
 1

CCproc: An Efficient Cryptographic Coprocessor
Dimitris Theodoropoulos†‡, Ioannis Papaefstathiou‡, Dionisios Pnevmatikatos‡1

† Computer Engineering, ‡ ECE Department,
TU Delft, The Netherlands, Technical University of Crete, Greece, GR73100

{D.Theodoropoulos}@tudelft.nl {ygp, pnevmati}@mhl.tuc.gr

ABSTRACT
In this paper we introduce CCproc, a symmetric-key
cryptographic (co)processor with a custom instruction set
optimized for cryptographic applications. We study ten popular
crypto algorithms, and provide custom solutions for them, while
we also offer general support for future encryption algorithms.
We design a custom but simple datapath able to execute the
proposed instruction set and analyze its performance, proving to
be competitive with other general purpose (but not custom)
approaches, while having very small implementation cost.

1. INTRODUCTION & MOTIVATION
Cryptography is routinely used to protect the privacy and
authenticity of documents and communications, and is applied in
large computer systems but also in handheld devices such as cell
phones. Encryption algorithms are used by an increasing number
of applications, and can consume as much as 95% of a server’s
processing capacity [14]. Therefore it is desirable to offload the
encryption burden to an encryption accelerator. Much work has
been done in the area with many software and hardware specific
symmetric-key algorithmimplementations (e.g. [1], [3], [7], [11],
[13], [15]). Unlike most previous work, we focus on general
(co)processor design that will be able to implement many
today’s popular algorithms but also to efficiently support
potential new ones. We propose CCproc, a simple 32-bit co-
processor with an extended RISC instruction set and datapath
structure. The instruction set includes several algorithm specific
instructions, as well as support for general purpose processing.
To design the CCproc instruction set, we first studied 10 popular
symmetric-key algorithms: Blowfish [20], Twofish [19], DES
[25], AES [8], MARS [6], Serpent [2][15], IDEA [22], RC4
[24], RC5 [18] and RC6 [17]. This group includes the 5 finalists
for AES (Rijndael, Twofish, MARS, RC6, Serpent). This way
we have covered a representative set of symmetric-key
algorithms, and designed a customized ISA that will be able to
efficiently implement these and new algorithms. Our work is
based on the following observations:
• Symmetric-key algorithms exhibit very small amounts of
internal parallelism. The most commonly used mode is CBC
(Cipher Block Chaining), where each plaintext block is first
XORed with the previous encrypted block before it is encrypted.
This operation serializes the entire computation, leaving little
hope for speedup using parallelism (thread, ILP, or other type).
• Often, algorithms specify a sequence of operations, i.e. add
followed by another add, xor, etc. It is very efficient to have
instructions that combine these simple operations.

1Dionisios Pnevmatikatos is also with FORTH-ICS

• We use a 32-bit wide datapath and exploit internal data
parallelism in the algorithms.
• Modulo multiplication with a prime polynomial in GF (28) is
common in symmetric-key algorithms. Our co-processor uses
32-bit values and combines 4 such multiplications in one
instruction.
• Rotations and shifts are heavily used in the symmetric-key
algorithm field.
• Algorithms perform a fixed number of rounds, resulting in a
simple and predictable branch behavior we can exploit using a
“loop” instruction to reduce the branch penalty.
• Permutations are only used by DES and Serpent, so we forgo
general permutation boxes and offer specific hardware
permutation units for each of the two algorithms.
• We offer custom, independent sboxes for each algorithm,
removing the need for Sbox initialization. We also pre-compute
the combined results of an Sbox followed by an operation,
reducing the number of operations needed.
Based on the above observations, we created an instruction set
specifically designed to improve processing of symmetric-key
algorithms. This instruction set will be analyzed in the next
sections along with the general purpose instructions that are
included in CCproc’s ISA. We first describe the CCproc’s
instruction set and datapath. Then, in sections 3 and 4, we
analyze its ISA and its performance, and discuss related work,
and section 5 offers our conclusions and thought for future work.

