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ABSTRACT 
In this paper we introduce CCproc, a symmetric-key 
cryptographic (co)processor with a custom instruction set 
optimized for cryptographic applications. We study ten popular 
crypto algorithms, and provide custom solutions for them, while 
we also offer general support for future encryption algorithms. 
We design a custom but simple datapath able to execute the 
proposed instruction set and analyze its performance, proving to 
be competitive with other general purpose (but not custom) 
approaches, while having very small implementation cost. 

1. INTRODUCTION & MOTIVATION 
Cryptography is routinely used to protect the privacy and 
authenticity of documents and communications, and is applied in 
large computer systems but also in handheld devices such as cell 
phones. Encryption algorithms are used by an increasing number 
of applications, and can consume as much as 95% of a server’s 
processing capacity [14]. Therefore it is desirable to offload the 
encryption burden to an encryption accelerator. Much work has 
been done in the area with many software and hardware specific 
symmetric-key algorithmimplementations (e.g. [1], [3], [7], [11], 
[13], [15]). Unlike most previous work, we focus on general 
(co)processor design that will be able to implement many 
today’s popular algorithms but also to efficiently support 
potential new ones. We propose CCproc, a simple 32-bit co-
processor with an extended RISC instruction set and datapath 
structure. The instruction set includes several algorithm specific 
instructions, as well as support for general purpose processing. 
To design the CCproc instruction set, we first studied 10 popular 
symmetric-key algorithms: Blowfish [20], Twofish [19], DES 
[25], AES [8], MARS [6], Serpent [2][15], IDEA [22], RC4 
[24], RC5 [18] and RC6 [17]. This group includes the 5 finalists 
for AES (Rijndael, Twofish, MARS, RC6, Serpent). This way 
we have covered a representative set of symmetric-key 
algorithms, and designed a customized ISA that will be able to 
efficiently implement these and new algorithms. Our work is 
based on the following observations: 
• Symmetric-key algorithms exhibit very small amounts of 
internal parallelism. The most commonly used mode is CBC 
(Cipher Block Chaining), where each plaintext block is first 
XORed with the previous encrypted block before it is encrypted. 
This operation serializes the entire computation, leaving little 
hope for speedup using parallelism (thread, ILP, or other type). 
• Often, algorithms specify a sequence of operations, i.e. add 
followed by another add, xor, etc. It is very efficient to have 
instructions that combine these simple operations. 
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• We use a 32-bit wide datapath and exploit internal data 
parallelism in the algorithms. 
• Modulo multiplication with a prime polynomial in GF (28) is 
common in symmetric-key algorithms. Our co-processor uses 
32-bit values and combines 4 such multiplications in one 
instruction. 
• Rotations and shifts are heavily used in the symmetric-key 
algorithm field. 
• Algorithms perform a fixed number of rounds, resulting in a 
simple and predictable branch behavior we can exploit using a 
“loop” instruction to reduce the branch penalty. 
• Permutations are only used by DES and Serpent, so we forgo 
general permutation boxes and offer specific hardware 
permutation units for each of the two algorithms. 
• We offer custom, independent sboxes for each algorithm, 
removing the need for Sbox initialization. We also pre-compute 
the combined results of an Sbox followed by an operation, 
reducing the number of operations needed.  
Based on the above observations, we created an instruction set 
specifically designed to improve processing of symmetric-key 
algorithms. This instruction set will be analyzed in the next 
sections along with the general purpose instructions that are 
included in CCproc’s ISA. We first describe the CCproc’s 
instruction set and datapath. Then, in sections 3 and 4, we 
analyze its ISA and its performance, and discuss related work, 
and section 5 offers our conclusions and thought for future work. 

2. CCPROC BASE ISA AND DATAPATH 
In order for CCproc to execute general-purpose programs, it 
supports all the basic arithmetic and logical operations. We use a 
simple (MIPS-like) RISC instruction set. We include only two 
simple conditional branch operations: comparison for 
(in)equality with zero, allowing for faster implementation. After 
analyzing the symmetric-key algorithms, we found that most 
loops iterate for a fixed number of times and we use a “loop” 
instruction. A loop begins with an ldlc instruction, which loads 
loop-count (lc) register the number of iterations. Loop takes a 
single address argument, and each time it is executed the lc 
register is reduced by 1. The remaining instructions such as 
subroutine calls, stack usage and data memory access are all 
based on MIPS ISA.  
CCProc uses a 5-stage pipelined datapath similar to MIPS 
R3000. The main differences are: (a): We implement the “loop” 
instruction in the Instruction fetch stage, (b) we implement all 
cascaded and modulo multiplication instructions in the execution 
stage, and (c) we perform accesses to Sboxes in the MEM stage. 
Table 1 shows the instruction formats, where Op (6-bit) is the 
operation code, sx (5-bit) is a source register (x=1..3), A (5-bit) 
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is the algorithm ID, TR (5-bit) is a target register, opt (2-bit) is 
the options an instruction might have, DA (26-bit) is the 
destination address and I (16-bit) is the immediate. 

