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Abstract

Resource management for ad hoc grids is challenging

due to the participation of heterogeneous, dynamic, au-

tonomous and ephemeral nodes. Different underlying net-

work infrastructures, and varying use and access policies

make resource management even more complex. Therefore

it is required to develop such a resource management mech-

anism that will enable the ad hoc grid to self-organize ac-

cording to the workload of the resource manager. The pro-

posed mechanism is based on the emergent behavior of the

participating nodes and adapts with respect to changes in

the ad hoc grid environment. Scalability and robustness

of the proposed mechanism is tested by running the ex-

periments on PlanetLab. Simulation results show that our

mechanism performs better than previously proposed mech-

anisms.

1. Introduction

Ad hoc grids have geographically distributed, heteroge-

neous, and ephemeral nodes. The participating nodes may

have different ownership with varying use-policies. Re-

source management for nodes with above characteristics be-

comes a challenging undertaking. Different underlying net-

work infrastructure and variable participation of nodes fur-

ther increases the administrative complexity of the ad hoc

grid, and hence resource management in ad hoc grid be-

comes even more complex. Therefore it is required to de-

velop such a resource management system that will enable

the ad hoc grid to manage and self-organize itself under

varying workloads. The context of the research presented

in this paper aims to understand and develop appropriate

mechanisms for self management and organisation. Where

P2P and fully centralised systems are often considered to be

mutually exclusive and residing on both ends of an infras-

tructural spectrum, we consider them to be part of a con-

tinuum where the system should be capable of restructur-
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ing itself in either of these states, or any intermediate state

between those two extremes. To this purpose, we inspire

ourselves on micro-economic, market based mechanisms

where all the information available at individual node level

condenses into a simple global metric, namely the price. In

economics in general and in financial markets in particular,

it is an accepted axiom that the market price incorporates

all available information, thus reflecting the overall state of

the system. The way the basic market mechanism operated,

is very simple: the price of a good goes up when there is

more demand than supply and it goes down when there is

more supply than demand. By analogy, we define the price

of a resource to reflect the scarcity (abundance) of that par-

ticular resource in the system. But not only the price of a

good is computed, the cost related to find the appropriate

good should also be taken into account. The transaction

cost attached to submitting a request/offer by a node to the

matchmaker will also be computed.

In this paper, we use one of the above mentioned micro-

economic approach to dynamically add and remove match-

makers. We envision that the ad-hoc grid could have one

or more matchmakers according to the size of the grid and

consequently, the number of requests sent by the individual

nodes. For instance, as the grid grows, the number of nodes

sending requests may become too big for one matchmaker

to handle, thus requiring a second (or more) matchmaker to

become active to assist the primary matchmaker in its task.

As the grid shrinks, the system should be able to demote

matchmakers and return to a state with less matchmakers.

This mechanism allows the grid to modify its infrastruc-

ture independent of the context in which it operates. The

question then boils down to defining these upper and lower

bounds that will incite the system to, respectively, add or

remove matchmakers to (from) the system. If the cost for

making a transaction becomes excessively high, because of

the incapability of the matchmaker to process all requests,

then the grid itself becomes completely ineffective as it is no

longer capable of using the available resources for the tasks

to be executed by the grid. Where the use of markets and

auctions is by no means original, its use in the context of

such self organisation constitutes its main innovation. We



will show that the simple basic mechanisms as described

above, allows the system to automatically scale its infras-

tructure to be better suited for its current,and dynamically

changing state.

To this purpose, we compute the cost of a single re-

quest made to the matchmaker, referred to as the Transac-

tion Cost(TCost), which is calculated for every request/offer

message being submitted to the matchmaker (Refer Section-

3 for details of TCost). In this paper, we describe experi-

ments that define and calculate the upper and lower thresh-

old of the matchmaker workload (TCost) in the ad hoc grid.

The calculated upper and lower threshold values are used

to dynamically increase or decrease the number of match-

makers. The results reported in this paper are obtained from

experiments run in PlanetLab. These results show that the

mechanism enables the ad hoc grid to self-organize accord-

ing to the workload conditions in the ad hoc grid. The fol-

lowing simplifying assumptions are adopted in this paper

and which will be relaxed in future work:

• We only consider the state with one or more match-

makers and do not look at P2P issues; Consequently,

we do not consider the case where the single match-

maker breaks down and the system goes into a P2P

state;

• We do not address the issue of routing of requests when

more (or less) matchmakers are introduced nor address

the issue of how to create (or delete) new grid seg-

ments. We assume the necessary extensions to an over-

lay network that address this problem are available.