2. CCPROC BASE ISA AND DATAPATH
In order for CCproc to execute general-purpose programs, it
supports all the basic arithmetic and logical operations. We use a
simple (MIPS-like) RISC instruction set. We include only two
simple conditional branch operations: comparison for
(in)equality with zero, allowing for faster implementation. After
analyzing the symmetric-key algorithms, we found that most
loops iterate for a fixed number of times and we use a “loop”
instruction. A loop begins with an ldlc instruction, which loads
loop-count (lc) register the number of iterations. Loop takes a
single address argument, and each time it is executed the lc
register is reduced by 1. The remaining instructions such as
subroutine calls, stack usage and data memory access are all
based on MIPS ISA.
CCProc uses a 5-stage pipelined datapath similar to MIPS
R3000. The main differences are: (a): We implement the “loop”
instruction in the Instruction fetch stage, (b) we implement all
cascaded and modulo multiplication instructions in the execution
stage, and (c) we perform accesses to Sboxes in the MEM stage.
Table 1 shows the instruction formats, where Op (6-bit) is the
operation code, sx (5-bit) is a source register (x=1..3), A (5-bit)

 2

is the algorithm ID, TR (5-bit) is a target register, opt (2-bit) is
the options an instruction might have, DA (26-bit) is the
destination address and I (16-bit) is the immediate.

Table 1. CCproc Instruction formats
R Op s3 s2 A TR s1 Opt
J Op DA
I Op I[15..12] TR s1 I[1..0]

2.1 Double/Cascaded Instructions
Double instructions combine two or more dependent operations.
An example is addadd rd,ra,rb,rc, i.e. rd = (ra + rb) + rc. A
similar approach has also been considered by authors in [21] and
in other contexts in [12]. We used the following double
instructions in our instruction set: AddXor, XorXor, AddAdd,
and Gfmul4. We provided only logical, or arithmetic-logical
pairs, since they are very cheap to implement and do not
increase the latency noticeably. To support these instructions,
CCProc can read up to 3 registers from the RF. Gfmul4xor is an
instruction that performs the GF(28) multiplication modulo a
prime polynomial, an operation used in many cryptography
algorithms. It performs 4 independent multiplications and
combines their results using xor. We used the Karatsuba
algorithm that for an 8-bit GF(28) multiplier requires about 90
simple gates (with four or fewer inputs) arranged in 15 logic
levels [10].
2.2 Algorithm-Specific Instructions
Besides the above double instructions, our study of the crypto
algorithms led us to include in CCproc the list of custom
instructions listed in Table 2. Below we address each algorithm:

Table 2. Algorithm specific instructions

Algorithm Instruction Operation
bld rc,ra,bsboxi rc←bsboxi[ra], i=1,2,3,4 Blowfish
bst ra,rc,bsboxi bsboxi[ra]←rc, i=1,2,3,4

Twofish tld rc,ra,comi - i=0,1,2 rc←tsbox[ra]
desldp rc,ra,rb Rc←dessbox[rb&ra]

rc←32LSBs [permute(rb:ra)] desip rc,ra,rb,per -
per=IP,IP1 high1←32MSBs [permute(rb:ra)]

rc←32LSBs [permute(rb:ra)]
DES

desp rc,ra,rb,per -
per=IP, E, PC1, PC2 high1←32MSBs [permute(rb:ra)]

