
J Sign Process Syst
DOI 10.1007/s11265-008-0276-5

Compositional, Dynamic Cache Management
for Embedded Chip Multiprocessors

Anca M. Molnos · Sorin D. Cotofana ·
Marc J. M. Heijligers · Jos T. J. van Eijndhoven

Received: 14 September 2007 / Revised: 23 June 2008 / Accepted: 2 September 2008
© 2008 Springer Science + Business Media, LLC. Manufactured in The United States

Abstract This paper proposes a dynamic cache repar-
titioning technique that enhances compositionality on
platforms executing media applications with multiple
utilization scenarios. Because the repartitioning be-
tween scenarios requires a cache flush, two undesired
effects may occur: (1) in particular, the execution of
critical tasks may be disturbed and (2) in general, a
performance penalty is involved. To cope with these
effects we propose a method which: (1) determines,
at design time, the cache footprint of each tasks, such
that it creates the premises for critical tasks safety, and
minimum flush in general, and (2) enforces, at run-
time, the design time determined cache footprints and
further decreases the flush penalty. We implement our
dynamic cache management strategy on a CAKE mul-
tiprocessor with 4 Trimedia cores. The experimental
workload consists of 6 multimedia applications, each
of which formed by multiple tasks belonging to an
extended MediaBench suite. We found on average that:
(1) the relative variations of critical tasks execution
time are less than 0.1%, regardless of the scenario
switching frequency, (2) for realistic scenario switching
frequencies the inter-task cache interference is at most
4% for the repartitioned cache, whereas for the shared

A. M. Molnos (B) · M. J. M. Heijligers
NXP Semiconductors, HTC 37, Eindhoven, The Netherlands
e-mail: anca.molnos@nxp.com

A. M. Molnos · S. D. Cotofana
Technical University of Delft, Mekelweg 4,
Delft, The Netherlands

J. T. J. van Eijndhoven
Vector Fabrics, Kanaaldijk Zuid 15,
Eindhoven, The Netherlands

cache it reaches 68%, and (3) the off-chip memory traf-
fic reduces with 60%, and the performance (in cycles
per instruction) enhances with 10%, when compared
with the shared cache.

Keywords Multiprocessor · Cache management ·
Compositionality · Predictability

1 Introduction

Over the last years, the size and complexity of multi-
media applications have a clear tendency to increase.
As a result, such applications demand more and more
performance from the underlying hardware platforms.
In the embedded field a common practice to boost
performance is to use multiprocessor architectures.
Moreover, we assist to a sustained progress of the
semiconductor technology, hence multiple processors
can be integrated on a single chip, forming a so-called
Chip Multi-Processor (CMP). Nevertheless the speed
gap between the processors and the off-chip memory
widens with 50% every year [17]. Therefore, to miti-
gate this gap, a CMP typically comprises a number of
memory buffers.

Cache hierarchies [7] represent a possible organiza-
tion of the on-chip memory buffers. In this paper we
consider a CMP with a memory hierarchy in which each
processor core has its own level one (L1) cache, and
the platform has a large level two (L2) cache shared
among all the cores [20, 26]. Furthermore, we assume
that a multi-processor executes a software application
(referred in this paper shortly as “application”) consist-
ing of a given task set. As the present work is in the em-
bedded system area, all the application tasks are known

J Sign Process Syst

at design time. When used in conjunction with a CMP
architecture, shared caches make the miss rate predic-
tion difficult because different tasks executed in parallel
may flush each other data at random. Unpredictability
constitutes a major problem for media applications for
which the completion of tasks before their deadlines is
of crucial importance (for instance a video decoder has
to compute 25 frames in a second). Ideally, the designer
would like to be able to predict the overall application
performance based on the performance of its individual
tasks. In particular, the performance of each task must
be preserved if the tasks are executed concurrently in
arbitrary combinations or if additional tasks are added.
A system satisfying this property is addressed as having
compositional performance.

Cache partitioning among tasks was proposed in
order to diminish the inter-tasks interference in cache
[11, 15, 18, 19, 21, 24]. These articles target applications
composed out of tasks that all execute for the entire
lifetime of the application. However, a typical multime-
dia application may have multiple utilization scenarios,
in the sense that not all the tasks are continuously ac-
tive. For instance, in a personal digital assistant device
the audio decoding task is active only when the user
listens to music. Thus, tasks may start and stop, depend-
ing on the user requests. Therefore, cache management
strategies have to be able to deal with such dynamic
applications, while preserving compositionality.

In this paper we propose a strategy to dynamically
repartition the cache at a scenario change, such that
the compositionality is enabled. This strategy is based
on determining the best static partition for each possi-
ble utilization scenario, and dynamically changing the
partitions on a scenario switch. In order to keep data
correctness, our cache repartitioning implies flushing,
therefore a time penalty. This is especially critical for
tasks that have a low tolerance to perturbations. To
cope with this problem we first propose a design time
method, to determine each task’s cache footprint in
each scenario, such that (1) the critical tasks are pro-
tected against cache perturbation, and (2) in general
the number of necessary flushes are minimized. Fur-
thermore, we propose a partial cache flush policy that
ensures that the statically calculated footprints are re-
spected and further decreases the penalty by flushing
only what it is necessary, as late as possible, in the
eventuality that the data flush is actually not needed
anymore.

In the envisaged architecture the L2 is shared among
the processors, thus it is heavily affected by inter-task
conflicts. Consequently, the cache management method
targets the L2. We exercise the repartitioning approach
on a CAKE platform [26] with 4 Trimedia cores exe-

cuting 6 multimedia parallel applications, and we inves-
tigate a wide scenario switching frequency range (from
100 Hz to 1 Hz). We found that for realistic scenario
switching frequencies above 10 Hz the inter-task cache
interference is at most 4% for the repartitioned cache,
whereas for the shared cache it reaches 68%, indicating
that the proposed strategy achieves high composition-
ality. Moreover, the relative variations in critical tasks
execution times are less than 0.1%, for all the studied
scenario switching frequencies, suggesting that the crit-
ical tasks remain un-disrupted. In addition, on average,
the dynamic repartitioning method reduces the off-chip
memory traffic (measured in L2 misses per instruction)
with 60%, when compared with the shared cache and
with 25% when compared with a statically partitioned
cache. As a consequence, the average number of cycles
needed to execute an instruction is decreased with 10%,
when compared with the shared cache, and with 4%
when compared with a statically partitioned cache.

This paper is organized as follows. Section 2 intro-
duces the considered multiprocessor architecture, the
possible cache partitioning types, and discusses existing
work in this domain. This is followed by a description of
the proposed cache repartitioning method in Section 3.
The experimental results are presented in Section 4.
The related work is discussed in Section 5 and finally
Section 6 concludes the paper.

2 Background

The envisaged multi-processor architecture consists of
a multi-processor like the one presented in Fig. 1, com-
prising several media processors and a control proces-
sor. These processors are connected to on-chip mem-
ory banks by a fast, high-bandwidth interconnection
network.

D$ I$

MediaProc

D$ I$

MediaProc

L2
cache

memory

bank

memory

bankbank

memory

interconnection network

D$ I$

CrtlProc

ON CHIP

DRAM MEMORY

Figure 1 Multi-processor target architecture.

J Sign Process Syst

The memory hierarchy is organized as follows: on
the first level there are the L1 caches private to each
processor core, on the next level it is an on chip L2
shared by all processors, and on the last level in the
hierarchy it is an off-chip main memory. The L1 caches
are split among instructions and data, and the L2 cache
is unified. Among the L1s and the L2 a hardware
protocol is implemented to ensure coherence. The L1s
and the L2 use a write back policy in order to decrease
the accesses among the memory hierarchy levels.

In general, an application A executed on this archi-
tecture consists of a task set T = {Ti}(i=1,2,...,N) and has
a set S = {Sq}(q=1,2,...,Z) of possible scenarios. In each
scenario Sq only a subset of tasks Tq ⊆ T is active.
In this paper we consider the case of soft real time
applications. However, some task may be less tolerant
to disturbance than others. Let us look for example at
a device able to record a video stream and play another
stream at the same time. A short stall of the video de-
coder might result in omitting to display a frame, which
may be a reasonable quality loss. On the contrary, a
short stall in the recording task may result in a large
quality loss, depending on which stream part the device
failed to record. We denote such tasks that cannot
tolerate disturbances as critical. Note that critical tasks
do not have to be active in all application scenarios. The
scenarios and the critical tasks specification has to be
performed by the application designer, and it is not the
subject of this paper.

On the targeted platform, in a given scenario, mul-
tiple tasks may execute concurrently possibly access-
ing the L2. If no precautions are taken, for instance,
when task Ti’s data are loaded into the cache, they
may flush task Tj’s data, eventually causing a future Tj

miss. In this manner the system is not compositional
and the predictability cannot be guaranteed. Our work
targets this L2 cache contention, therefore we focus
on isolating tasks such that their number of misses are
independent of each other, even though the scenarios
may change. We assume that the L1s are not subject
to the aforementioned inter-task cache contention. This
is a reasonable assumption, as an L1 is private to each
task during its execution. We further assume that other
shared resources like buses, communication networks,
etc. are managed for compositionality using methods
like the ones described in [27].