Table 1. CCproc Instruction formats  
R Op s3 s2 A TR s1 Opt
J Op DA 
I Op I[15..12] TR s1 I[1..0] 

2.1 Double/Cascaded Instructions 
Double instructions combine two or more dependent operations. 
An example is addadd rd,ra,rb,rc, i.e. rd = (ra + rb) + rc. A 
similar approach has also been considered by authors in [21] and 
in other contexts in [12]. We used the following double 
instructions in our instruction set: AddXor, XorXor, AddAdd, 
and Gfmul4. We provided only logical, or arithmetic-logical 
pairs, since they are very cheap to implement and do not 
increase the latency noticeably. To support these instructions, 
CCProc can read up to 3 registers from the RF. Gfmul4xor is an 
instruction that performs the GF(28) multiplication modulo a 
prime polynomial, an operation used in many cryptography 
algorithms. It performs 4 independent multiplications and 
combines their results using xor. We used the Karatsuba 
algorithm that for an 8-bit GF(28) multiplier requires about 90 
simple gates (with four or fewer inputs) arranged in 15 logic 
levels [10]. 
2.2 Algorithm-Specific Instructions 
Besides the above double instructions, our study of the crypto 
algorithms led us to include in CCproc the list of custom 
instructions listed in Table 2. Below we address each algorithm: 

Table 2. Algorithm specific instructions 

Algorithm Instruction Operation 
bld rc,ra,bsboxi rc←bsboxi[ra], i=1,2,3,4 Blowfish 
bst ra,rc,bsboxi bsboxi[ra]←rc, i=1,2,3,4 

Twofish tld rc,ra,comi - i=0,1,2 rc←tsbox[ra] 
desldp rc,ra,rb Rc←dessbox[rb&ra] 

rc←32LSBs [permute(rb:ra)] desip rc,ra,rb,per - 
per=IP,IP1 high1←32MSBs [permute(rb:ra)]

rc←32LSBs [permute(rb:ra)]  
DES 

desp rc,ra,rb,per - 
per=IP, E, PC1, PC2 high1←32MSBs [permute(rb:ra)]

AES aesld rc,ra,mode – 
mode=en, dec, rcon rc←aessbox[ra] 

marsld rc,ra, sel  – 
sel = sbox select rc←marssbox[ra] MARS 
marslde rc,ra rc←marssbox[ra] 
serldel rc,ra,sersboxi rc←sersboxi[ra], i=0,1,2,3 
serldeh rc,ra,sersboxi  rc←sersboxi[ra], i=4,5,6,7 
serlddl rc,ra,sersboxi rc←sersboxi[ra], i=0,1,2,3 Serpent 

serlddh rc,ra,sersboxi  rc←sersboxi[ra], i=4,5,6,7 
Blowfish has a very large initialization process of the 18 
Subkeys and 4 Sboxes, 256x32 bits each. To avoid accessing 
CCproc’s data main memory we use a separate 1024x32 bit 
memory, that stores the 4 Sboxes. To access an Sbox we use bst 
(store) or bld (load) and specify the Sbox with bsboxi=i, (i=1..4). 
To store a value to Sboxi, we read 2 registers, the first for the 
Sboxi address and the second for the data to be stored. 
Towfish requires a sequence of Sbox operations, so we have 
pre-computed the entire q0 and q1 basic Sboxes and created 2 
LUTs with these names. We used separate memories and 
optimized the layout to reduce the total size. Shown in Figure 1, 