AES aesld rc,ra,mode –
mode=en, dec, rcon rc←aessbox[ra]

marsld rc,ra, sel –
sel = sbox select rc←marssbox[ra] MARS
marslde rc,ra rc←marssbox[ra]
serldel rc,ra,sersboxi rc←sersboxi[ra], i=0,1,2,3
serldeh rc,ra,sersboxi rc←sersboxi[ra], i=4,5,6,7
serlddl rc,ra,sersboxi rc←sersboxi[ra], i=0,1,2,3 Serpent

serlddh rc,ra,sersboxi rc←sersboxi[ra], i=4,5,6,7
Blowfish has a very large initialization process of the 18
Subkeys and 4 Sboxes, 256x32 bits each. To avoid accessing
CCproc’s data main memory we use a separate 1024x32 bit
memory, that stores the 4 Sboxes. To access an Sbox we use bst
(store) or bld (load) and specify the Sbox with bsboxi=i, (i=1..4).
To store a value to Sboxi, we read 2 registers, the first for the
Sboxi address and the second for the data to be stored.
Towfish requires a sequence of Sbox operations, so we have
pre-computed the entire q0 and q1 basic Sboxes and created 2
LUTs with these names. We used separate memories and
optimized the layout to reduce the total size. Shown in Figure 1,

there are 2 inputs, IN and mode. IN is the 32-bit register that
contains 4 bytes that access q0 and q1. The column accessed
depends on mode. The entire result is computed from the Sboxes
with 5 instructions: 3 tld for each column and 2 for xoring the
results.

q0A

q0B

q1A

q1B

IN 32

8

8

8

8

MSBs

LSBs

mode
mode[1]

m
od

e[
0]

8

8

8

8

8

8

8

8

8

8

8

8

32

OUT

Figure 1. Twofish Sboxes in CCproc.
DES mostly uses permutations and Sboxes, offering a clear
target. It needs 8 Sboxes that use 8x6=48-bit for address and
they will return 32-bit output. The desldp instruction reads 2
registers from RF that contains the 48-bit address. Next, this
address is split to 8 6-bit values to access the 8 Sboxes and the 8
4-bit values are concatenated. The last result must pass through
the P-permutation and then will be stored to rc. Finally, the desp
instruction selects among permutations E, PC-1, and PC-2 and
desip between IP and IP-1.
AES can take advantage of parallelism and achieve better
performance. Besides the gfmul4xor instruction, another parallel
operation is SubBytes, which substitutes all bytes of other bytes,
depending on the AES LookUpTable (LUT). We included the
instruction aesld, which fetches a 32-bit register, and process the
4 bytes independently, passes them either through 4 LUTs or
Rcon depending on the mode. LUTs are AES’s Sboxes and
InvSboxes when it comes for encryption and decryption
respectively. Rcon is used for key scheduling.
MARS uses 2 256x8 bit Sboxes (S0 and S1) that are accessed in
2 different ways according to the phase of processing. Our
analysis lead to the design of the circuit shown in Figure 2,
where IN, mode and E are the 32-bit value ra, sel and E
respectively and OUT is the result to rc register.

SBOX0

SBOX1

0

1

0

1

8

8

8

8

32IN

IN[7..0]

IN[15..8]

IN[23..16]

IN[31..24]

mode

m
od

e[
0]

0

1

0

1

E

8

8

0

1

32

32

32 OUT

Logicmode[1]

IN
[0

]

Figure 2. MARS Sboxes in CCproc.
Serpent has 32 rounds and 8 Sboxes (S0 to S7) 4x4 bits each.
To gain speed in Sbox access, we designed instructions serldel,

 3

serldeh, serlddl and serlddh, which use S0 to S3 for encryption,
S4 to S7 for encryption, InvS0 to InvS3 for decryption and
Invs4 to InvS7 for decryption respectively. For example serldel
will fetch from RF register ra which is a 32-bit value and
consequently contains 8 4-bits values ready to access 8 aliases of
the appropriate Sbox, depending on round number.

