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Abstract

An ad hoc grid is a spontaneous formation of cooperat-
ing heterogenous computing nodes which attempts to pro-
vide computing resources on demand to every participant.
In this paper, we study market formulation for resource al-
location in an ad-hoc Grid. Continuous Double Auction
(CDA) protocol with discriminatory pricing policy is se-
lected as the market protocol and a novel bidding mech-
anism is presented to determine ask/bid prices. We study
the performance of our bidding mechanism and compare it
with three other mechanisms from the literature. The per-
formances are investigated in the terms of price stability,
throughput, and load balancing. The experimental results
show that our mechanism outperforms other bidding mech-
anisms in similar conditions.

1 Introduction

Ad-hoc Grid is a type of Grid with the aim of harnessing
unused computational resources inside or across organiza-
tions. In an ad-hoc Grid, every node in the network can
spontaneously arise as a resource consumer or a resource
producer at any time when it needs a resource or it pos-
sesses an idle resource. In this paper, we study market for-
mulation for resource allocation in this type of Grids. In a
market-based Grid, resources are treated as the commodi-
ties. The individuals participating in the Grid for trading re-
sources, are potential buyers or sellers. Market formulation
for Grid resource allocation is the processes of determining
trade prices (offer, bid and transaction prices) and defining
a market protocol for matchmaking between consumers and
producers of resources.

For resource allocation in an ad-hoc Grid, a market pro-
tocol has to be selected to allow many resource owners (sell-
ers) and resource consumers (buyers) to trade simultane-
ously. For this purpose, we choose the Continuous Double

Auction (CDA) protocol. In a market formulation, besides
the market protocol, the bidding mechanism for consumers
and producers of resources has to be defined. In this paper,
we present a novel bidding mechanism for resource con-
sumers and producers to set the bid and ask prices. We com-
pare the performance of our mechanism with three existing
bidding mechanisms in the literature, namely, Zero Intelli-
gence (ZI) [6], Zero Intelligence Plus (ZIP) [4] and Gjerstad
and Dickhaut (GD) [5]. The experimental results show, our
mechanism is outperforming the other mechanisms consid-
ering the performance criteria which are important to the
users and the system.

The paper is structured as follows. Section 2 gives an
overview of different market models and specifically dis-
cusses double auction protocols. In Section 3, we present
three bidding mechanisms from the literature and introduce
our bidding mechanism. System architecture is discussed
in Section 4. In Section 5, we perform experimental evalua-
tions and compare our bidding mechanism against the three
other mechanisms. We conclude the paper in Section 6.

2 Market Protocols

For resource allocation in ad-hoc Grid, we need a
protocol that supports simultaneous participation of pro-
ducer/consumer, observes resource/request deadlines and
can accommodate the variations in resource availability.
Two main classes of market models used for Grid re-
source allocation are commodity markets and auction mod-
els [10][7]. In commodity markets, resource prices are de-
cided from the overall demand and supply in the system. A
central planner gathers all the supply and demand informa-
tion to generate a set of equilibrium prices. This type of
market attempts to satisfy all consumers and producers in a
given price (equilibrium price) within a time frame. Com-
modity markets are not suitable model for resource alloca-
tion in ad-hoc Grids where the resources are not dedicated
and the supply and demand in the system is dynamic. As



in such networks, the complexity of implementing a cen-
tralized market which rely on the aggregate supply and de-
mand becomes very high. Competitive and decentralized
nature of auction models makes them an appropriate choice
for resource allocation in ad-hoc Grids.

Considering different auction protocols, English auction
and Dutch auction are sequential and are based on open-
cry where each bid has to be broadcasted to all partici-
pants. This becomes a considerable communication over-
head in the context of ad-hoc Grids. Moreover their inabil-
ity to observe time deadlines and no support for the simul-
taneous participation of producer/consumer are the reasons
that make them unsuitable for resource allocation in ad hoc
Grids. First-price auction and Vickrey auction are simulta-
neous and close bid auctions, but they are one-to many auc-
tions. To support simultaneous participation of both con-
sumers and producers in an ad-hoc Grid, a many to many
protocol is needed. Double auction is a two sided auction
in which buyers and sellers are treated symmetrically with
buyers submitting requests and sellers submitting offers.