An existing manner to induce compositionality is
to assign to each task an exclusive cache part. In the
organization of a conventional, set associative cache the
address splits in three parts: tag, index, and offset [7].
The index directly addresses a cache set (row). Every
set has a number of M ways (column). The tag part of
the address is compared against all the tag parts stored

in a set to determine if there is a hit in one of the set’s
ways. The offset part of the address selects the desired
word in the cache block. With respect to conventional
cache organization we identify two possible types of
partitioning:

– Associativity based, also called column caching [3]
(Fig. 2a). In this situation a task gets a number of
ways from every set of the cache.

– Set based (Fig. 2b). In this situation a task gets a
number of sets from the cache.

The associativity based partitioning is mostly used
in the literature [23, 24] because its implementation
requires only a small change in the cache replacement
policy. However, in the context of compositionality,
the main shortcoming of associativity based approaches
is that the number of allocable resources is restricted
to the number of ways in a set (cache organization).
A state-of-the art L2 cache typically has only up to
16 ways, while in media applications there is a trend
in adding new features, so in increasing the number
of tasks. For such an application there might be not
enough ways for every task, therefore multiple tasks
would share the same way, leading to unforeseeable
cache interference, hence to an un-compositional sys-
tem. Moreover, it is known from the literature [7] that
if a program may use only few ways, the cache effi-
ciency degrades. In [14] a brief quantitative comparison
among the static set and associative cache partitioning
is presented. An in depth comparison is included in
[13]. As expected, the conclusion of this comparison is
that the associativity based partitioning achieves com-
positionality, but degrades the cache performance.

The set based partitioning is more difficult to im-
plement as all the addresses of a task have to map
exclusively in a restricted cache region, allocated to that
task. However, due to the fact that typically in a cache
there are thousands of sets, the set based partitioning
can potentially induce compositionality, therefore this
is the partitioning type we consider in this paper. In the

.

.

.

.

.

.

.

.

.

.

b. Set–based cache partioning

SET N

SET 1
SET 0

WAY 0 WAY M

for Task 0

for Task 1

WAY 0 WAY M
SET 0
SET 1

SET N

for
Task 0

a. Associativity–based cache partioning

Task 1
for

Figure 2 Types of cache partitioning (a, b).

J Sign Process Syst

following we describe the chosen implementation for
set based partitioning.

We achieve the cache partitioning through a level of
indirection, without interfering with the memory space.
Our scheme modifies the index bits of an address into
new index bits, before cache lookup (Fig. 3), taking into
account who initiates the access. The purpose of the
index translation is to send all access of a task Ti, and
only the accesses of task Ti, in a cache region decided
at design time.

To avoid expensive index calculation, the partition
sizes are limited to a power of two number of sets. We
propose to use a table (indexed by the task id) that
provides the information needed for the index transla-
tion (MASK and BASE bits). To clarify the mechanism,
let us assume that an access to data A belonging to
task Ti has the index idxA, in a conventional cache
case. We denote by 2k the size of the partition for
Ti and by 2C the size of the total cache (both size
values are considered in number of sets). The MASKA

bits actually select the k least significant bits of idxA

(instead of doing modulo with the cache size 2C we do
modulo with the partition size 2k). BASEA fills the rest
of the C − k index bits such that different tasks accesses
are routed in disjoint parts of the cache.

After index translation, two addresses that do not
have the same old index might end up having the
same new index. In this case the system is not able
to distinguish between such two addresses, leading to
data corruption. To prevent data corruption, the index
bits changed by the translation process still have to
identify somehow the associated memory access. The
easiest way to achieve this is to augment the tag part
of the address with those changed index bits. For our
example, task Ti has 2k cache sets thus the C − k most
significant bits are changed, and have to be included in
the tag. Because it is not beneficial to have a tag with
variable length (k varies with the task’s allocated cache

Figure 3 Set based cache partitioning (implementation).

size) we choose to augment the tag with all index bits.
In this case, for instance, for a 2 MBytes L2, 8 ways
associative, 512Bytes block size, the tag has 9 extra bits,
representing less that 0.5% of the total L2 area, so the
implied area penalty can be considered negligible.

In this work we assume a multiprocessor platform
with cache coherence among the L1 caches of each
processor core, as previously mentioned. In case a
task does not find its data in the corresponding L1,
a coherence protocol is executed to determine if the
data are located in another processor L1 cache. The
coherence protocol utilizes a shadow tag directory [25]
that is stored close to the L2 and indexed by the original
address’ index (as the L1s). Consequently, the index
translation for the L2 accesses can be performed in
parallel with the search in the shadow tags directory,
resulting in no additional delay penalty associated to
the extra index translation. In the case of an L2 miss,
the cache is refilled with a new data block from mem-
ory, thus the shadow tags have to be synchronized with
the tag of the data newly brought in the L2. However
this synchronization is not on the critical path, because
it is performed while waiting for the data refill from the
memory.

3 Dynamic, Set Based, Cache Repartitioning

We start this section by first introducing some useful
notations. We consider that in scenario Sq the cache
size of a task Ti ∈ Tq is denoted with ci,q. The allocable
cache units of an L2 cache are numbered from 1 to C.
We define the cache footprint of a task Ti (Ti ∈ Tq)
as the contiguous cache interval where Ti data resides,
cfi,q = [bi,q, bi,q + ci,q), where bi,q ∈ [1, C − ci,q] repre-
sents the cache unit where Ti’s footprint begins. The
cache footprint of an entire application in the scenario
Sq, is the collection of each task cache footprints {cfi,q},
with Ti ∈ Tq.

Cache partitioning is designed to isolate the tasks in
the cache therefore to enhance compositionality. Or-
thogonal with the compositionality, cache partitioning
offers a degree of freedom in optimizing the applica-
tion performance (number of misses, throughput, etc.).
Given a set of tasks T and the available cache size C,
we identify two optimization problems, formulated as
follows:

1. the cache allocation problem, CAP (find the cache
sizes ci);

2. the cache mapping problem, CMP (find the cache
footprints cfi).

J Sign Process Syst

Static partitioning methods consider the cache space
as being uniform, in the sense that the application
performance is influenced only by the tasks’ cache sizes
ci and not by the beginning cache units bi. Thus in
the existing static partitioning methods the problem
of interest is the cache allocation. However, at a sce-
nario transition Sq → Sw, the repartitioning costs may
depend on cfi,q and cfi,w. In the case of set based
partitioning, if Ti’s footprints cfi,q and cfi,w are com-
pletely disjoint, cfi,q ∩ cfi,w = {∅}, precautions should
be taken such that, after repartitioning, Ti accesses the
most recent data copy. Eventually, Ti data have to be
relocated into the new Ti’s cache part at the scenario
transition via flushing or other strategy that typically
involves a form of overhead. On the contrary, the ideal
case occurs when the cache footprint of Ti is the same
in both scenarios (bi,q = bi,w and ci,q = ci,w), thus no re-
location overhead is present. In conclusion, in dynamic
repartitioning the performance of the systems heavily
relies on cfi,q and cfi,w, therefore the cache mapping
problem becomes interesting.

This paper presents a dynamic cache management
strategy consisting of two parts. We propose a method
to solve the cache mapping problem at design time.
Already at this stage the method creates the premises
for guaranteed non disturbance of critical task and a
minimal cache repartitioning penalty. For run time we
introduce a cache controller extension able to impose
the statically determined footprints and to further de-
crease the penalty involved in cache flushing. In the
next subsections we first detail the implications of set
based cache repartitioning, after which we propose an
heuristic to statically determine the cache footprints,
and in the last part of this section we present the run
time cache management strategy.

3.1 Set Based Cache Repartitioning

In this subsection we investigate the cases when the
cache content can be reused, at a scenario change.
We would like to mention that we do not assume the
existence of a possibility to directly transfer data from
one L2 set to another, nor the existence of a mechanism
(similar to a cache coherence protocol) that can look in
multiple L2 sets to determine where is the most recent
data value required. Such mechanisms are in principle
possible but in order to minimize the hardware over-
head we do not embed them in our current proposal.
Thus for now, our option is to flush the Ti’s footprint
corresponding to the old scenario Sq. Later, when a
data item is needed it is loaded from the main memory.
This strategy implicitly moves a data item from one
cache set to the other, via the main memory.

Due to implementation reasons, the number of L2
sets a task can own is a power of two. For simplicity
sake, let us assume that for a scenario switch both cache
footprints begin at the same cache set (bi,q = bi,w) and
the cache sizes vary with a factor of 2. Thus there are
two possibilities at a scenario change:

(1) The cache doubles (cfi,q ⊂ cfi,w, ci,w = 2 × ci,q).
This example is illustrated in Fig. 4. Let us
assume that in Sq an address X maps in the cache
in setX = bi,q + X%ci,q. Moreover, for the same
scenario Sq, the data at address X + ci,q also maps
in setX . When the cache doubles at Sq → Sw, the
data at address X still maps in setX , but the data
at address X + ci,q maps in setX + ci,q. As one can
see, not all data in the cfi,q cache footprint stays
in the same location in the double sized footprint
cfi,w. Therefore, to keep data correctness, one has
to flush only the data that does not map anymore
in cfi,w in Sw. However, in order to determine
which data fall into this category a search similar
to the conventional cache look-up should be per-
formed on the cache lines at a scenario change.
We do not assume the existence of such a mech-
anism, thus for the present work the entire cfi,q is
flushed.