• We assume that there is a known subset of nodes in the

grid that are potential candidates for being promoted

to matchmaker;

The rest of the paper is organized as follows. Section-2 pro-

vides an overview of the related work. Section-3 describes

the proposed mechanism in detail. Section-4 explains the

experimental setup and discusses the results. Section-6 con-

cludes the paper and discusses future work.

2. Related Work

Choi et al.[4] proposed an adaptive model for performing

group-based scheduling in an ad hoc grid and called those

groups as volunteer groups. The volunteer groups are de-

fined according to the individual volunteer properties. Each

volunteer group coordinates with the volunteer server, via

the volunteer group coordinator, to perform scheduling. The

volunteer server is a single point of failure in this approach

and may become a performance bottleneck. Minimum-

delay Dynamic Tree (MDTree)[12] organized nodes in the

form of a tree, based on the link delay of each joining node.

MDTree split a grouped set of nodes into subgroups when

number of nodes exceeds a certain number of nodes in a

group. Fixed sized groups and the use of link delay as

group formation parameter are the drawbacks of this ap-

proach. Zhou et al.[13] discovered idle processing cycles

and grouped them into geographic and night time aware

overlay networks. Unfinished tasks are migrated to another

night time zone overlay network. The main drawback of

this work is that the host availability model is not based on

the resource requirements of the job. Furthermore job mi-

gration may result in communication overhead.

Attribute encoding for resource discovery in DHT based

overlay networks is studied in[6]. The majority of the en-

coded attributes may be mapped to a small set of nodes in

the overlay network, therefore attribute encoding may re-

sult in a load imbalance condition. Erciyes et al.[5] propose

a dynamic load balancing middleware protocol for the gird,

in which each cluster coordinator first attempts to balance

the load in its own cluster and when it fails, then it coordi-

nates with other cluster coordinators to transfer/receive the

workload. Padmanabhan et al.[2] proposed a self-organized

grouping method that forms and maintains autonomous re-

source groups, according to some pre-specified resource

characteristics, where each group contains a set of similar

resources. The main drawback of their work is that there

is no load balancing mechanism among the groups formed.

Butt et al.[3] implemented a P2P based Condor flocking to

share resources in different Condor pools[11]. They did

not consider the dynamic introduction/removal of Condor

pools or the workload condition of a Condor pool manager.

Peermart[7] used one matchmaker for each type of resource

being traded in the ad hoc grid. A new matchmaker is intro-

duced only when a new resource type is introduced. Peer-

mart did not consider the overload condition of a match-

maker for the introduction of new matchmakers.

The above discussed approaches use different parame-

ters to distribute the workload of one matchmaker among

multiple matchmakers. These parameters are volun-

teer properties[4, 2], attribute encoding[6], a matchmaker

for each resource type[7], or attempt to find the best

matchmaker[3] from a fixed pool of matchmakers. As these

approaches do not consider the workload of the match-

maker(s), they may end up with an inappropriate infrastruc-

ture for the given state of the grid. Although the work pre-

sented in[12, 5] attempt to form fixed sized node groups or

attempt to balance the workload of fixed number of clus-

ter, these approaches do not discuss the infrastructure self-

organization in ad hoc grid.

3. Proposed mechanism

Starting point of our model is the use of a Continuous

Double Auction (CDA) as the matchmaking mechanism[8].



Attached to each request is a transaction cost (TCost) which

reflects the workload of the matchmaker. The node submit-

ting a request is supposed to pay this TCost to the match-

maker. To this purpose, every node is given an initial budget

which can be used to this purpose.