2.1 Continuous Double Auction Protocol

There are two forms of double-sided auctions. Whether
the auction is continuous-time or discrete-time makes the
most difference when distinguishing between them. In a
discrete-time auction which also is named periodic double
auction, all trades move in a single step (a predefined time
frame) from initial allocation to final allocation. The Clear-
ing house (CH) or Call auction is a representative exam-
ple of a discrete-time double-sided auction. In CH auction,
consumers and producers submit their sealed bids and asks
and these are integrated into revealed supply and demand
curves, from which a market-clearing price is determined.
This pricing policy is called uniform-price policy in which
all exchanges occur.

In contrast with discrete-time auctions, a continuous-
time auction permits exchanges at any time and overall net
trade is typically composed of many bilateral transactions at
different prices. The primary example of a continuous-time
double-sided auction is the Continuous Double Auction
(CDA). There is no clearing-time frame in a continuous-
time double auction. Bids and asks are continuously re-
ceived and matched and trades can occur at any time. In
this scheme, a participant may make a bid or ask at any time
but, once made, it persist until it is accepted or the trader
chooses to alter it. This type of auctions uses a discrimina-
tory policy in which the prices are set individually for each
matched buyer-seller pair. For resource allocation in an ad-
hoc Grid, we select a continuous double auction protocol
with discriminatory policy to fulfill the deadline constraints
for requests and offers more efficiently. In this model, the
transaction prices are computed based on the bid/ask prices.

3 Bidding Mechanisms

Consumer and producer agents adopt a bidding mecha-
nism to define their bid and ask prices. In the literature,
we can find several bidding algorithms for consumer and
producer agents in Double Auction markets [5, 9, 3]. In
this section, first we briefly study three most known bidding
mechanisms and then we present our bidding mechanism.

3.1 Zero Intelligence (ZI)

In the ZI approach [6], agents use a simple strategy. In
this strategy, agents generate random order prices, ignor-
ing the state of the market. In this paper, we consider a
Z1-C (Zero Intelligence-Constraint) model in which traders
are subject to a budget constraint and consumer bids and
producer asks are limited between a maximum and a mini-
mum price. ZI-C sellers can only make offers in the range
between their limit price and a maximum price, and ZI-C
buyers can only make bids in the range from a minimum up
to their limit price.

3.2 Zero Intelligence Plus (ZIP)

In the ZIP strategy [4], each agent maintains a scalar
variable denoting its desired profit margin, and it combines
this with a unit’s limit price to compute a bid or ask price. At
the start of trading, the price is initialized to a random pos-
itive surplus value (a private value), and it is adjusted after
every successful or failed trade. For the successful trades,
price is adjusted towards the trade price. For failed bids,
buyers adjust price in the direction of beating the failed bid.
Sellers behave similarly for failed asks [1].

3.3 Gjerstad and Dickhaut (GD)

The Gjerstad-Dickahaut (GD) is a memory based trader
algorithm for CDA, described in [5] and refined in [9]. GD
traders have a strategy for shout price selection based on
maximizing expected profit. The maximization of expected
profit relies on the GD trader forming a belief and payoff
function. GD agents [5] use the history Hj; of recent mar-
ket activity (the bids and asks leading to the last M trades)
to calculate a belief function f(p) estimating the probability
for a bid or ask at price p to be accepted.

3.4 A Learning and Adaptive Mechanism
for BiDding Agents (1))

We propose a learning and adaptive bidding mechanism
in which consumer and producer agents determine their bid
and ask prices. This mechanism is denoted as A in this
paper. The pricing mechanism presented defines a logical



price by local analysis of the previous trade cases. The price
is defined as the price of each unit of resource that consumer
and producer agents are willing to buy or sell. Let denote
by py(t) the bid price of a consumer agent at time ¢ and
pa(t) the ask price for a producer agent at time ¢t. We as-
sume that each consumer agent has a maximum bid price,
denoted maxy, for a resource unit. This maximum price
is determined by the node’s budget. On the other side, each
producer agent has a minimum ask price, denoted min,, be-
low which the node is not willing to sell a unit of resource.
More formally, we have that:

Vt,  pa(t) > ming and
mlt) < maz, o
In our bidding algorithm, agents update their ask (respec-
tively bid) prices using the experience they gained from
their previous utilization of the Grid. Informally, the idea
is as follows. If an agent has not been successful in buying
resources, at current time the agent updates its bid price in
a way that tends to increase its chance to buy resources in
the future. If an agent has been successful, it conservatively
continues to bid in a way that ensures its chance of buying
resources in the future. A seller agent behaves in a similar
manner. If it has not been successful in selling resources, at
current time it updates its ask price in a way that increases
its chance of selling its resources in the future. Otherwise,
it behaves in a conservative manner.