(2) The cache halves (cfi,w ⊂ cfi,q, ci,q = 2 × ci,w). As
visible in Fig. 5, each data item present in Sq in
the first ci,w sets of cfi,q is mapped in the same
place in the scenario Sw. For those data items
X%ci,q = X%ci,w, because ci,q =2 × ci,w. However,
the other data for which in Sq X%ci,q > ci,w (for
instance X + ci,w, as illustrated in Fig. 5) are re-
located in cfi,w, when the scenario becomes Sw. In
conclusion, in order to keep data correctness, only
the second half of cfi,q has to be flushed.

A similar rationale applies when a task’s cache size
increases or decreases with more than a factor of 2
between consecutive scenarios. In conclusion, on an

set 1
set 2 set 2

set 1

iT iT
X

w(S)q (S)

b i
c i

q
b i

w

i
wc = 2

X+ c i
q

X, X+ c i
q

q

c i
q

L2 L2

Figure 4 Cache repartitioning—doubling the size.

J Sign Process Syst

set 2

set 1

iT

set 1
set 2

iT
X

(S)w(S)q

X+ c
i
w

b
i
q

i
wc

i
wc

b
i
w

i
wc

c w
i

X, X+

L2 L2

Figure 5 Cache repartitioning—halving the size.

Sq → Sw transition, there are two cases when the cache
content of a task Ti can be reused: (1) if Ti’s cache
footprint stays the same, and (2) if Ti’s number of
cache sets decreases, and if the starting set of the new
cache footprint bi,q = bi,w + κ · ci,w with κ ∈ N, κ <

ci,q/ci,w.
The footprint set of a critical task is denoted as

“sane” if a complete cache content reuse is guaranteed
at each possible scenario change. Taking into account
the considerations above, one can see that the footprint
of a critical tasks Ti is sane if ∀q, ∀w, cfi,q = cfi,w, Ti ∈
Tq, Ti ∈ Tw (critical task’s data should be cached always
in the same place).

3.2 Cache Content Reuse via Footprint Management

In order to solve the cache mapping problem, we need
to know the cache sizes allocated to each task in each
scenario. To determine these cache sizes we use the
method proposed in [15] that minimizes the total appli-
cation number of misses. Moreover, we assume that the
allocated cache sizes of the critical tasks are the same
in each scenario. In this subsection we tackle the cache
mapping problem, formulated as follows. Given: (1) an
application A consisting of a task set T and having S
scenarios, (2) the transition probability (or the relative
frequency) among each scenario pair pq→w, and (3) the
tasks’ cache sizes in each scenario ci,q, the objective is
to find the footprints cfi,q of each task in each scenario
(cfi,q ∩ cf j,q = {∅}, ∀Ti ∈ Tq, ∀T j ∈ Tq, i �= j) such that
the cache content reuse is: (1) complete for the critical
tasks and (2) maximized for the other tasks.

A “complete reuse” is achieved when a task has the
same cache footprint in all the consecutive scenarios in
which it is active. Critical tasks may also stop, as some
utilization scenarios do not require their execution.
The important thing is that a critical task should not

be disrupted as long as it is active. When it becomes
inactive, its cache may be used by other tasks.

In the next subsections we first prove the NP-
completeness of the cache mapping problem and then
we propose heuristic to solve this problem.

3.2.1 Hardness of the Cache Mapping Problem

In this subsection we prove that the cache map-
ping problem is equivalent with the Dynamic Storage
Allocation Problem DSAP (addressed as SR2 in [6]),
that is known to be NP-hard [6].

In order prove this we first recall the dynamic stor-
age allocation problem, with the notations from [6].
Note that these notations may clash with the ones used
for CMP . To avoid confusion, we explicitly specify
to which problem we refer. In DSAP given are: (1)
a set of items to be stored a ∈ A of size s(a) ∈ Z

+,
arrival time r(a) ∈ Z

+
0 and departure time d(a) ∈ Z

+
and (2) a storage size D ∈ Z

+. The question is if there
exists a feasible storage allocation σ : A → {1, 2, ..., D}
such that for every a ∈ A the allocated storage interval
I(a) = [σ(a), σ (a) + s(a) − 1] is contained in [1, D] and
such that, for all a, a′ ∈ A, if I(a) ∩ I(a′) �= {∅}, then
either d(a) ≤ r(a′) or d(a′) ≤ r(a).

To prove the equivalence of the two problems
(CMP and DSAP) we make the following notations
and CMP reductions:

1. for simplicity reasons we can assume that a sce-
nario takes one time unit, as no task may start or
stop during a scenario (hence the cache allocation
events occur between scenarios),

2. we restrict the generality of the CMP by consid-
ering that a task Ti has the same cache size ci

in each scenario in which it is active (ci,q = ci,w =
ci, ∀Sq, Sw, Ti ∈ Tq, Ti ∈ Tw), as if all the tasks are
critical,

3. we consider a given scenario sequence of length
U , {sk}(k=1,2,..,U), sk ∈ S, therefore all the pq→w are
known, and

4. for each task Ti we address the longest subsequence
of consecutive scenarios set in which Ti is active
with {ssi,m}(m=1,2,...,Ui), {ssi,m} ⊂ {sk}. There is no rea-
sons to assume that some of Ti’s data might still be
in cache when Ti is restarted, after a time it was
inactive (in the scenarios between two consecutive
subsequences, ssi,m and ssi,m+1 other tasks execute,
possibly using Ti’s cache). Thus, from the cache’s
point of view, it is like Ti is replaced by Ui tasks,
each of them having the same functionality as Ti

and ci cache size, but the U1 executes only in all sce-
narios from subsequence ssi,1, the U2 executes only

J Sign Process Syst

in all scenarios from subsequence ssi,2, etc. Conse-
quently, we replicate each task Ti of the application
in Ui tasks. As a result A is described by a set T ′ of
N′ tasks and each T ′

i ∈ T ′ has, by construction, only
one scenario subsequence in which it is active. For
this case we define the arrival scenario r(T ′

i) and
the departure scenario d(T ′

i) as the first and the last
scenario in which T ′

i is active. Moreover we denote
with b ′

i the cache units where T ′
i footprint begins,

its active scenario subsequence.

Let us present a simple example with a sequence of
4 scenarios, to give an intuitive idea about this task
replication. May Ti be active in both s1 and s2 then
inactive in s3 and later back active in s4. For maximum
reuse, Ti has the same footprint in s1 and s2 (if Ti is crit-
ical, it must have the same footprint in both scenarios).
However, in s3 Ti is stopped, therefore another task
may use Ti former cache (this is possible regardless of
whether Ti is critical or not, as we consider that critical
tasks should not be disrupted as long as they are active
and may be flushed out of the cache when they are
inactive). Later on, in s4 the task Ti is active again,
but its cache may be flushed during s3, therefore the
situation is like Ti restarted with a cold cache. In this
case, the cache behaves like we would have two tasks
T ′

i and T ′
i ′ (with c′

i = c′
i′ = ci), the first one being active

in s1 and s2 and inactive in the rest of the scenarios, and
the second one being active only in s4.

With these simplifications, the cache mapping prob-
lem can directly transform into the dynamic storage
allocation problem, because the following relate to each
other in a one-to-one fashion (first we mention the
CMP variables and then the DSAP ones):

1. the tasks T ′
i and the items a;

2. the cache size c′
i and the item size s(a)

3. the total cache size C and the storage size D;
4. the arrival and departure scenarios r(T ′

i) and d(T ′
i)

of T ′
i and the arrival and departure time of a r(a)

and d(a), respectively;
5. the function of the cache units where a footprint

begins b ′
i and the feasible storage function σ ;

6. the Ti cache footprint and the allocated storage
interval I(a);

7. the fact that two tasks may share a cache part only
when they are not active in the same time and the
condition that two items a, a′ ∈ A, if I(a) ∩ I(a′) �=
{∅}, then either d(a) ≤ r(a′) or d(a′) ≤ r(a).

Taking into account these presented facts, we can
conclude that CMP is equivalent with DSAP , and
therefore that CMP is NP-complete.

3.2.2 Heuristic for the Cache Mapping Problem

As a first step, the cache mapping problem for the en-
tire application is split into several smaller instances of
the same problem. If a task subset � ⊂ T has its cache

size sum constant over all scenarios
(Z∑

q=1

∑
Ti∈�

ci,q = �
)

,

then � and T �� are two disjoint task subsets that
behave as if each one of them is an independent appli-
cation having the cache size �, and C − �, respectively.
In this manner the problem can be further recursively
split, obtaining a set of task subsets {�m}(m=1,2,...,U),

U⋃
m=1

�m = T , �m ∩ �k = {∅}, m �= k. In order to build

the {�m} subsets we have to generate all possible tasks
subsets and we test if they respect the condition that the
sum of their cache sizes is constant over all scenarios.
Thus the number of iterations that are executed is
C1

N + C2
N + ...C

[N+1]
2

N , where Ck
N = N!

k!·(N−k)! . Even though
the complexity of building the {�m} subsets is not poly-
nomial, this does not constitute a problem in practice,
as the number of tasks is in the order of O(10).