3. PERFORMANCE EVALUATION
3.1 Algorithm Analysis
To estimate our design’s performance, we developed CCproc
assembly codes for 4 algorithms, from which 3 used some algo-
rithm specific instructions (Twofish, Blowfish, AES) and one
(RC4) that used the existing ISA, without any custom
instructions. To obtain timing results we analyzed our assembly
codes, measured the stall cycles, and form that we calculated the
CPI rate of the simple 5-stage pipelined CCproc. First, we
analyzed the branching behavior of these 4 algorithms, counting
the overall appearance frequency of UBs, TCBs (taken
conditional branches) and UCBs (untaken conditional branches).
Table 3 presents the results considering predict not-taken,
predict-taken and loop branch handling schemes. It turns out that
branching is not a major performance bottleneck, and at worst
adds 0.04 to the CPI. The introduction of the loop instruction
reduces this overhead to 0.02, but delayed branches essentially
eliminate all branch stalls. This is because the branching
conditions are mostly not data dependent and we can almost
always fill the delay slot with useful computation. We also
evaluated the stalls due to memory access when we need the
value of a memory load (load-use stalls). The CPI cost of load-
use hazards is 0.076. In the case of delayed branching, the
overall CPI of CCproc’s is 1.076. We will use these CPIs to
compute the throughput for these 4 algorithms.

Table 3. CCproc CPI costs
B.S. UBs TCBs UCBs Loop All-br Ld-use

Dyn. Freq. 2.1% 2.40% 0.32% 0% 4.8% 7.6%
Predict Not 0.024 0.025 0 0 0.045 0.076

Predict Taken 0 0 0.003 0 0.003 0.076
Dyn. Freq. 2.1% 0.003% 0.2% 2.5% 4.8% 7.6%

Loop 0 0 0.002 0 0.002 0.076
Delayed 0 0 0 0 0 0.076

3.2 Execution Time Results
Table 4 shows the code size for the four algorithms. It lists the
the algorithm that was tested, the block size and key size, i.e. the
bits number of plaintext to be processed and the number of key
bits, the static code size of each algorithm and in parenthesis the
key schedule size (KS) and the processing size (E). The 4th
column gives the number of instructions needed for the
encryption (E) or decryption (D) process, without the key
schedule and the last column offers the number of instructions
needed for key scheduling.

Table 4. Code size results for 4 algorithms

Algorithm Plaintext /
Key

Static Code Size:
Total, (KS, E)

Dynamic
Code
(E/D)

Dynamic
code size

(KeySched)
Twofish 128 / 128 1132 (788, 344) 971 1973
Blowfish 64 / 32 1136 (920, 216) 564 137596
Rijndael 128 / 128 620 (140, 480) 1120 179

RC4 128 / 128 564 (292, 272) 293 4153

Code size is an important issue, with smaller values being better,
especially for embedded devices. For example, in [19] the
smallest size is 8,200 bytes for an Intel’s Pentium processor and
the biggest size is 23,300 in Motorola’s 68040 processor, which
means that with the CCproc ISA we have a reduction in code
size to 1,132/8,200 = 13.8% and to 1,132/23,300 = 4.8%, or a
reduction factor of 7 and 20 respectively. The fact that code size
drops so dramatically is an indication of the efficiency of the
instruction set that allows us to store the code for all all these 4
algorithms with about 3.5Kbytes of instruction memory. The
result is that, despite its design simplicity, CCproc can have the
ability to implement many symmetric-key algorithms in a very
compact form, becoming a very attractive low-cost solution.

79

338

242

375

178

0

50

100

150

200

250

300

350

400

Cl
oc

k
Cy

cl
es

AES MARS RC6 SERPENT TWOFISH

Figure 3. CCproc performance in clock cycles

In terms of execution efficiency, Figure 3 shows the amount of
time (cycles) needed per round for the 5 AES finalists. These
results, together with the following formula give the throughput
per MHz for every CCproc implementation:

sec/128 Mbits
sPerRoundClockCycle

FrequencyThroughput ⋅
=

Applying this formula gives 405, 95, 132, 85, and 180
Mbits/second for AES, Mars, RC6, Serpent, and Twofish
respectively for out semi-custom implementation.
3.3 Implementation Results
To evaluate the performance of CCproc, we implemented the
entire design in VHDL and used Synopsys to synthesize it using
the 0.13um UMC High Density Standard Cell Library. Our
design used 93K cells, and the total cell area was 5.3mm2, out of
which 0.73mm2 was the combinational logic, and the rest were
devoted to the instruction memory and register file. In terms of
performance, the instruction memory standalone maximum
operating frequency is 350MHz (2.8nsec cycle time), which of
course is a limit to CCproc’s performance. The overall processor
operating frequency is 250MHz using an “out-of-the-box”
approach, without specific optimizations other than selecting the
best synthesis strategy and combination of Synopsys commands.