Formally, the ask price of a producer agent at time ¢ is
computed according to the assignment in (2), while the bid
price for a consumer agent is given by assignment (3).

Do (t) «— max{ming, p,(t — 1) + a.p,(t —1)} (2

pp(t) — min{maxy, pp(t — 1) + B.pp(t —1)}  (3)

where o and 3 are coefficients which determine the rate at
which the price is increasing or decreasing. We name these
parameters reinforcement parameters, as they reinforce the
learning and apply two aggressive and conservative bidding
strategies. These parameters are set according to variations
in task or resource utilization at each individual node.

For a given node, we define the rask utilization as the
ratio of allocated tasks to all submitted requests and the re-
source utilization as the ratio of allocated resources to all
submitted offers. Formally, let T' = [s, e] be a time period.
We shall call s the start of 7" and e will be called the end of
T. Let ru(T) and tu(T') be the resource and task utilization,
respectively, over the time period 7T'.

For a given time period 7', the resource utilization is for-
mally defined by Equation (4), while the task utilization is
formally given by Equation (5).

ru(ry = 50 @

_ P(T)
w(T) = N.(T)

®)

where S(T') and P(T) are respectively the total numbers of
sold and purchased resources in the time period 7. N,(T)
and N,.(T) are respectively the total numbers of offered and
requested resources in the time period 7.

We now define variations in resource and task utilization.
To this end, let T} = [s1, e1] and T5 = [s2, e3] be two con-
secutive time periods such that e; = s, and e is the current
time. We capture variations in resource (respectively task)
utilization from period 7} to 75 by the following equations.

Arur, g,y = ru(Tz) — ru(Th) 6)

Atugr, —pyy = tu(Ts) — tu(Ty) 7

We now define the reinforcement parameters as follows:

oo d K- (ru(T»))*)?* if Aruer, m,) <0 ®)
| Lo# (ru(Ty))? if Arugp, 1y >0

5= (K — (tu(T2))*)* if Atup, 1) <0 ©)
| —Lox (tu(Ty))? if Atuer, 1,y > 0

where K and L respectively define the maximum rate of
aggressive and conservative bidding. Aggressive bidding
is defined as a strategy using which agents increase or de-
crease their prices in a high rate. On the other side, a bid-
ding is conservative when agents change their prices in a
low rate. The aggressive and conservative bidding strate-
gies are taken in the networks where there is not a balance
between the supply and the demand. In Our experiments,
we have considered K = 1 and L = 0.1. The values of K
and L can be changed individually by nodes based on the
user preferences such as budget consumption, urgent tasks
and etc. For instance, if a node has very limited budget, it
should choose lower level for aggressive bidding and avoid
very high bid prices. On the other hand, in case of very ur-
gent tasks, nodes can always increase level of their aggres-
sive bidding or decrease level of their conservative bidding.
The functionality of these parameters have been shown in
our previous work [8].

4 System Architecture

Our model is composed of three types of agents (see
figure 1): Consumer (buyer), Producer (seller) and Auc-
tioneer. There is one consumer/producer agent per node.
A consumer/producer agent controls the process of buy-
ing/selling resources by estimating the required resources
for executing the tasks or availability of the resources,
calculating the price and generating and submitting a re-
quest/offer for the corresponding task/resource.
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Figure 1. System Components.

The auctioneer agent controls the market using a Con-
tinuous Double Auction protocol. The market works in the
following simple manner: the buyers and sellers announce
their desire to buy or sell resources to the market. Auction-
eer continuously receives the requests and offers and keeps
them in its depositories. An auctioneer finds the matches
between buyers and sellers by matching offers (starting with
lowest price and moving up) with requests (starting with
highest price and moving down). When a task query ar-
rives at the market place, the protocol searches all available
resource offers and returns the best match which satisfies
the task’s constraints. These include resource quantity, time
frame and price. If no match is found, the task query ob-
ject is stored in a queue. The queries are kept in the queue
till the time to live (TTL) for them is expired or a match
is found. When a resource becomes available and several
requests are waiting, the one with the highest price bid is
processed first. A discriminatory pricing policy is used to
calculate transaction prices. In this policy, there is no global
equilibrium price and the transaction prices are set individ-
ually for each matched buyer-seller pair as the average of
bid and ask prices.