In this paragraph we give an example meant to illus-
trate the separation of tasks T into subsets {Ψm} and to
highlight the mechanisms behind the CMP heuristic.
This example uses 4 tasks and 3 scenarios, with the
following characteristics: T1 is active all the time and
has the same cache size in all 3 scenarios, T2 is active
only in S1 and S2, and has different cache sizes in the
two scenarios, and T3 is active in S1 and S3 and has
different cache sizes in the 2 scenarios and T4 is active
in S2 and S3. Fig. 6 presents the cache of the 4 tasks
in the 3 scenarios, for a possible cache map. As also
visible in Fig. 6, the 4 tasks can be separated in two
subsets, such that the first subset Ψ1 contains only the
task T1 (that has the same cache size in all scenar-
ios), and the second subset Ψ2 contains {T2, T3, T4}
(the sum of T2, T3 and T4 cache parts are always the
same). As a result we now have two similar instances

T1 T1

T3 T4

T2
T2

Ψ1 = {T }1T1

T4

T3

(S)1 (S)(S)2 3

Ψ2 2 3= {T , T , T }4

Figure 6 Example: L2 cache footprints.

J Sign Process Syst

of the CMP problem: (1) find the cache map for Ψ1 =
{T1} when having C = c1,q, (∀)q = {1, 2, 3} and, (2) find
the cache map for Ψ2 = {T2, T3, T4} when having C =
c2,q + c3,q + c4,q, (∀)q = {1, 2, 3}. Solving CMP for Ψ1 is
straightforward, as Ψ1 contains only one task. Note that
splitting the tasks set in subsets guarantees that, for the
subsets containing only one task have a complete cache
reuse. In the case of Ψ2 it can be observed that, for
instance if in S2 T4 is placed in cache immediately after
T1, thus before T2, at a scenario switch S1 → S2 none of
the T2 data is reused, whereas maximum possible reuse
of T2 data is achieved when its place it is not changed.
If T2 is always the first task after at the top of the cache
of Ψ2), its reuse is maximum. Same observation is valid
also for the reuse of T3, that reaches its maximum if T3

is always place at the bottom of Ψ2. This fact represents
the main idea of the CMP heuristic, as described in the
remainder of this section.

We define the CCRi of a task Ti as being its cache
content reuse:

CCRi =
∑

Sq→Sw
ci,q=ci,w
bi,q=bi,w

ci,q · pq→w +
∑

Sq→Sw
ci,q>ci,w

bi,q=κbi,w

ci,w · pq→w (1)

The first sum corresponds to the case when ci,q = ci,w

and the second sum corresponds to the case when ci,q >

ci,w, under the conditions introduced in Section 3.1.
For the general case in which �m contains Nm tasks,

our mapping heuristic is described by Algorithm 1. As
a general rule, the heuristic successively places task
footprints in the cache in a decreasing order of their
reuse CCRi, starting from the extremities of the cache
toward the middle, giving priority to critical tasks. At
one mapping step we fix the footprint of a task Ti in
each scenario in which Ti is active. This means that,

Algorithm 1 Finding the cache footprint for all tasks
foreach Ψm ∈ {Ψm} do

while Ψm �= {∅} do
for Ti ∈ Ψm do calculate CCRtb

i and form
{Tcr+ok

m };
foreach {top, bottom} cache extremities do

if {Tcr+ok
m } �= {∅} then place the Ti ∈ {Tcr+ok

m } with
the largest CCRtb

i ;
else place the Ti ∈ Ψm with the largest CCRtb

i ;
Ψm = Ψm \ Ti;

end
end
end

if in scenario Sq a task Ti is mapped before a task
T j (Ti, T j ∈ Tq), also in a scenario Sw Ti is mapped
before a task T j (Ti, T j ∈ Tw). This strategy is based
on the observation that the reuse tends to increase
when the task have the same order in the cache in
each scenario (see the example in the Fig. 6). The reuse
CCRi is dependent on the task position in the cache
and it is recalculated at each mapping step, taking in
consideration the current values for bi,q and bi,w. Given
that a number of tasks are already mapped in the cache,
for the remaining tasks we define CCRt

i and CCRb
i

as the reuse if Ti is placed at the top (respectively at
the bottom) of the free cache extremity. We denote
CCRtb

i = CCRt
i ∪ CCRb

i . Furthermore, {Tcr+ok
m } ⊂ �m

is the subset of critical tasks with sane footprint if
placed at the top or at the bottom of the free cache
space.

If Algorithm 1 cannot sanely place all �m’s critical
tasks, we rerun it, but at step 5 and/or 6, instead of
picking the task with the largest reuse we make it select
the task with second, third, etc. largest reuse. In the
case that after all possible backtracking in �m no sane
solution is found, we merge �m with the �k subset that
has the minimum number of critical tasks, and restart
the entire optimization process. If no sane critical tasks
placement is found even after merging all �m’s, one
of the following should be revised: (1) the cache sizes
ci,q allocated to each tasks or (2) the total cache size
or (3) the selection of the critical tasks. The first case
actually means that the cache mapping influences cache
allocation (or they are performed simultaneously). This
is an interesting problem by itself, and it is a subject for
future research.

In practical situations the scenario transition fre-
quency (or probability) may not be known at design
time. An extension that copes with run-time cache
remapping, depending on the experienced pq→w is pos-
sible. Anyway, the {�m} set does not depend on the
scenario switch frequency, therefore it can be al-
ready determined off-line. Then a CCRtb

i formula with
pq→w = 1

Z (all transitions have equal probability) can
be utilized to guide the initial footprint calculation.
After that, at run-time, the system can learn the sce-
nario transition frequencies, and adjust the footprints
accordingly. If all the critical tasks can be placed on the
first run of the Algorithm 1 the complexity of finding
the footprints is polynomial, thus it is suitable for run-
time execution (this certainly holds true if, for example,
every �m has at most two critical tasks). Nevertheless, a
run-time solution independent of the number of critical
tasks is another interesting follow up of the present
work.

J Sign Process Syst

3.3 Run-time Cache Management

In order to control the cache repartitioning, we em-
ploy a software Run-Time Cache Manager (RTCM)
executing on the control processor. At Sq → Sw, the
RTCM jobs are, in order: (1) to stop the tasks that
are not active in the new scenario (Ti ∈ Tq, Ti /∈ Tw)
and the tasks that change their footprints (Ti ∈ Tq, Ti ∈
Tw, cfi,q �= cfi,w); this strategy allows tasks that do not
change their cache footprint to continue executing,
reducing the flush impact, (2) to initiate a partial cache
flush according to the reuse rules in Section 3.1, and to
wait until the flush is performed, (3) to update the cache
partitioning tables to the new cache footprint, and (4)
to start the new tasks (Ti ∈ Tw, Ti /∈ Tq) and to resume
the tasks that changed their footprints (Ti ∈ Tq, Ti ∈
Tw, cfi,q �= cfi,w). In addition, we propose a cache con-
troller that provides partial flush, as introduced in the
rest of this section.

In general, cache flushing implies a penalty that has
two components. First it is the extra time required
to write the content of the flushed lines in the main
memory. Second, after the flush, extra (cold) misses
may occur when the flushed data are needed again in
the cache. To minimize these overheads we propose to
flush only what it is necessary to ensure data correctness
at each scenario change, and to delay the flush as long
as possible, in the eventuality that it might not be
needed anymore. The cache flushing policy consists of
the following rules:

(1) Flush no code. On the CAKE platform the code it
is not modified during execution (it is read-only).
Thus the main memory contains a valid copy of all
the application instructions. As a results, correct-
ness is preserved without having to flush the code.

(2) Late flush. This rule applies in the case a task
Ti stops at a scenario change. Only at the mo-
ment when Ti resumes its execution, its data are
flushed out of the cache (if, of course, Ti’s cache
location is changed). In the mean time some of
the data might have been already swapped out
by other tasks. In this manner some cold misses
still occur, but a part of the flushing overhead is
avoided. Moreover, if the task restarts and has the
same cache part, it potentially benefits from some
remaining cached data.

(3) Flush only the valid, “owned”, cache lines. If the
cache coherence mechanism marks a cache line as
invalid, the memory hierarchy contains a more re-
cent copy of the corresponding data, therefore the
data correctness is not influenced by the content

of that line. A cache line is considered as “owned”
by a task Ti, if that line stores some of Ti data.
Let us assume a scenario transition Sq → Sw when
all Ti cache lines are relocated. In order to ensure
the correctness of Ti’s data, only the cache lines
owned by Ti have to be flushed out of cfi,q (data
belonging to another tasks may still be cached in
some of cfi,q lines, from a previous execution, as
allowed by the late flush strategy).

Besides the implementation of set based partition-
ing, the dynamic cache management requires that each
cache line has a task id. Moreover the lines caching
code should be distinguished from the lines that cache
data (in general L2s are unified). However, the storage
involved in these two issues (task id plus 1 bit for
code/data) is minor when compared to the total cache
size (under 1% for an L2 having 512 Bytes cache lines).

4 Experimental Results

In this section we investigate two issues related to
cache repartitioning: the compositionality and the per-
formance.

The considered experimental platform is CAKE,
having four identical Trimedia processor cores running
in parallel, each core having its own L1 data and in-
structions cache, and all the cores sharing the L2. In
Table 1 we present for the Trimedia L1 and for the L2
the size, associativity, line size, access latency, and when
applicable, the number of blocks. The latency accessing
the L2 includes the interconnection network overhead,
and the latency to the off-chip memory is 110 cycles.

