary (quadric) vector could be loaded directly, instead of loading the mixture of them
and extracting the real and imaginary parts using a sequence of shuffle instructions, as the source code in [3]
did. Therefore, although the memory access count is the same for both original and new SPEs, the kernel
still achieved some performance gains with new SPE as a result of the reduction of the glue instructions.

The benefits for 4x4 matrix transpose from our SAMS scheme is quite clear: with stride-4 vector access
capability, the transpose procedure is simple accomplished in a straightforward way: first load 4 columns of
the input matrix directly into register and then store them to the rows of output buffer. Intermediate shuffle
processing in original code is completely eliminated. This explains the huge performance gain with new SPE
in our experiments.

In conclusion, experiment results demonstrate that adoption of the Matched SAMS Scheme is a feasible
solution for data alignment problem in SIMD processors. We feel that our parallel memory scheme brings
SIMD devices such as Cell SPE with two major advantages: 1) it eases the programming/compilation
procedure of the SIMD systems (this is what we feel during the parallelization of the benchmarks), and
2) it provides substantial overall performance improvement for applications with bottlenecks in unaligned
and strided memory access. It should also be noted that, although there are programming techniques such
as restructuring the data organization (e.g. using structure of arrays (SOA) instead of array of structures
(AOS)) to relieve the data alignment problem. However, we feel that our parallel memory scheme is still
useful not only because it provides a hardware solution for the problem, but also because in some cases, such
data layout restructuring is either not helpful or too expensive. For example, in fluidanimate the neighbor
cells are determined according to current cell’s 3D location, and they are not contiguous in 1D linear address
space. Moreover, the number of particles in each neighbor cell is different. Consequently, accesses to particles
in cells are not contiguous and access granularity is on single particle basis. In such occasions, reorganization
of particle data structure could not solve the alignment problem.

7 Related Work

To cope with module conflicts of vector accesses across stride families, several techniques have been proposed
in the literature, including the use of buffers [9], dynamic memory schemes [11l [10], memory modules
clustering [9] and intra-stream out-of-order access [36].

The use of buffers [9] is probably most straightforward solution as it tolerates the module conflicts by
simply buffering the input addresses and output data and collecting the required data after some delay. The
buffer depth required depends on misalignment between the parallel memory scheme used and the vector
access stride. If the access stream is distributed evenly between the memory modules of the system, then the
peak throughput of one data per memory module in one cycle might be achieved after a transient startup
time. However, since the startup disparity is unavoidable, this solution introduces significant time penalties
in case of short access streams. Moreover, the use of buffers and the logic for collecting the correct data
items from the buffers could cause substantial hardware overheads.

The dynamic scheme proposed in [I1] [10] works well only when the same data set is accessed with single
stride family. However, if the data set is to be accessed using different stride families, the penalty of flushing
and reloading data between the memory modules and the lower level in the memory hierarchy may not be
amortized in some cases, which would result in performance degradation of the system.

The memory modules clustering [9] introduces inefficient use of module control logic and data routing
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resources, as a large portion of memory modules may remain idle during each parallel memory access. For
instance, under the assumption that the number of modules is a power of two number, the amount of
memory modules used for conflict-free access of two unmatched stride families may be no more than 50% of
the available modules. This results in waste of logic resources and power in some cases.

The out-of-order vector access [36] is based on the observation that a long, strided memory reference
stream with module conflicts in sequential order could become conflict-free, if properly reordered. For
instance, in a multimodule system with conflict-free stride-4 access support, a stride-2 stream with 16
memory references could be accomplished by two stride-4 streams with 8 memory references each. Basically
the original stride-2 stream is split into two stride-4 sub-streams and the memory system is accessed with
by the alternating sub-streams. In this case, the access is conflict-free. The problem with intra-vector out-
of-order access is that it requires long vectors for proper operation. In addition, as data items are read out
of order, data permutation logic may introduce additional penaltie.

The most distinctive aspect of our SAMS scheme compared to the previous solutions for strided vector
access is that it avoids the module conflicts when the memory reference patterns go back and forth between
unit-stride and strided accesses, and thus truly-parallel data access is supported. Unlike the out-of-order
vector access scheme, our proposal preserves the data sequence required by the vector load/store units, thus
atomic parallel access is achieved for short vectors and peak performance could be sustained for vectors
as short as 27 elements. The SAMS proposal is a memory scheme with no module redundancy and high
utilization of module resources. On the other hand, the SAMS Scheme is complementary to the existing
techniques, which means that it could also take their advantages to improve system performance.

Regarding the data alignment problem in GPP SIMD extensions, studies have been done to boost the
performance of SIMD devices by relieving the impact of non-contiguous and unaligned memory access from
both the compiler and hardware (architecture) point of view. For example, Ren et al proposed a compiler
framework to optimize data permutation operations by reducing the number of permutations in the source
code with techniques such as permutation propagation and reduction [31]. Nuzman et al developed an auto-
vectorization compilation scheme for interleaved data access with constant strides that are power of 2 [27].
Alvarez et al analyzed the performance impact of extending the Altivec SIMD ISA with unaligned memory
access support on H.264/AVC codec applications [5]. Although they employed a simple memory scheme with
two banks in L1 data cache to give support to unaligned loads/stores, they didn’t consider strided memory
access in their scheme.

SAMS was proposed to simultaneously support conflict-free unit-stride and strided memory accesses from
one single stride family in [I6], by first constructing a single-affiliation interleaving scheme, and then making
data lines wider to solve the module conflicting problem in unit-stride access. In this paper, we propose the
Matched SAMS Scheme to give support to conflict-free vector access for strides from logs(#modules) + 1
stride families, compared to 2 in [I6]. We have also implemented the entire memory system based on the
Matched SAMS Scheme in this paper. The synthesis results of the hardware implementation are given, and
the integration of our Matched SAMS Scheme to IBM Cell SPE is proposed based on the synthesis results.
Performance of the scheme with kernels and real applications is also investigated in this paper.

8 Conclusion

In this paper, we propose the Matched SAMS Scheme, which improves the previous memory interleav-
ing schemes by providing conflict-free access for multiple stride families. The Matched SAMS Scheme is
based upon SAMS; However it goes a step further by supporting conflict-free accesses with strides from
logz(#modules) + 1 stride families, compared to 2 in the original SAMS scheme. We have presented the
mathematical foundations for both schemes. We have also explored a variety of Matched SAMS implementa-

HData permutation is not required in the original proposal [36] as there the assumed memory organization is that single
datum is read out from the multiple memory modules per cycle, whereas in the organization considered in this paper multiple
data items (equal to the number of memory modules) are read per cycle.
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tions including the centralized and distributed address generation schemes, SAMS with unit-stride write and
multi-stride write support, and compared their impact on the critical path delay and area consumption based
on hardware synthesis results. We also compared the performance of SAMS implementation with distributed
address generation and unit-stride write with that of the low order interleaving scheme, which is most pop-
ular in engineering practice. Based on hardware implementation results, we proposed to apply our Matched
SAMS Scheme to IBM Cell processor by integrating it into the Cell SPE local store, and investigated its
performance with some kernels and real applications using simulation. Our experimental results indicate
that the Matched SAMS memory system has efficient hardware implementation and adequate performance
for real applications, which makes it a promising technique for data-parallel processing systems.
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