4. RELATED WORK
The field of cryptography algorithms is peculiar in the sense that
each algorithm usually has few similarities with others in data
processing. The research on how to combine all of them in a
design and also support potential new ones, requires studying
one by one deeply and carefully. If in all that, one adds the
demand of a compact design, this makes it even more difficult.
So far we have seen [21] and [5] as proposals for designing an
ISA for symmetric cryptography algorithms. The first is about
Cryptomaniac, an architecture which also supports combined

 4

instructions and can process in parallel algorithms if there are no
dependencies, by adding extra functional units. The second
describes an Alpha instruction set extension to improve
symmetric algorithm processing. Another hardware approach for
speeding up symmetric-key algorithms processing comes, as
stated above, from [9]. The authors take advantage of ICBC
(Interleaved Cipher Block Chaining) mode and combine it with
usage of Symmetric Multi Processors (SMPs) in order to exploit
algorithm parallel processing.
CCproc uses cascaded instructions, as [21] and [5] do. However,
we define a very small number of such instructions avoiding the
unnecessary generality, and use a very simple datapath and a
few custom sboxes. Moreover, CCproc’s performance does not
rely on additional resources, but almost exclusively on its ISA
efficiency.
In the products field, HiFn [26] is a company that designs cryp-
tography acceleration boards, such as their “Hifn Access HXL” .
The latter supports RSA public-key algorithm and 3DES+SHA-
1, AES128+SHA1 and ARC4+MD5 symmetric-key algorithms
and hash functions. Via technologies designed Nehemiah core,
which is being used in their C3 processor [27]. The latter is an
x86 compatible processor and uses the Advanced Cryptography
Engine (ACE) which supports AES and can encrypt or decrypt
data at a rate of 12.8 Gb/s. For a single encryption or decryption,
the effective rate can be even faster, up to 21 Gb/s.
5. CONCLUSIONS – FUTURE WORK
From the study of symmetric-key algorithms and the results so
far, we have concluded that the processing performance can be
improved in 3 different ways; (a) to design extra instructions
specifically for symmetric-key algorithms as we described
above, (b) to use simultaneous data processing, and (c) to
increase speed i.e. MHz. However, the most widely used mode
is CBC due to its good data diffusion properties, but cannot
allow parallel plaintext block processing. This result led the
cryptography community to propose Interleaved CBC (ICBC)
mode as stated in [9], in order to deliver higher performance and
enable partial parallel data processing.

As future work, our next step is to create a hardware model for
CCproc and perform algorithm simulations and tests and obtain
a more realistic image of our design so far. This model may be
designed with a hardware description language or by using Sim-
pleScalar processor simulator [4]. A few additions may be added
to the design, depending on future results. For example, after
further examination of other symmetric-key algorithms, we may
design new instructions or improve the existing ones, in order to
be also supported by them. Symmetric-key algorithm parallelism
is an aspect that we can take advantage of it and add more
processing units, improving even more CCproc’s overall
performance. Last, another design addition may be added to
CCproc so as to take advantage of the ICBC mode and boost
even more its performance.
REFERENCES
[1] R. Ashruf, G. Gaydadjiev, S. Vasiliadis, “Reconfigurable

Implementation for the AES Algorithm”, Proc. of ProRISC 2002.
[2] Ross Anderson, Eli Biham, Lars Knudsen, “Serpent: A Proposal

for the Advanced Encryption Standard”, 5th workshop on Fast
Software Encryption, 1998.