On the CAKE platform we run a workload consist-
ing of six applications composed of various media tasks,
most of them deriving from the MediaBench suite [4].
From the MediaBench we pruned out the programs
that are relatively small and not memory intensive.
Moreover, to make the benchmarks more representa-
tive for emerging technologies, we added two H.264
video processing programs, an encoder and a decoder.
As a result we exercised the following programs: H.264,
MPEG2, EPIC, audio, and JPEG, all encoders and
decoders. An application is formed by a collection of
four such programs, each of which representing a task.
In Table 2 we present the L2 cache working set for
each task, for both the instructions and the data of the
task. To determine these working sets, we perform the
following experiment. We simulate each task in isola-
tion with several L2 cache sizes, partitioning the L2
for the task’s instructions and data. In different sim-

J Sign Process Syst

Table 1 CAKE cache
configuration.

L1 cache Data: 16 KB, 8 ways, 64 bytes line size, 3 cycles access latency
Instructions: 32 KB, 8 ways, 64 bytes line size, 3 cycles access latency

L2 cache Unified: 512 KB, 4 ways, 512 bytes line size, 12 cycles latency, 4 banks

ulations, we allocate for the task’s instructions and
data different power of two numbers of L2 sets, as
required by the static partitioning methods described
in Section 2. For each task’s instructions and data, the
values in Table 2 represent the number of L2 sets after
which the misses experimented saturate, meaning that
an doubling in cache size brings less than 5% decrease
in number of L2 misses. As one can see in Table 2 the
tasks working sets are relatively large, when compared
with the total considered L2 size (the entire cache
having 256 sets), for 4 of the tasks even reaching the
entire cache size. Thus these tasks are relevant for the
present L2 cache investigation.

Using different combinations of these tasks, we build
6 different applications (A1...A6), as visible in Table 3.
Each application has 7 execution scenarios (chosen at
random from the total set of possible tasks combina-
tions) and one or two critical tasks. The applications
are executed one by one, doing a simulation per appli-
cation, per scenario switching rate. For each scenario
switching rate, the application passes through a random
sequence of scenarios. For each application, the tasks
that execute in parallel and the sizes of their cache
partitions are illustrated in Table 3, for each scenario.
The cache sizes are measured in number of sets. As
for each scenario we use the static partitioning method
introduced in [16] the cache of a task can be parti-
tioned among its data and its instructions, hence Table 4
presents these values. The first value corresponds to
the task’s data cache partition and the second to the
instructions, or it contains an “u” if the cache partition
is unified for data and instructions. The critical tasks of
each application are illustrated in bold.

Table 2 Tasks’ working sets in L2 (instructions and data).

Task Instr. size (sets) Data size (sets)

H.264 encoder 128 128
H.264 decoder 64 256
MPEG2 encoder 1 256
MPEG2 decoder 32 256
EPIC encoder 32 128
EPIC decoder 1 128
Audio encoder 4 64
Audio decoder 64 128
JPEG encoder 2 64
JPEG decoder 1 64

In the remainder of this section we first present the
compositionality evaluation and then the performance
figures.

4.1 Compositionality

To evaluate compositionality, we look at the critical
task execution time variations in particular and at the
number of inter-task conflicts in general.

To check the critical task execution time (etcr) vari-
ation we simulate the same application with random
scenarios order, and different scenario switching rates,
ranging from 100 Hz (one switch every 0.01 second) to
1 Hz (one switch every second). In Fig. 7 we present
the average etcr variations over all the critical tasks
of each exercised application. For each investigated
scenario switching frequency, we look at three cases:
(1) the cache footprints determined with the method in
Section 3.2 (Critical task prio), (2) the cache footprints
determined with the method in Section 3.2, but giving
no priority to critical task (No critical task prio), and
(3) the conventional shared cache (Shared). One can
observe in Fig. 7 that the variations in the average
etcr are very small if during the cache mapping the
critical tasks have priority. These variations represent
at maximum only 0.1% from the critical tasks execution
time. Moreover, we would like to mention that not
only the average, but also the variations of etcr for each
application are below 0.1%. If no priority is given to the
mapping of critical tasks the etcr variations increase with
scenario switch frequency, reaching a relative value of
11% for a switch rate of 100 Hz. For the shared cache
the relative etcr variations represent 5% from the min-

Table 3 Applications and their tasks.

A1 JPEG encoder (JPEGe); JPEG decoder (JPEGd);
H.264 encoder (H264e); Audio encoder (AUDe);

A2 H.264 decoder (H264d); MPEG2 decoder (MPG2d);
EPIC decoder (EPICd); Audio decoder (AUDd);

A3 JPEG encoder (JPEGe); Audio encoder (AUDe);
Audio decoder (AUDd); MPEG2 encoder (MPG2e);

A4 H.264 encoder (H264e); MPEG2 encoder (MPG2e);
EPIC decoder; JPEG decoder (JPEGd);

A5 MPEG2 decoder (MPG2d); Audio encoder (AUDe);
JPEG decoder (JPEGd); EPIC decoder (EPICd);

A6 H.264 decoder (H264d); Audio decoder (AUDd);
JPEG encoder (JPEGe); MPEG2 encoder (MPG2e);

J Sign Process Syst

Table 4 Applications, execution scenarios and the cache per task (data/code; u=unified).

S1 S2 S3 S4 S5 S6 S7

A1 JPEGe 32/u JPEGe 32/u JPEGe 32/u JPEGe 32/u JPEGd 32/u H264e 128/u H264e128/64
JPEGd 32/u JPEGd 32/u JPEGd 128/u H264e 128/u H264e 128/u AUDe 16/u –
H264e 64/16 H264e 128/u AUDe 16/u AUDe 16/u AUDe 16/u – –
AUDe 16/u – – – – – –

A2 H264d 32/32 H264d 64/32 EPICd 64/u H264d 64/32 EPICd 32/u H264d 128/32 H264d 64/64
MPG2d 64/32 MPG2d 64/32 MPG2d 64/32 EPICd 32/u MPG2d 128/64 EPICd 32/u MPG2d 64/32
EPICd 32/u EPICd 32/u AUDd 32/u AUDd 32/u – – –
AUDd 32/u – – – – – –

A3 MPG2e 128/16 MPG2e 128/16 MPG2e 128/16 MPG2e 128/16 MPG2e 128/16 MPG2e 128/16 MPG2e 128/16
AUDe 16/u AUDe 16/8 AUDd 32/16 JPEGe 16/u AUDe 64/u AUDd 64/u –
AUDd 32/u AUDd 32/8 JPEGe 16/u AUDe 32/16 – – –
JPEGe 16/u – – – – – –

A4 H264e 64/u H264e 64/u MPG2e 128/u H264e 64/u H264e 64/u JPEGd 64/16 H264e 64/u
MPG2e 64/32 EPICd 64/u EPICd 64/u EPICd 16/u EPICd 64/u EPICd 128/u –
EPICd 16/u JPEGd 16/u JPEGd 16/u MPG2e 128/u – – –
JPEGd 16/u – – – – – –

A5 EPICd 64/u EPICd 64/u EPICd 64/u EPICd 64/u EPICd 64/u MPG2d 64/32 AUDd 64/32
MPG2d 64/32 AUDd 32/u MPG2d 64/32 JPEGd 32/u AUDd 128/u AUDd 64/32 JPEGd 64/32
AUDd 16/u MPG2d 64/32 JPEGd 32/u AUDd 64/32 – – –
JPEGd 16/u – – – – – –

A6 H264d 64/u H264d 64/u H264d 64/u H264d 64/u MPG2e 128/u H264d 64/u JPEGe 16/u
AUDe 32/8 AUDe 64/32 AUDe 32/16 AUDe 64/32 AUDe 64/u MPG2e 128/u –
JPEGe 16/u JPEGe 16/u MPG2e 64/8 JPEGe16/u – – –
MPG2e 64/8 – – – – – –

imum Shared etcr, and we notice no clear dependence
among the switching rate and etcr. Furthermore, the etcr

is, on average, with 13% larger in the shared cache case,
than in the repartitioned cache one. This indicates that
the repartitioning is improving the system performance.

Apart from critical tasks execution time variations,
the other metric used for evaluating the compositional-
ity is the number of inter-task conflicts. For each task Ti

we define the number of inter-task conflicts as the num-
ber of times another task flushes some Ti data out of
the cache. In a repartitioned cache, these conflicts occur

Figure 7 Average critical tasks execution time.

as a results of the late cache flush policy presented in
the previous section. The number of inter-task conflicts
of an application is the sum of the conflicts suffered
by each of the application tasks. Table 5 illustrates the
number of conflict misses for each of the 6 applications,
per scenario switching frequency. The values presented
in Table 5 are relative to the corresponding application
total number of misses. The last row represents an
average value of all the applications inter-task conflicts.

We investigate scenario switching frequencies from
100 Hz to 1 Hz. These conflict misses are presented
for two cases: conventional shared L2 (shared), and set
based repartitioned L2 (repart).

When the L2 is repartitioned and the scenarios are
switched at a high frequency (20 Hz to 100 Hz), the
average relative number of conflicts reaches a value
of 8% (with a maximum of 11% for application A5,
for a 100 Hz scenario change frequency). For scenario
switching rates under 10 Hz the percentage of inter-task
conflicts is at most 4% for each application. Unlike the
partitioned cache, in a shared cache a large fraction of
the misses represent actually inter-task conflict misses.
The peak value for these misses is 78% and the average
for all applications and all frequencies is 70%. As ex-
pected, in general the percentage of inter-task conflicts
decreases with a scenario switching rate decrease.