4.1 Request/Offer Message Specification

Each request/offer submitted by consumer/producer
agents contains the consumer/producer identifications, re-
source requirements and attributes, and time and cost con-
straints. A request message contains:

e Consumer Id: identifies the consumer node (e.g. IP
address).

e Request-Id: a unique number for each request to dis-
tinguish between different requests from a consumer.

e Resource-type: the type of resource that is required,
such as CPU, Memory, Storage.

e Resource-quantity: the quantity of required resource.
e Request-TTL: the time to live for the request.

e Bid-price: the maximum price that consumer is willing
to pay for each unit of resource.

e Consumer-Budget: the current budget of consumer.
An offer message includes these information:

e Producer Id: identifies the producer node (e.g. IP ad-
dress).

e Offer-Id: a unique number for each sent offer to distin-
guish between different offers from one producer.

e Resource-type: the type of resource that is offered,
such as CPU, Memory, Storage.

e Resource-quantity: the quantity of offered resource.
o Offer-TTL: the time during which the offer is valid.

e Ask-price: the minimum price that consumer is willing
to receive for each unit of resource.

4.2 Response Messages

Whenever the auctioneer finds a match between an of-
fer and a request message, it calculates the transaction price
and sends back two response messages to the correspond-
ing consumer and producer. The response message from
auctioneer to consumer has these specifications:

e Producer Id: discovers the producer from which to buy
the required resource.

e Request-Id: serves to match this response with the cor-
responding request that was previously submitted.

e Offer-TTL: is the remaining time during which the of-
fered resource is available.

e transaction-price: is the price that consumer has to pay
to producer for each unit of resource.

A response message to producer contains:

e Consumer Id: is used by receiving producer to estab-
lish a contact with a consumer to sell its resource.

e Offer-Id: serves to establish the correspondence be-
tween this offer and the matching request.

e Request-TTL: is the remaining time by which the re-
quested task has to be completed.

e transaction-price: is the price that producer receives
from consumer for each unit of resource.

5 Performance Evaluation

To evaluate the performance of different bidding algo-
rithms, we set up a Grid like environment in a local net-
work. Our application test-bed is developed using J2EE and
Enterprise Java Beans. Auctioneer is deployed on JBoss ap-
plication server.



Average StDev Throughput StDev Load

Trans. Price Transaction Price Task Util. Balancing

A 14.95 6.75 %92 3.6 %96

Z1 47.26 34.20 %80 54 %93
ZIP | 25.80 10.24 %61 334 %45
GD | 29.95 1.06 %50 379 %24

Table 1. Comparing the four Mechanisms.

5.1 Experimental Setup

In our simulation platform, a node sends a request/offer
through the consumer/producer agent when it needs some
computational resource for running its tasks or it has some
computational resource available. We assume that the tasks
are atomic and can not be divided, therefore each request is
matched with only one offer.

The experiments are performed in a local ad-hoc Grid
with 60 nodes. So, there are 60 consumer agents and 60
producer agents participating in the market. All nodes are
assigned equal budgets when joining the grid. The limited
budget defined for each node can be used to trade for re-
quired resources. It’s also possible to earn credits by de-
voting the idle computational resources for demanding con-
sumers. Each node creates 100 requests and 100 offers dur-
ing the simulation in a random order. The CPU time is con-
sidered as the resource. For a request, resource requirement
is expressed in the term of CPU time for execution of the
task and TTL determines the time during which the task has
to be executed. For an offer TTL is the time during which
the CPU is available. These values are generated randomly
for each request/offer in a specific range.

5.2 Comparing Bidding Algorithms

In this section, we study performances of the four bid-
ding mechanisms in a CDA market. Experiments are per-
formed in the completely similar condition for each of the
four approaches. The system and user centric metrics con-
sidered as the basis for performance evaluation are: price
stability, system throughput, and load balancing.