The promotion of a node to a matchmaker is based on the
workload of the current matchmaker(s). The matchmaker
workload can be calculated in different ways. Even though
every choice of cost function has some arbitrary aspect to
it, we are looking for a simple and efficient one. We simply
count the number of messages to be processed by the match-
maker before processing the newly received request/offer
message1. This TCost is calculated for each request/offer.
The Matchmaker agent maintains request and offer reposi-
tories in respectively descending and ascending order of the
bid and ask prices. A new request/offer message is placed in
request/offer repository at its proper place by using insertion
sort. If there are N requests/offers and the newly received
request/offer is placed at index L , where 0 < L < N , then

requests = R1 > R2 > R3 > ...RL−1 > RL > RL+1... > RN > RN+1

o f f ers = O1 < O2 < O3 < ...OL−1 < OL < OL+1... < ON < ON+1

TCost for a request/offer message:

TCostRequest = Count(R1...RL−1)

TCostO f f er = Count(O1...OL−1)

Where Count() is the number of the entries in the list. The

TCost value for a matched request/offer pair is the average

of the their individual TCost values.TCost for matched pair

is calculated as:

MatchedPairTCost = (TCostRequest + TCostO f f er)/2

The matchmaker periodically calculates the average TCost

which is calculated as follows:

AvgTCost = (
t

∑
i=t0

TCost(i)/(
t

∑
i=t0

N(i)

Where ∑t
i=t0

TCost(i) is the sum of TCost of the messages

processed in time interval [t0,t] and ∑t
i=t0

N(i) is the total

number of messages processed in this interval. A match-

maker promotes a node as a matchmaker or demotes a

matchmaker back to normal node when its average TCost

is above or below the matchmaker’s upper threshold (see

Section-4). In principle, the transaction cost could become

infinitely high which would inhibit the grid to be operational

as no matching could occur anymore. It is therefore impor-

tant to have mechanisms to counter such an event. This is

exactly the goal of the experiments described below.

1also used by[5] to calculate the workload.

3.1. System Architecture

Our ad hoc grid consists of autonomous, dynamic,

volatile and loosely connected nodes that can join, leave or

change their roles whenever needed. Each node is com-

posed of three agents: Consumer, Producer and Match-

maker. Communication between different nodes is done

through the underlying structured overlay network via com-

munication module. The specification of these agents is

summarized below:

• Consumer Agent: The consumer agent estimates the

task execution time, the required resource quantity, and

the bid price in its task manager module. The con-

sumer agent submits the job to the producer agent and

receives the job results in its job Manager module. As

stated above, each consumer is given an initial budget

it can use for buying resources and to pay the TCost

for each request submitted.

• Producer Agent: The producer agent estimates about

the idle available resource quantity, and the ask price in

its resource manager module. Receiving of jobs from

consumer agents, execution of consumer jobs and re-

turning of results is done in job Manager module. Sim-

ilar to the consumer, every producer also has an initial

budget to which is added the renumeration it receives

when its resources are actually spent and from which

is subtracted the TCost it has to pay when submitting

a request to the matchmaker.

• Matchmaker Agent: The matchmaker receives the re-

quests/offers from the consumer/producer agents and

inserts the received request/offer in its request/offer

buffers as explained above. This task is performed

by the repository manager module. The matchmaking

process is performed in the matchmake module.

• Segmenter: This module is part of the matchmaker. It

contains the logic for calculating the TCost. It also

makes the decision to promote a node as matchmaker

and vice versa according to the workload (TCost) of

the matchmaker. It is also responsible for sharing

the workload of one matchmaker with other match-

maker(s), which is above the TCost upper threshold

value of one matchmaker. The segmenter module does

so by forwarding the request/offer message to the other

matchmaker(s). This module also manages the com-

munication between different matchmakers.

Complete details of the system agents can be found in

our previous work[8]. The pricing function for calculating

bid/ask price is discussed in Section-3.3



3.2. Continuous Double Auction (CDA)

Double auctions are one of the many-to-many types of

auctions. CDA supports simultaneous participation of pro-

ducer/consumer, observes resource/request deadlines and

can accommodate the variations in resource availability.

Several agents (say consumers) can initiate an auction and

several other agents (say producer) can bid in the auction.

The resource requests are called the bids and the resource

offers are called the asks. Auctioneer (matchmaker) collects

bids/asks and matches them immediately on the detection

of compatible bids. A compatible bid is a pair of resource

offer and resource request where task constraints (such as

resource quantity, time deadline, price) are satisfied. The

auctioneer finds the matches between the buyers and sellers

by matching offers (starting with lowest price and moving

up) with requests (starting with highest price and moving

down). Consumers/producers do not have global informa-

tion about the supply and demand and buyers and sellers

are not aware of the other’s bids or asks and. They sub-

mit their asks/bids based on their local knowledge. When a

task query is received by the matchmaker, the matchmaker

searches all available resource offers and returns the best

match. If no match is found, the bid/ask is stored in match-

maker repositories till the time to live (TTL) for them is

expired or a match is found.