J Sign Process Syst

Table 5 Inter-task conflict misses relative to the entire applica-
tion number of misses.

100 Hz 50 Hz 20 Hz 10 Hz 5 Hz 1 Hz

A1 Shared 70% 62% 66% 53% 54% 56%
Repart 3% 2% 0% 0% 0% 0%

A2 Shared 75% 74% 73% 72% 76% 74%
Repart 14% 10% 7% 6% 4% 0%

A3 Shared 69% 69% 71% 63% 62% 59%
Repart 7% 4% 4% 2% 1% 0%

A4 Shared 77% 77% 77% 78% 77% 75%
Repart 20% 13% 12% 8% 3% 2%

A5 Shared 76% 78% 75% 74% 72% 70%
Repart 11% 8% 7% 4% 1% 1%

A6 Shared 77% 74% 72% 73% 72% 75%
Repart 6% 5% 2% 1% 0% 0%

avg Shared 74% 72% 72% 68% 68% 68%
Repart 10% 8% 6% 4% 2% 1%

These results clearly suggest that the proposed dy-
namic repartitioning method results in a large improve-
ment of the system compositionality, when compared
with a conventional cache. When scenario switching
happens less than 10 time per second the amount of
inter-task conflicts is negligible (<4%), therefore we
can consider that compositionality is achieved. More-
over, the critical tasks are practically undisturbed.

4.2 Performance

We measure the performance using two metrics: (1)
the number of misses per instruction (MPI) to describe
the L2 performance and (2) the processors’ average
cycles per instruction (CPI) to present the performance
of the entire system. Because we are interested in the
performance of the multimedia processing, the CPI
presented in this section represent an average for the
four Trimedia cores. Including the CPI of the control
processor in the average would only decrease it, as the
maximum MIPS CPI is 1.2, with the average of 1.05
over all the simulations experimented. Thus we can
claim that the overhead of the RTCM is, as expected,
negligible, because the cache mapping optimization is
executed at design-time. Moreover, the data structures
needed for the RTCM are small (<4 KB), as the main
information the RTCM needs are the start set and
partition size for each task in each scenario.

In general, two phenomena determine the difference
in number of misses between a shared and a partitioned
cache. If the cache is partitioned, the inter-task cache
flushing is eliminated (which means less misses) but
every task can use less cache space than in the shared
case (which means more misses). Moreover, reparti-

tioning the cache at run-time requires parts of the cache
to be flushed, thus an extra overhead is present.

We compare the performance in the following cases:
(1) a set based repartitioned L2 with the cache foot-
prints determined with Algorithm 1 presented in the
previous section (Alg1 footprints), (2) a set based
repartitioned L2 with randomly chosen cache foot-
prints (Random footprints), (3) a conventional shared
L2 (Shared), (4) a statically set based partitioned L2
(Static), and (5) an infinite L2 cache. The comparison
with the performance of an infinite cache is interesting
because it gives an idea about the maximum improve-
ment that can be achieved by tuning the L2 cache. In
our case it was enough to approximate an infinite L2
with a cache of 8 MBytes.

Tables 6 and 7 present the MPI and the CPI values
for the 6 applications per scenario switching frequency.
Figures 8 and 9 graphically present the same data but
averaged over all applications for the MPI and CPI,
respectively. The data in the Figs. 8 and 9 represent
the average CPI and MPI over the 6 applications, per
scenario switching frequency. The MPI for the infinite
cache is not presented as it is practically equal to 0.

When the cache mapping is performed according to
the proposed method, the average over all applications
and all scenario switching frequencies for the number
of L2 lines flushed at each scenario transition represent
19% (with a maximum of 37% over all simulations) of
the total L2 size. If the cache mapping is performed at
random, this percentage increases to 36% (with a peak
of 59%). Nevertheless, despite the flushing penalty,
the MPI for the dynamic cache repartitioning using
the proposed mapping solution is on average 44%
and 60% smaller than the case when the mapping is
random and the case when the L2 is shared, respec-
tively. On average, the L2 misses reduction results in
a 7% and 10% better CPI, when compared with a
random L2 mapping and a shared cache, respectively.
Moreover, the maximum CPI improvement that can be
achieved by employing an infinite L2 is 20%. Hence
the above mentioned CPI improvements brought by
dynamic repartitioning represent on average 50% from
the possible improvements of ideal, infite L2. We would
like to underline that these improvements occur when
partitioning the L2 cache, while preserving its size.
Furthermore, the performance difference between the
random mapped footprints and the Alg1’s footprints
motivates the utilization Alg1 footprint calculation.

As visible in Tables 6 and 7, when compared with
a shared L2, A3 benefits from maximum performance
improvement, namely 53% MPI and 15% CPI, for a
scenario switching rate of 1 Hz. In the case of A3 the

J Sign Process Syst

Table 6 Applications L2 misses per instruction (×102) function of the scenario change frequency.

1 Hz 5 Hz 10 Hz 20 Hz 50 Hz 100 Hz

A1 Dynamic partitioned Alg. 1 0.008 0.008 0.009 0.096 0.099 0.011
Dynamic partitioned Rand. 0.010 0.011 0.012 0.128 0.136 0.018
Static partitioned 0.014 0.016 0.021 0.024 0.025 0.025
Shared 0.010 0.093 0.013 0.013 0.012 0.016

A2 Dynamic partitioned Alg. 1 0.048 0.048 0.049 0.060 0.081 0.110
Dynamic partitioned Rand. 0.07 0.063 0.089 0.097 0.092 0.124
Static partitioned 0.056 0.052 0.065 0.065 0.065 0.079
Shared 0.212 0.103 0.101 0.102 0.107 0.110

A3 Dynamic partitioned Alg. 1 0.260 0.268 0.280 0.300 0.340 0.452
Dynamic partitioned Rand. 0.520 0.530 0.560 0.580 0.950 1.080
Static partitioned 0.390 0.430 0.420 0.427 0.440 0.440
Shared 0.560 0.590 0.710 0.880 0.960 1.010

A4 Dynamic partitioned Alg. 1 0.720 0.730 0.830 0.820 0.870 0.870
Dynamic partitioned Rand. 0.810 0.800 0.842 0.850 0.950 1.220
Static partitioned 0.850 0.860 0.850 0.870 0.880 1.090
Shared 1.120 1.130 1.160 1.200 1.190 1.350

A5 Dynamic partitioned Alg. 1 0.310 0.455 0.495 0.532 0.628 0.836
Dynamic partitioned Rand. 0.652 0.587 0.689 0.672 0.850 1.290
Static partitioned 0.630 0.652 0.800 0.796 0.916 1.349
Shared 1.440 1.431 1.429 1.471 1.492 1.670

A6 Dynamic partitioned Alg. 1 0.031 0.035 0.041 0.056 0.069 0.078
Dynamic partitioned Rand. 0.058 0.063 0.064 0.072 0.087 0.093
Static partitioned 0.062 0.068 0.074 0.074 0.075 0.076
Shared 0.073 0.120 1.290 1.360 1.580 1.790

avg Dynamic partitioned Alg. 1 0.229 0.257 0.284 0.311 0.348 0.393
Dynamic partitioned Rand. 0.458 0.437 0.509 0.545 0.649 0.638
Static partitioned 0.427 0.346 0.372 0.376 0.400 0.510
Shared 0.552 0.578 0.784 0.841 0.894 0.996

critical task owns half of the cache, thus this half bene-
fits from full cache content reuse at scenario switch. In
contrast A4 experiences the smallest performance im-
provement among the 6 applications, 15% MPI and 8%
CPI, for the same scenario switching rate. Nevertheless
the maximum possible performance improvement for
A4 is 16% leaving not so much room for improvement,
whereas for A3 this is 21%. One can notice that
dynamic repartitioning delivers for both applications
more than half of the possible performance boost.

When comparing with a statically partitioned cache
the proposed method exhibits, on average, 25% less
misses per instruction, leading to 4% better CPI. The
performance differences in MPI and CPI among the
static and dynamic partitioned cache decrease with
the increase of scenario switching frequency. For a
scenario switching rate of 100 Hz the dynamically
partitioned L2 outperforms the statically partitioned
one with 1% for the CPI metric and 23% for the
metric MPI, whereas for a scenario switching rate of
1 Hz the improvement is 7% and 47%, respectively.
These figures clearly indicate that the use of the dy-

namic partitioning method in applications with multiple
utilization scenarios, especially for low scenario switch-
ing rates (this rate is likely to be even lower than one
switch every second), can be beneficial.

Again, some applications are more sensitive to cache
repartitioning than others. For example applications
A3 and A6 experience up to 8% and 5% better CPI,
with a corresponding 33% and 50% MPI reduction,
when choosing for dynamic repartitioning instead of
the simple static partitioning. The smallest difference
among the static and dynamic partitioning is present for
A2. There dynamic partitioning brings only 1% better
CPI and 14% MPI reduction. In general we observed
no direct correlation among the static/dynamic perfor-
mance difference and the cache footprints. The main
difference among the static and the dynamic partition-
ing is that, if the application executes in scenarios that
have only few tasks active, the dynamic partitioning
uses a larger cache fraction than the static partitioning,
thus it performs better. In general we observe that the
performance of the statically partitioned L2 is better
than the one of the shared cache, and, most important,

J Sign Process Syst

Table 7 Applications cycles per instruction function of the scenario change frequency.