5.2.1 Price Stability

Price stability is an important parameter in markets. Sta-
ble and lower prices are always intendancy of every effi-
cient market. To study the price stability in the market,
we present the variation in transaction prices by measuring
standard deviation of transaction prices in the network.
Standard deviation of transaction prices for each ap-
proach is presented in table 1. The results show that GD
approach has highest price stability among the four. GD

!
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Figure 2. Transaction prices .

traders record all asks and bids made in the history of the
last M transactions. So, in this approach an equilibrium is
reached after few rounds. A approach and ZIP also show
an acceptable price stability while ZI presents a high vari-
ation in prices which is the consequence of random gener-
ation of bids and asks. To study the values of transaction
prices, we measure the average transaction price in each ap-
proach. With comparing these values in table 1, we observe
that A mechanism gives the lowest transaction prices while
Z1 presents the highest among the four approaches.

Figure 2 depicts transaction prices evolution during the
simulation time in each approach. From the figure, we can
see that ZI approach gives the highest price fluctuation and
also the highest price values, GD shows the most stable
prices and A approach gives the lowest price values with
low fluctuation in prices. The differences in the lengths of
graphs is due to differences in the number of found matches
in the four approaches.

5.2.2 Throughput

The throughput of the system is measured in the terms of
task/resource utilization. Task Utilization is defined as the
percentage of tasks that are allocated to available resources.
Resource Utilization is defined as the percentage of avail-
able resources that are used by the allocated tasks.

We measure the overall task/resource utilization in the
system for each approach. As the total number of generated
tasks and resources are equal, the overall task utilization in
the system is equal to resource utilization. The through-
put presented in the table 1 detects that A mechanism gives
highest throughput compared to other mechanisms. The
simple and non intelligence approach ZI provides more
throughput compared to ZIP and GD approaches.

5.2.3 Load Balancing

Load balancing attempts to distribute the computation load
across multiple nodes as evenly as possible with the objec-
tive to improve performance. To study the tasks distribution
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Figure 3. Individual’s task utilization.

among the resources, we measure the average task utiliza-
tion at individual consumer agents. Figure 3 shows average
task utilization at each of 60 consumer agents in the experi-
ment. From the figure, we can see that the task utilization is
almost equally distributed among different agents in \ ap-
proach. Among three other approaches, ZI approach shows
more balanced task utilization than two ZIP and GD ap-
proaches. In ZIP, we see some agents receive a high and
some others very low degree of task utilization. The vari-
ation in task utilization is also high in GD, such as some
agents have got zero task utilization. The values of these
variations are shown in table 1 by measuring the standard
deviation of task utilization.

Using standard deviation, we calculate the Relative Stan-
dard deviation (RSD) as a measurement for load balancing
at the system [2]. RSD is calculated as below:

RSD = (stdev/mean) x 100% (10)

where mean is the average task utilization of all nodes in
the system and stdev is standard deviation of the task uti-
lization. Now, we define the level of load balancing of the
system using RSD as follows:

n = (100% — RSD) (11)

The most effective load balancing is achieved when n =
100% which is obtained when stdev = 0. As results in
the table 1 show, A mechanism presents the lowest standard
deviation and in consequence the highest load balancing.
Among the other three approaches, ZI shows better perfor-
mance than ZIP and GD regarding load balancing. ZIP and
GD present a low level of load balancing. It is concluded
that our approach provides a fair access to the resources for
all nodes in the network compared to other approaches.

6 Conclusion

In this paper, we presented a market formulation for
resource allocation in ad-hoc Grids where the availability

of tasks and resources are dynamic. We discussed differ-
ent market models and bidding mechanisms that can be
employed in a market formulation for ad-hoc Grids. The
market should support the simultaneous participation of re-
source consumers and resource producers while observing
the deadline constraints. To fulfill these requirements, we
adopt a Continuous Double Auction (CDA) protocol as the
market protocol. We presented a novel bidding mechanism
to determine the ask and bid prices. We performed exper-
iments to compare the performance of our bidding mech-
anism () against that of the Zero Intelligence (ZI), Zero
Intelligence Plus (ZIP) and Gjerstad and Dickhaut (GD).
The experimental results show that our bidding mechanism
presents a good performance in an ad-hoc Grid compared
to other strategies. Our approach provides low and stable
transaction prices, high throughput, and a fair access to re-
sources for all agents in the network.
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