3.3. History-based Dynamic Pricing

In the proposed set of experiments, consumer and pro-

ducer agents join the ad hoc grid with an initial pre-defined

price and dynamically update it over the time using a

history-based dynamic pricing strategy. The proposed price

is a reflection of the value of each resource unit which the

consumer and producer agents are willing to buy or sell.

The pricing function is explained in previous work[9]. An

overview of the pricing function is given here. The agents

perceive the demand and supply of the resources through

their previous experiences and update their prices accord-

ingly. Based on this strategy, ask and bid price at time in-

terval t are defined as:

P(t) = P(t −1)+△P

Where P(t) is the new price and P(t −1) denotes the previ-

ous price. △P for seller and buyer is defined according to

the previous resource/task utilization history.

△P for seller: △P = α(µ(t)− µthR)p(t −1)
△P for buyer: △P = β (µthT − µ(t))p(t −1)

Where α and β are the coefficients to control the rate of

price change. In this paper α = β = 0.8 is used. µthT

and µthR are task and resource utilization threshold. µt is

task/resource utilization of the individual node. µt is de-

fined as:

µt = ∑t
i=t0

x(i)/∑t
i=t0

N(i)

Where ∑t
i=t0

x(i) is the sum of sold/purchased resources in

time period[to,t] and ∑t
i=t0

N(i) is the total number of of-

fered/requested resources in time period [to,t]. The transac-

tion price is then computed as the average of the bid and ask

prices. Note that the transaction price is the amount that a

consumer will pay to the producer for consuming the pro-

ducer resources and the Transaction cost(TCost) represents

the matchmaker workload.

4. Experimental Setup

The proposed mechanism is implemented on top of

Pastry[10], a structured P2P overlay network, and was

tested on PlanetLab[1]. Pastry is used for node join-

ing/leaving, for lookup of matchmaker(s), for node-to-node

and node-to-matchmaker communication. We refer to [10]

for Pastry details.

We used PlanetLab[1] to run our experiments. Plan-

etLab is an open, geographically distributed computing

environment/test-bed. Each project runs in its own network

of virtual machines, called slice. A slice isolates projects

from each other. Moreover there is no centralized control

over resources in PlanetLab. We looked at the situation

when the network is low on work and high on resources,

referred to as Resource Intensive Network (abbreviated as

RIN, where tasks < < < resources). The task-resource ratio

was 20%-80% in RIN.

The matchmaker’s throughput is determined in terms

of its matchmaking efficiency, transaction cost (TCost)

and the response time. Matchmaking efficiency is cal-

culated in terms of request/offer utilization (calculated as

∑matchedRequest / ∑request ∗ 100 and ∑matchedO f f er

/ ∑o f f er ∗ 100 respectively). The transaction cost (TCost)

calculation is described in Section-3. The matchmaker re-

sponse time is the time interval between receiving a re-

quest/offer message by the matchmaker and the time in-

stance when matchmaker has processed a request/offer mes-

sage. The number of nodes was varied from 15-650 and the

number of matchmakers was varied from 1-4 in the exper-

iments. The workload was managed in such a way that the

maximum number of matchmakers were needed and then

gradually decreased to provoke the demotion of matchmak-

ers to normal nodes again. The Job execution time, job

deadline and required/offered resource amount were ran-

domly generated from a predefined range. Quantity of re-

quested/offered computational resource was varied for each

request/offer message. The TTL of a request/offer message

was fixed to 10000 milliseconds and reflected the delays ob-

served in PlanetLab.



5. Experimental results

In this section, we first present the experimental re-

sults with one matchmaker and discuss how we determine

the lower and upper threshold levels for one matchmaker

that will be used for promotion and demotion of additional

matchmakers. We then present experimental results with

multiple matchmakers to show the effect of dynamically in-

troducing and removing multiple matchmaker.