there are 2 inputs, IN and mode. IN is the 32-bit register that 
contains 4 bytes that access q0 and q1. The column accessed 
depends on mode. The entire result is computed from the Sboxes 
with 5 instructions: 3 tld for each column and 2 for xoring the 
results. 
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Figure 1. Twofish Sboxes in CCproc. 
DES mostly uses permutations and Sboxes, offering a clear 
target. It needs 8 Sboxes that use 8x6=48-bit for address and 
they will return 32-bit output. The desldp instruction reads 2 
registers from RF that contains the 48-bit address. Next, this 
address is split to 8 6-bit values to access the 8 Sboxes and the 8 
4-bit values are concatenated. The last result must pass through 
the P-permutation and then will be stored to rc. Finally, the desp 
instruction selects among permutations E, PC-1, and PC-2 and 
desip between IP and IP-1.  
AES can take advantage of parallelism and achieve better 
performance. Besides the gfmul4xor instruction, another parallel 
operation is SubBytes, which substitutes all bytes of other bytes, 
depending on the AES LookUpTable (LUT). We included the 
instruction aesld, which fetches a 32-bit register, and process the 
4 bytes independently, passes them either through 4 LUTs or 
Rcon depending on the mode. LUTs are AES’s Sboxes and 
InvSboxes when it comes for encryption and decryption 
respectively. Rcon is used for key scheduling. 
MARS uses 2 256x8 bit Sboxes (S0 and S1) that are accessed in 
2 different ways according to the phase of processing. Our 
analysis lead to the design of the circuit shown in Figure 2, 
where IN, mode and E are the 32-bit value ra, sel and E 
respectively and OUT is the result to rc register. 
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Figure 2. MARS Sboxes in CCproc. 
Serpent has 32 rounds and 8 Sboxes (S0 to S7) 4x4 bits each. 
To gain speed in Sbox access, we designed instructions serldel, 
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serldeh, serlddl and serlddh, which use S0 to S3 for encryption, 
S4 to S7 for encryption, InvS0 to InvS3 for decryption and 
Invs4 to InvS7 for decryption respectively. For example serldel 
will fetch from RF register ra which is a 32-bit value and 
consequently contains 8 4-bits values ready to access 8 aliases of 
the appropriate Sbox, depending on round number.  

3. PERFORMANCE EVALUATION 
3.1 Algorithm Analysis 
To estimate our design’s performance, we developed CCproc 
assembly codes for 4 algorithms, from which 3 used some algo-
rithm specific instructions (Twofish, Blowfish, AES) and one 
(RC4) that used the existing ISA, without any custom 
instructions. To obtain timing results we analyzed our assembly 
codes, measured the stall cycles, and form that we calculated the 
CPI rate of the simple 5-stage pipelined CCproc. First, we 
analyzed the branching behavior of these 4 algorithms, counting 
the overall appearance frequency of UBs, TCBs (taken 
conditional branches) and UCBs (untaken conditional branches). 
Table 3 presents the results considering predict not-taken, 
predict-taken and loop branch handling schemes. It turns out that 
branching is not a major performance bottleneck, and at worst 
adds 0.04 to the CPI. The introduction of the loop instruction 
reduces this overhead to 0.02, but delayed branches essentially 
eliminate all branch stalls. This is because the branching 
conditions are mostly not data dependent and we can almost 
always fill the delay slot with useful computation. We also 
evaluated the stalls due to memory access when we need the 
value of a memory load (load-use stalls). The CPI cost of load-
use hazards is 0.076. In the case of delayed branching, the 
overall CPI of CCproc’s is 1.076. We will use these CPIs to 
compute the throughput for these 4 algorithms. 

Table 3. CCproc CPI costs 
B.S. UBs TCBs UCBs Loop All-br Ld-use

Dyn. Freq. 2.1% 2.40% 0.32% 0% 4.8% 7.6%
Predict Not 0.024 0.025 0 0 0.045 0.076 

Predict Taken 0 0 0.003 0 0.003 0.076
Dyn. Freq. 2.1% 0.003% 0.2% 2.5% 4.8% 7.6%

Loop 0 0 0.002 0 0.002 0.076 
Delayed 0 0 0 0 0 0.076 

3.2 Execution Time Results 
Table 4 shows the code size for the four algorithms. It lists the 
the algorithm that was tested, the block size and key size, i.e. the 
bits number of plaintext to be processed and the number of key 
bits, the static code size of each algorithm and in parenthesis the 
key schedule size (KS) and the processing size (E). The 4th 
column gives the number of instructions needed for the 
encryption (E) or decryption (D) process, without the key 
schedule and the last column offers the number of instructions 
needed for key scheduling. 

Table 4. Code size results for 4 algorithms 

Algorithm Plaintext / 
Key 

Static Code Size: 
Total, (KS, E) 

Dynamic 
Code 
(E/D) 

Dynamic 
code size 

(KeySched)
Twofish 128 / 128 1132 (788, 344) 971 1973 
Blowfish 64 / 32 1136 (920, 216) 564 137596 
Rijndael 128 / 128 620 (140, 480) 1120 179 

RC4 128 / 128 564 (292, 272) 293 4153 

Code size is an important issue, with smaller values being better, 
especially for embedded devices. For example, in [19] the 
smallest size is 8,200 bytes for an Intel’s Pentium processor and 
the biggest size is 23,300 in Motorola’s 68040 processor, which 
means that with the CCproc ISA we have a reduction in code 
size to 1,132/8,200 = 13.8% and to 1,132/23,300 = 4.8%, or a 
reduction factor of 7 and 20 respectively. The fact that code size 
drops so dramatically is an indication of the efficiency of the 
instruction set that allows us to store the code for all all these 4 
algorithms with about 3.5Kbytes of instruction memory. The 
result is that, despite its design simplicity, CCproc can have the 
ability to implement many symmetric-key algorithms in a very 
compact form, becoming a very attractive low-cost solution. 
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Figure 3. CCproc performance in clock cycles 