1 Hz 5 Hz 10 Hz 20 Hz 50 Hz 100 Hz

A1 Dynamic partitioned Alg. 1 1.25 1.27 1.28 1.19 1.31 1.32
Dynamic partitioned Rand. 1.36 1.37 1.36 1.32 1.47 1.50
Static partitioned 1.28 1.29 1.32 1.32 1.33 1.36
Shared 1.40 1.39 1.40 1.41 1.40 1.42
Infinite size 1.24 1.24 1.24 1.24 1.24 1.24

A2 Dynamic partitioned Alg. 1 1.26 1.27 1.28 1.28 1.31 1.31
Dynamic partitioned Rand. 1.35 1.34 1.36 1.39 1.38 1.43
Static partitioned 1.27 1.27 1.28 1.29 1.29 1.30
Shared 1.40 1.48 1.42 1.44 1.44 1.48
Infinite size 1.12 1.12 1.12 1.12 1.12 1.12

A3 Dynamic partitioned Alg. 1 1.16 1.16 1.18 1.23 1.26 1.31
Dynamic partitioned Rand. 1.34 1.35 1.37 1.38 1.41 1.42
Static partitioned 1.27 1.29 1.28 1.28 1.29 1.29
Shared 1.37 1.37 1.40 1.42 1.42 1.42
Infinite size 1.07 1.07 1.07 1.07 1.07 1.07

A4 Dynamic partitioned Alg. 1 1.18 1.19 1.21 1.21 1.24 1.25
Dynamic partitioned Rand. 1.21 1.21 1.23 1.23 1.26 1.28
Static partitioned 1.24 1.25 1.24 1.24 1.25 1.2
Shared 1.28 1.27 1.28 1.28 1.27 1.29
Infinite size 1.07 1.07 1.07 1.07 1.07 1.07

A5 Dynamic partitioned Alg. 1 1.32 1.32 1.32 1.33 1.37 1.40
Dynamic partitioned Rand. 1.33 1.35 1.38 1.38 1.41 1.43
Static partitioned 1.38 1.37 1.39 1.39 1.40 1.43
Shared 1.46 1.48 1.47 1.48 1.48 1.52
Infinite size 1.12 1.12 1.12 1.12 1.12 1.1

A6 Dynamic partitioned Alg. 1 1.17 1.18 1.20 1.23 1.25 1.27
Dynamic partitioned Rand. 1.23 1.24 1.24 1.26 1.29 1.29
Static partitioned 1.24 1.25 1.27 1.27 1.27 1.27
Shared 1.28 1.31 1.32 1.32 1.41 1.43
Infinite size 1.10 1.10 1.10 1.10 1.10 1.10

avg Dynamic partitioned Alg. 1 1.21 1.23 1.24 1.25 1.29 1.31
Dynamic partitioned Rand. 1.30 1.31 1.32 1.33 1.37 1.39
Static partitioned 1.29 1.29 1.30 1.30 1.30 1.32
Shared 1.36 1.38 1.38 1.39 1.40 1.43
Infinite size 1.12 1.12 1.12 1.12 1.12 1.12

Figure 8 Performance: L2
misses per instruction.

J Sign Process Syst

Figure 9 Performance: cycles
per instruction.

the performance of the dynamically partitioned cache
is the best, better than both the static partitioned and
the shared one.

When looking solely at the dynamic partitioning
involving Algorithm 1, we can notice that for the
Figs. 8 and 9 that the MPI increases with 40% when
the scenario switching frequency varies from 1 Hz to
100 Hz. As a result the CPI increases with 6% for the
same scenario switching range. However, for realistic
scenario switching ranges (under 10 Hz) the difference
in MPI is on average 18% and in CPI is 1%. This
suggests that in such a case the cache flushing penalty
is negligible.

5 Related Work

In this section we discuss two main related research top-
ics: dynamic cache partitioning in general and caches
for embedded domain in particular.

As the challenges of slow background memory and
limited off-chip bandwidth become more acute with the
increased number of processors integrated on a chip,
the topic of cache management receives more and more
attention. In the general field of multiprocessors several
authors tackle dynamic cache partitioning [5, 10, 22].
In [5] the authors propose a non-uniform cache ar-
chitecture in which the amount of cache space that
can be shared among the processors is set dynamically.
The purpose of this partitioning scheme is to increase
the overall multiprocessor throughput, and the paper
reports significant speedups when compared with previ-

ously conventional schemes. In [22] the authors explore
existing adaptable caching strategies that balance cache
demand of each task and improve the overall system
throughput. In [10] the authors introduce a cache par-
titioning strategy to improve fairness (defined as how
uniform tasks are slowed down due to cache sharing).
All these proposals bring interesting ideas to the field.
However compositionality and critical tasks perfor-
mance protection are not targeted, as these papers are
positioned in the general purpose computation area.

Different approaches that attempt to make caches
usable in real-time environments exist and were de-
scribed in the literature. These approaches fall into two
categories: (1) attempts to estimate the tasks cache be-
havior, and (2) attempts to partition the caches among
tasks such that they become “more” predictable.

To the best of our knowledge the only articles that
investigate the impact of cache sharing in a multiproces-
sor architecture are [1] and [2].

In [1] the authors compare the cache performance
for the same computation load in two cases: sequential
execution and parallel execution. Due to cache con-
tention among parallel units, the off-chip data traffic
is larger in a parallel execution than in a sequential
execution of the same computation. This paper pro-
vides an analytical framework to calculate the extra
cache size needed in a parallel execution in order to
obtain the same off-chip data traffic as in a sequential
execution. This method is based on a restricted com-
putation model which assumes that a computation is
represented as a Directed Acyclic Graph (DAG) of
tasks synchronized with barriers and scheduled in a

J Sign Process Syst

depth-first manner. Nevertheless, real life media ap-
plications are difficult to express or implement using
DAGs scheduled in such a specific way (depth-first).
Furthermore the authors take into account only an
ideal cache model, which makes their method difficult
to apply for real applications.

The work in [2] predicts the inter-task cache con-
tention based on the cache profile of each task. The
main conclusion of this article is that cache contention
can cause significant performance penalty to the co-
scheduled tasks. This suggests that only a method to
predict the extra involved penalty is not enough. There-
fore the research in [2] makes the point of this paper
even stronger, as it highlights the need for methods to
manage caches in a multiprocessor environment.

The second manner to deal with cache unpredictabil-
ity, cache partitioning, was investigated by several
research groups. Cache partitioning has been proposed
to: (1) improve performance [19, 23] and (2) acquire
predictability [11, 12, 24].

The authors of [23] published several papers thor-
oughly presenting a method in which a task dynam-
ically “steals” cache ways from other tasks, for the
purpose of improving the performance. The authors
of [24] propose to allocate more cache ways to high
priority tasks. However, as already mentioned, in the
context of compositionality, the main shortcoming of
associativity based approaches is that the number of
allocable resources is restricted to the number of ways
in a set (typically small) thus only a limited number of
tasks can be accommodated.

The authors of [8] and [19] propose a compositional
data (instruction) cache organization. The cache is ana-
lyzed and a partitioning is decided at compile time and
imposed at run-time by specific cache instructions. The
result is that this scheme outperforms a conventional
cache, while ensuring compositionality. The main draw-
back of this approach is that the underlying analysis is
difficult in the multiprocessor case, as the detailed task
timing and synchronization has to be known at design
time, which is usually not the case.

In [18] the cache is partitioned among tasks at com-
pile and link time. In [11] the authors propose to divide
the cache among each real-time task. For non-real-
time tasks a shared cache pool is provided. The authors
of [12] propose an operating system controlled cache
partitioning. However, none of these proposals can be

utilized in our case, as they provide a static solution,
while we are considering dynamic applications which
have multiple execution scenarios depending on the
user requests.

In [9] the authors present a quality of service like
cache management strategy for multiple memory access
streams, based on a priority scheme. The paper reports
interesting performance enhancements, however com-
positionality is not the target of their work.

In conclusion, to the best of our knowledge, the exist-
ing cache management methods cannot cope efficiently
with applications that demand compositionality, have
critical tasks, and dynamically switch among different
utilization scenarios.

6 Conclusions

In this paper we proposed a dynamic cache manage-
ment method that enhances compositionality for multi-
media applications with multiple utilization scenarios.
This method aims at multiprocessor platforms that
comprise shared caches. The dynamic repartitioning
requires cache flushing in order to keep the data con-
sistency. This involves an overhead that, in principle,
negatively affects the system performance in general
and the critical tasks behavior in particular. In this
context we proposed a method which: (1) at design
time determines the cache footprint of each tasks, such
that the critical tasks are guaranteed to be undisturbed,
and the flushing overhead is minimized in general, and
(2) at run time ensures that the cache footprints are
enforced and further decreases the flush penalty. On
a CAKE multiprocessor with 4 cores we investigated
the compositionality and the performance induced by
the proposed cache repartitioning over a wide range
of scenario switching frequency (100 Hz to 1 Hz).
The workload consisted of six applications formed by
various task from the MediaBench suite augmented
with an H.264 algorithm. We applied the repartition-
ing method to the CAKE’s L2 cache that is shared
among the processors, therefore highly exposed to
inter-task interferences. For realistic scenario switch-
ing frequencies, we found that, relative to the appli-
cation number of misses, the inter-task cache flushes
are under 4% for the repartitioned cache, whereas
for the shared cache it reaches 68%. Moreover, the

J Sign Process Syst

relative variations of critical tasks execution time are
less than 0.1%, over the entire scenario switching fre-
quency range studied. With respect to performance, the
dynamic repartitioning reduces the off-chip memory
traffic on average with 60%, when compared with the
shared cache. As a consequence, the average num-
ber of cycles needed to execute an instruction is de-
creased with 10%, when compared with the shared
cache, under the circumstances that a maximum of
20% reduction is potentially achievable when using
an infinite L2 cache. In general we observe that the
performance of the statically partitioned L2 is better
than the one of the shared cache, and, most impor-
tant, the performance of the dynamically partitioned
cache is the best, better than both the static parti-
tioned and the shared one. Therefore, despite the in-
volved cache flushing, the repartitioned L2 enables high
compositionality and performs better than the shared
cache.