Figure-1 depicts the impact of workload on request/offer

utilization. cUtil represent the consumer utilization and

pUtil represent the producer utilization. As can be observed,

the request/offer utilization decreases with increasing work-

load. As there are fewer request than offers in RIN, requests

get matched as soon as they are submitted to the match-

maker and hence consumer utilization is about 100% ini-

tially. The consumer utilization keeps on decreasing with

increasing workload of the matchmaker.
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A similar evolution can be seen in Figure-2 which de-

picts the effect of increasing workload on the TCost and

the response time. As can be expected, the TCost is propor-

tional to an increasing workload. The response time initially

remains constant and then increases with increasing work-

load. The constant trend is due to the fact that a request get

matched as soon as it is received by the matchmaker. The
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increase in response time reflects the increased processing

time of the matchmaker with increasing workload.

From figure-1 & 2, we can observe that the matchmaker

TCost and the matchmaker response time increase, whereas

matchmaking efficiency decreases with increasing work-

load. It depicts that the matchmaker is overloaded. The

matchmaker is unable to maintain its matchmaking effi-

ciency in overloaded condition. It also implies that the

consumer/producer have to pay a higher TCost for availing

the matchmaking service of the matchmaker. The match-

maker needs a second (or more) matchmaker(s) to maintain
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its matchmaking efficiency. The TCost upper threshold was

15 with the given experimental setup.

In the next set of experiments, we will show that by

adding new matchmakers dynamically has a positive im-

pact on the matchmaking efficiency and an attenuating ef-

fect on the TCost and response time. Figure-3 depicts the

request/offer utilization with multiple adaptive matchmak-

ers. The offer utilization in RIN is generally proportional

to the percentage of the scarce commodity in RIN. The re-

quest utilization is about 90%. Some requests expire during

the waiting period.

Figure-4 depicts the consumer/producer response time

and producer TCost with multiple adaptive matchmakers.

As tasks are scarce and resources are in abundance in RIN,

therefore, a request is matched as soon as it is submitted

to the matchmaker. Consequently, the consumer TCost is

almost ’0’. A new matchmaker is introduced when the

first matchmaker reached its TCost threshold value.When

new matchmakers are introduced, the TCost value de-

creases after the introduction of a new matchmaker. This

phenomenon is reversed when a matchmaker is removed.

Again, we can observe that the TCost remains stable irre-

spective of the number of messages it receives from the grid.

Temporary fluctuations in the TCost also occur, reflecting

variations in the grid activity. The consumer response time

is much lower than the producer response time due to the

abundance of resources. It is easy for a task to find the ap-

propriate resources but the opposite is not the case. Figure-5

depicts the average TCost of number of matchmakers with

increasing workload. It becomes clearer from Figure-5 that

ad hoc grid can process more workload, and yet the aver-

age TCost of all matchmakers at any given instance remains

closer to the upper TCost threshold for one matchmaker.

When comparing Figures-1 & 3, we can see that the

matchmaking efficiency remains stable in spite of an in-

crease of the workload. This is because the workload is

now spread over 2 or more matchmakers. When comparing

Figures-2 & 4, we can see that the upward pressure on the

TCost has been neutralised again thanks to the change in the

number of matchmakers.

In conclusion, we can observe from the above exper-

iments that the capability of the ad hoc grid to instanti-

ate multiple matchmakers has a stabilising effect on the

TCost and response time without affecting negatively the

offers/request utilization. This way, we guarantee that the

transaction cost and response time become invariant to the

scale on which the grid is operating.

6. Conclusions

A self-organizing mechanism, for a dynamic ad hoc grid

infrastructure was proposed in this paper. The proposed

mechanism focuses on the workload of the matchmaker

to introduce self-organization in the ad hoc grid. The up-

per and lower values of matchmaker workload threshold

(TCost) were determined. The upper and lower threshold

values are applied to dynamically introduce multiple match-

makers such that the grid can continue to execute all its

tasks irrespective of the number of messages that are be-

ing sent. All experiments were executed on PlanetLab pro-

viding a realistic platform for testing the proposed mecha-

nisms. Future research will consist of relaxing the simpli-

fying assumptions listed in the beginning of the paper. The

most important being an extension of the underlying over-

lay network to manage the (dis)appearance of matchmak-

ers in the grid and to route the messages to the appropriate

matchmaker. We will look into a dynamic TCost threshold

calculation mechanism that will not be bound by any spe-

cific experimental context.
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