In terms of execution efficiency, Figure 3 shows the amount of 
time (cycles) needed per round for the 5 AES finalists.  These 
results, together with the following formula give the throughput 
per MHz for every CCproc implementation: 

sec/128 Mbits
sPerRoundClockCycle

FrequencyThroughput ⋅
=  

Applying this formula gives 405, 95, 132, 85, and 180 
Mbits/second for AES, Mars, RC6, Serpent, and Twofish 
respectively for out semi-custom implementation. 
3.3 Implementation Results 
To evaluate the performance of CCproc, we implemented the 
entire design in VHDL and used Synopsys to synthesize it using 
the 0.13um UMC High Density Standard Cell Library. Our 
design used 93K cells, and the total cell area was 5.3mm2, out of 
which 0.73mm2 was the combinational logic, and the rest were 
devoted to the instruction memory and register file. In terms of 
performance, the instruction memory standalone maximum 
operating frequency is 350MHz (2.8nsec cycle time), which of 
course is a limit to CCproc’s performance. The overall processor 
operating frequency is 250MHz using an “out-of-the-box” 
approach, without specific optimizations other than selecting the 
best synthesis strategy and combination of Synopsys commands. 

4. RELATED WORK 
The field of cryptography algorithms is peculiar in the sense that 
each algorithm usually has few similarities with others in data 
processing. The research on how to combine all of them in a 
design and also support potential new ones, requires studying 
one by one deeply and carefully. If in all that, one adds the 
demand of a compact design, this makes it even more difficult. 
So far we have seen [21] and [5] as proposals for designing an 
ISA for symmetric cryptography algorithms. The first is about 
Cryptomaniac, an architecture which also supports combined 
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instructions and can process in parallel algorithms if there are no 
dependencies, by adding extra functional units. The second 
describes an Alpha instruction set extension to improve 
symmetric algorithm processing. Another hardware approach for 
speeding up symmetric-key algorithms processing comes, as 
stated above, from [9]. The authors take advantage of ICBC 
(Interleaved Cipher Block Chaining) mode and combine it with 
usage of Symmetric Multi Processors (SMPs) in order to exploit 
algorithm parallel processing. 
CCproc uses cascaded instructions, as [21] and [5] do. However, 
we define a very small number of such instructions avoiding the 
unnecessary generality, and use a very simple datapath and a 
few custom sboxes. Moreover, CCproc’s performance does not 
rely on additional resources, but almost exclusively on its ISA 
efficiency. 
In the products field, HiFn [26] is a company that designs cryp-
tography acceleration boards, such as their “Hifn Access HXL” . 
The latter supports RSA public-key algorithm and 3DES+SHA-
1, AES128+SHA1 and ARC4+MD5 symmetric-key algorithms 
and hash functions. Via technologies designed Nehemiah core, 
which is being used in their C3 processor [27]. The latter is an 
x86 compatible processor and uses the Advanced Cryptography 
Engine (ACE) which supports AES and can encrypt or decrypt 
data at a rate of 12.8 Gb/s. For a single encryption or decryption, 
the effective rate can be even faster, up to 21 Gb/s. 
5. CONCLUSIONS – FUTURE WORK 
From the study of symmetric-key algorithms and the results so 
far, we have concluded that the processing performance can be 
improved in 3 different ways; (a) to design extra instructions 
specifically for symmetric-key algorithms as we described 
above, (b) to use simultaneous data processing, and (c) to 
increase speed i.e. MHz. However, the most widely used mode 
is CBC due to its good data diffusion properties, but cannot 
allow parallel plaintext block processing. This result led the 
cryptography community to propose Interleaved CBC (ICBC) 
mode as stated in [9], in order to deliver higher performance and 
enable partial parallel data processing. 

As future work, our next step is to create a hardware model for 
CCproc and perform algorithm simulations and tests and obtain 
a more realistic image of our design so far. This model may be 
designed with a hardware description language or by using Sim-
pleScalar processor simulator [4]. A few additions may be added 
to the design, depending on future results. For example, after 
further examination of other symmetric-key algorithms, we may 
design new instructions or improve the existing ones, in order to 
be also supported by them. Symmetric-key algorithm parallelism 
is an aspect that we can take advantage of it and add more 
processing units, improving even more CCproc’s overall 
performance. Last, another design addition may be added to 
CCproc so as to take advantage of the ICBC mode and boost 
even more its performance. 
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