[3] Albert G. Broscius, Jonathan M. Smith, “Exploiting Parallelism in
Hardware Implementation of the DES”, CRYPTO 1991.

[4] D. C. Burger and T. M. Austin, “The simplescalar tool set, version
2.0”, Technical Report CS-TR-97-1342, University of Wisconsin,
Madison, June 1997.

[5] J. Burke, J. McDonald, T. Austin, “Architectural Support for Fast
Symmetric-Key Cryptography”, ASPLOS 2000.

[6] C. Burwick, D. Coppersmith, E. D’Avignon, R. Gennaro, S.
Halevi, C. Jutla, S. M. Matyas Jr., L. O’Connor, M. Peyravian, D.
Safford, N. Zunic, “MARS - a candidate cipher for AES”, IBM
Corporation, 1999.

[7] Pawel Chodowiec, Kris Gaj, “Implementation of the Twofish
Cipher Using FPGA Devices”, ECE, George Mason University,
July 1999.

[8] Joan Daemen, Vincent Rijmen, “A specification for Rijndael, the
AES Algorithm”, March 2001,
http://csrc.nist.gov/CryptoToolkit/aes/rijndael/

[9] Praveen Dongara and T. N. Vijaykumar, “Accelerating Private-
Key Cryptography via Multithreading on Symmetric
Multiprocessors”, In Proceedings of the IEEE International
Symposium on Performance Analysis of Systems and Software
(ISPASS), March 2003.

[10] M. Jung, F. Madlener, M. Ernst and S. A. Huss, “A Reconfigurable
Coprocessor for Finite Field Multiplication in GF(28)”, IEEE
Workshop on Heterogeneous reconfigurable Systems on Chip,
Hamburg, April 2002.

[11] Benjamin Leperchey, Charles Hymans, “FPGA Implementation of
the Rijndael algorithm”, June 16, 2000.

[12] N. Malik, R. Eickemeyer, S. Vassiliadis, “Interlock Collapsing
ALU for Increased Instruction-Level Parallelism," Proceedings
Micro-25, December 1992.

[13] Maire McLoone, John McCanny, “Rijndael FPGA Imple-
mentations Utilizing Look-up tables”, Journal of VLSI signal
processing 34, 261-275, 2003.

[14] M.S. Merkow, CCP and J. Breithaupt, “The complete guide to
internet security”, AMACOM 2000.

[15] Serge Mister,”Properties of the Building Blocks of Serpent”,
Entrust Technologies, May 15, 2000.

[16] National Institute of Standards and Technology, ”Announcing
Request for Candidate Algorithm Nominations for the Advanced
Encryption Standard (AES)”, Federal Register, v. 62, n. 117, 12
Sept 1997, pp. 48051 - 48058.

[17] Ronald L. Rivest, M.J.B. Robshaw, R. Sidney, Y.L. Yin, “The
RC6 Block Cipher”, August 20, 1998.

[18] Ronald L. Rivest, “The RC5 Encryption Algorithm”, RSA
Security®.

[19] Bruce Scheier, John Kelsey, Doug Whiting, David Wagner, Chris
Hall, Niels Ferguson, “Twofish: A 128-bit Block Cipher”, 15 June
1998, Counterpane Systems.

[20] B. Schneier, “Description of a new variable-length key, 64-bit
block cipher (Blowfish)”, Fast Software Encryption, Cambridge
Security Workshop Proceedings (December 1993), Springer-
Verlag, 1994.

[21] Lisa Wu, Chris Weaver, and Todd Austin, “Cryptomaniac: A Fast
Flexible Architecture for Secure Communication”, ISCA 2001,
June 2001.

[22] “International Data Encryption Algorithm”, Technical De-
scription, Mediacrypt®.

[23] Analysis of Systems and Software (ISPASS), March 2003.
Internet links:
[24] www.fact-index.com/r/rc/rc4_cipher.html
[25] www.aci.net/kalliste/des.htm
[26] www.hifn.com
[27] www.via.com.tw/en/products/processors/c3