References

1. Blelloch, G. E., & Gibbons, P. B. (2004). Effectively sharing a
cache among threads. In Proceeding of SPAA (pp. 235–244).

2. Chandra, D., Guo, F., Kim, S., & Solihin, Y. (2005). Predict-
ing inter-thread cache contention on a chip multi-processor
architecture. In Proceeding of HPCA (pp. 340–351).

3. Chiou, D. T. (1999). Extending the reach of microproces-
sors: Column and curious caching. PhD thesis, Department
of EECS, MIT, Cambridge, MA.

4. Chunho, L., Potkonjak, M., & Mangione-Smith, W. (1997).
Mediabench: A tool for evaluating and synthesizing multi-
media and communicatons systems. In Proceedings, interna-
tional symposium on microarchitecture.

5. Dybdahl, H., & Stenstrom, P. (2007). An adaptive shared/
private nuca cache partitioning scheme for chip multiproces-
sors. In Proceeding of IEEE international symposium of high
performance computer architecture (pp. 2–12).

6. Garey, M. R., & Johnson, D. S. (1979). Computers and in-
tractability: A guide to the theory of NP-completeness. New
York: W. H. Freeman.

7. Hennesy, J. L., & Patterson, D. A. (2003). Computer ar-
chitecture: A quantitative approach. San Fransisco: Morgan
Kaufmann.

8. Irwin, J., May, D., Muller, H., & Page, D. (2002). Predictable
instruction caching for media processors. In 13th Interna-
tional conference on application-specific systems, architectures
and processors (ASAP) (pp. 141–150).

9. Iyer, R. (2004). Cqos: A framework for enabling qos in
shared caches of cmp platforms. In Proceeding of the 18th
annual international conference on supercomputing (pp. 257–
266).

10. Kim, S., Chandra, D., & Solihin, Y. (2004). Fair cache shar-
ing and partitioning in a chip multiprocessor architecture. In
Proceeding of IEEE PACT (pp. 111–122).

11. Kirk, D. B. (1989). Smart (strategic memory allocation for
real-time) cache design. In IEEE symposium on real time
systems (pp. 229–237).

12. Liedtke, J., Härtig, H., & Hohmuth, M. (1997). Os-controlled
cache predictability for real-time systems. In 3rd IEEE real-
time technology and applications symposium.

13. Molnos, A. (2008). Task centric memory management for an
on-chip multiprocessor. PhD Thesis, Technical University of
Delft (to appear).

14. Molnos, A., Heijligers, M., Cotofana, S., & van Eijndhoven,
J. (2004). Compositional memory systems for data intensive
applications. In Proceedings, design, automation and test in
Europe (pp. 728–729).

15. Molnos, A., Heijligers, M., Cotofana, S., & van Eijndhoven, J.
(2005). Compositional memory systems for multimedia com-
municating tasks. In Proceedings, DATE.

16. Molnos, A., Heijligers, M., Cotofana, S., & van Eijndhoven,
J. (2006). Compositional, efficient caches for a chip multi-
processor. In Proceedings, design, automation and test in
Europe.

17. Moore, G. (1965). Cramming more components on inte-
grated circuits. Electronics, April 19.

18. Mueller, F. (1995). Compiler support for software-based
cache partitioning. ACM SIGPLAN Notices, 30(11), 137–
145.

19. Muller, H., Page, D., Irwin, J., & May, D. (2002). Caches
with compositional performance. In Proceedings, embedded
processor design challenges (pp. 242–259).

20. Nayfeh, B. A., & Olukotun, K. (1994). Exploring the design
space for a shared-cache multiprocessor. In 21st Annual Int.
Symp. Computer Architecture (pp. 166–175).

21. Sebek, F. (2001). The state of the art in cache memories and
real-time systems. MRTC Technical Report (01/37).

22. Settle, A., Connors, D., Gibert, E., & González, A. (2006). A
dynamically reconfigurable cache for multithreaded proces-
sors. Journal of Embedded Computing, 2, 221–233.

23. Suh, G. E., Rudolph, L., & Devadas, S. (2004). Dynamic
partitioning of shared cache memory. The Journal of Super-
computing, 28(1), 7–26.

24. Tan, Y., & Mooney, V. (2003). A prioritized cache for multi-
tasking real-time systems. In Proceedings of the 11th work-
shop on synthesis and system integration of mixed information
technologies (pp. 168–175).

25. Terechko, A. (2005). Hardware cache coherence prototyping
for the tm2270 trimedia. Philips Research Technical Note
PR-TN 2005/00312.

26. van Eijndhoven, J. T., Hoogerbrugge, J., Jayram, M.,
Stravers, P., & Terechko, A. (2005a). Cache-coherent het-
erogeneous multiprocessing as basis for streaming applica-
tions. In Dynamic and robust streaming between connected
ce-devices. Boston: Kluwer.

27. van Eijndhoven, J. T., Hoogerbrugge, J., Jayram, M.,
Stravers, P., & Terechko, A. (2005b). Dynamic and ro-
bust streaming between connected CE-devices. Boston:
Kluwer.

J Sign Process Syst

Anca M. Molnos received the M.S. degree in computer science
from the “Politehnica” University of Bucharest, Romania in
2001. Between 2002 and 2006 she was a Ph.D student at the
Delft University of Technology, Delft, The Netherlands, working
on cache management for embedded multi-processor systems
executing multimedia applications. Since 2006, she is a senior
scientist at NXP Semiconductors, The Netherlands. Her research
interests include performance analysis for real-time distributed
systems, resource management for embedded multi-processors
and low power scheduling techniques.

Sorin D. Cotofana received the M.S. degree in computer sci-
ence from the “Politehnica” University of Bucharest, Romania,
and the Ph.D. degree in electrical engineering from the Delft
University of Technology, Delft, The Netherlands. He worked
for a decade with the Research and Development Institute for
Electronic Components (ICCE), Bucharest. He is currently an
Associate Professor with the Computer Engineering Laboratory
at Delft University of Technology. His research interests include
various topics from nano-electronics and nano-device specific
design methodologies and computational paradigms, fault tol-
erant computing, embedded systems, reconfigurable computing,
computer arithmetic, low power hardware, and multimedia and
vector architectures and processors. Dr. Cotofana is a member of
the IEEE Computer Society and of IEEE Circuits and Systems
Society.

Marc J.M. Heijligers received his Masters in Information Tech-
nology from the Eindhoven University of Technology in 1991,
and obtained his PhD in 1996. In his PhD thesis he investigated
the use of optimization techniques for architectural synthesis. He
joined Philips Research in 1996, working on architectural synthe-
sis for high-throughput video processing, then on he worked on
C++ code analysis for IC design in the Electronic Design & Tools
department. Since 2001, he is leader of the Systems on Silicon
Integration cluster, working on topics such as low power de-
sign, cache management for multi-processor systems, embedded
FPGAs, channel decoding, smart image processing, and strategi-
cal documents in the area of the semiconductors industry. Since
September 2006, Marc is working at NXP Semiconductors, The
Netherlands, where he is group manager of the IC-lab digital
VLSI group.

Jos T.J. van Eijndhoven is co-founder of Vector Fabrics BV,
developing tools for HW/SW co-design. Before 2007, he was
principal architect at NXP Semiconductors Research, working
on programmable multimedia hardware architectures and the
associated mapping of media processing applications. From 1984
to 1998 he was senior research member in the Design Automa-
tion group at the Eindhoven University of Technology, The
Netherlands. In 1986 he spent a sabbatical at the IBM Thomas
J. Watson Research Laboratory, Yorktown Heights, New York,
USA pioneering the research on high level synthesis. He studied
Electrical Engineering at the Eindhoven University of Tech-
nology, The Netherlands, obtaining his Ph.D. degree in 1984
for research on mixed-level simulation. Jos van Eijndhoven co-
authored about 100 scientific publications and currently holds 15
worldwide patents.

	Compositional, Dynamic Cache Management for Embedded Chip Multiprocessors
	Abstract
	Introduction
	Background
	Dynamic, Set Based, Cache Repartitioning
	Set Based Cache Repartitioning
	Cache Content Reuse via Footprint Management
	Hardness of the Cache Mapping Problem
	Heuristic for the Cache Mapping Problem

	Run-time Cache Management

	Experimental Results
	Compositionality
	Performance

	Related Work
	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

